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Abstract

In this paper we propose a simple recursive uniform algorithm for the problem of packing

boxes into a container. We are particularly concerned with the special case where all boxes

are identical. The algorithm has as input a �xed triad (an object which generalizes a plane

graph) and can be specialized to recover a previous result in dimension two by Morabito and

Morales. The study has practical applications for the problems of pallet and container loading

where the number of rectangles and boxes to be loaded is small.

Keywords: 3-D packing, combinatorial optimization, pallet/container loading

1 Introduction

In this article we present a simple recursive algorithm for the problem of packing

boxes into a larger box, henceforth referred to as a container. The algorithm is based

on the presentation of feasible packing as feasible depth assignments in a triad (an

object which generalizes pairs of dual graphs). To each such assignment, there cor-

responds a partition of the containers into speci�c subcontainers. Each subcontainer
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can be recursively partitioned into further subcontainers, according to the speci�ca-

tions in the triad. A subcontainer which is not partitioned is loaded homogeneously

with the boxes. The algorithm performs a search over all feasible depth assignments

of the problem to �nd the most valuable depth assignment, i.e., the one which in-

duces a maximum number of packed boxes. To organize and simplify the search, the

procedure explores recursion techniques, according to the algorithm of Morabito and

Morales [14] proposed for the 2-D case. The procedure could be easily specialized to

pack rectangles into a larger rectangle (2-D case) or bars into a larger bar (1-D case).

The 3-D packing problem (3PP) has various practical applications. In particular,

in the loading of products (packed into boxes) over pallets, or inside containers or

safe-trucks. Such problems appear in the logistic activities of transporting and stor-

ing goods or supplies and, depending on the scale of the supply/distribution chain, a

small increase in the volume of products loaded over a pallet, or inside a container,

can result in substantial savings.

Several studies treating packing problems have been reported. See, for instance

the surveys of Dowsland and Dowsland [8], Dyckho� and Finke [9], Sweeney and Pa-

ternoster [18], Bischo� and Waescher [5]. Other relevant references are Abdou and

Yang [1], Morabito and Arenales [13], Bischo� and Ratcli� [4], Nelissen [15], Schei-

thauer and Terno [17], and Miyazawa and Wakabayashi [12].

In the present study we were particularly interested in the case of boxes of equal

size. However, the algorithm can easily be adapted to the more general case, where

there is a certain number of boxes and containers with distinct sizes. These gen-

eralizations can be strengthened to handle demand requirements. In this case, the

method treated here plays the role of a column generator to a simplex approach.

These matters will be treated elsewhere.

Here, we also assumed that the boxes, available in large quantity, are to be or-

thogonally arranged inside the container (i.e. with their faces parallel to those of the

container) and that no vertical orientation for the box loading is �xed. This assump-

tion provides, in general, six nonequivalent ways to position a box. The algorithm

can be easily adapted to the case in which there is a �xed vertical orientation. In this

case we have at most two nonequivalent ways to position the box.

3PP is an NP-hard problem and can be formulated as an integer linear program-

ming, for example, extending the (0,1)-model in Beasley [3], originally proposed for

the 2-D case. Or applying the (0,1)-model in Tsai et al. [19] based on disjunctive

restrictions. Exact methods of branch-and-bound type exploring bounds coming from

the surrogate and Lagrangean relaxation can be de�ned following [3] and [19].

Alternatively, Dowsland [7] presented an interesting approach for the 2-D packing,

which can also be extended to treat 3PP. Basically, the approach consists of �nding
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the maximum stable set of a particular �nite graph where the nodes correspond to

the possible positioning of the boxes inside the container. Two nodes are the ends of

an edge if the box positions which they represent overlap.

However, because of the size of practical problems, both the (0,1)-models men-

tioned above and Dowsland's graph approach are generally too big to be computa-

tionally treated. In this way, most methods found in the literature are heuristics,

such as those listed in the previous paragraphs.

The recursive procedure treated here, namely 9-fold partition, is also heuristic.

However, it deterministically �nds the optimum over a well-de�ned class of patterns,

which will contain an optimum in the vast majority of the cases.

To illustrate this, we present the results obtained by the procedure for a non-trivial

example. An analysis of the performance of the procedure for solving a number of

randomly generated examples, as well as examples derived from a case study of a

Brazilian distribution center, is being compiled and will be reported shortly.

2 The 9-Fold Partition

The partition of a rectangle into smaller rectangles can be speci�ed by a duet (Gx,

Gy). The two graphs Gx and Gy have a 1 � 1 correspondence between their edges.

They are also equipped with depth functions on the vertices. The position and di-

mensions of a subcontainer S are speci�ed by a pair of corresponding edges labelled

eS in the following way: the starting point is (x1; y1), where x1 is the end of eS in

Gx with the smallest depth and y1 is the end of eS in Gy with the smallest depth.

The dimension of the subcontainer is (x2 � x1)� (y2 � y1), where x2 and y2 are the

depths of the other ends of eS in Gx and Gy , respectively. The graphs Gx and Gy of

a duet are called pro�les of the duet.

Below we present the duet which corresponds to the canonical partition of the

Morabito and Morales [14] recursion.
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Fig. 1: A duet and its 5-fold rectangle partition: basis for the Morabito-Morales recursion

What is important in this choice of this 5-fold partition, is that it is the simplest

non-guillotine pattern which, by means of recursions applied to the subrectangles,

can produce amazingly rich patterns (see Fig. 4) attaining the optimum in the vast

majority of cases. Each level of the recursion is a nested loop involving 4 variables,

which correspond to the values of the depth assignment of the intermediate vertices

in the duet: x1; y1; x2; y2. The process can be seen as a depth-�rst search where

each edge labeled i in the j-th pro�le of a duet is recursively replaced by the whole

j-pro�le. For instance, Fig 2 depicts the replacement of edges previously labeled 1

(see Fig 1) in the �rst and second pro�les by, respectively, the �rst and second pro�les.
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Fig. 2: Recursive replacements of edges labeled 1 by pro�les

The central idea of this paper is to de�ne the 3-D counterpart of this partition.

We call it the canonical 9-fold partition and it is displayed below. Starting with sub-
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containers 1; 4; 5; 7 and 8 in the left-hand picture, we add subcontainers 3 and 9 as

shown in the middle and, �nally, add subcontainers 2 and 6 to obtain the complete

pattern on the right.

The canonical 9-fold partition can be represented by a triad (Gx; Gy; Gz), which

generalizes the duet in an obvious way. Fig 4 shows the triad representation of the

9-fold canonical partition, given by its three pro�les.

x0 = 0

x3 = p

x1

x2

t

t

t

t

4

71

5
8

6

2

3

9

y0 = 0

y3 = q

y1

y2

t

t

t

t

6

72

4

5

3

1

9

8

z0 = 0

z3 = r

z1

z2

t

t

t

t

9

2

3

6
8

4

1

7

5

Fig. 4: Triad T0 corresponding to the canonical 9-fold partition

Note that like subrectangle 3 in Fig 1, subcontainer 8 is totally internal. This

can be seen in the triad above. This triad, which is the smallest non-trivial 3-D

non-guillotine pattern, is symmetrical with respect to x; y; z, and produces patterns

that surpass the layers-knapsack approach for the 3-D case, as we will see in the next

section. Similar to the 2-D case, the basic cost factor in each call of the recursive

procedure is a nested loop in, this time, six variables, corresponding to the values
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of the depth assignment of the intermediate vertices of the triad: x1; y1; z1; x2; y2; z2.
The increase from 4 to 6 makes a considerable di�erence due to the intrinsic expo-

nential search involved and therefore accuracy is extremely important in the design

of an algorithm with an acceptable running time.

3 An Example

We produced an example to show that a recursive algorithm based on the 9-fold

partition is superior to the layers-knapsack approach for the 3-D case. Consider the

problem of packing (9� 6� 5) boxes into a (61� 44� 50)-container.

3.1 Solution Based on 2-D Approaches

3.1.1 Fixed Orientation

If the vertical orientation of the boxes is �xed, then the optimal solution is depicted

in Fig. 5, consisting of b50=9c layers each with 89 boxes positioned as shown in the

�gure, yielding a total of 445 boxes (bzc denotes the largest integer less than or equal

to z). This example is adapted from [14] and comes from an optimal solution at

recursivity level n = 3 of the recursive 2-D Morabito-Morales algorithm.

Fig. 5: b50=9c layers with 89 (9� 6� 5)-boxes: 445 boxes

3.1.2 Non Fixed Orientation

If the vertical direction of the boxes is no longer �xed, then the loading can be im-

proved. Let us consider what we get by applying a layers-knapsack approach to the

(61 � 44 � 50)-container and (9 � 6 � 5)-boxes example. We have three possible di-

rections to stack the layers.
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By using the left-to-right direction to stack the boxes, the three solutions for the

2-D problems using the Morabito-Morales method are :

� 1. (44� 50)-rectangle and (6� 5)-faces: 73 boxes (optimal solution - level 3)

� 2. (44� 50)-rectangle and (5� 9)-faces: 48 boxes (optimal solution - level 1)

� 3. (44� 50)-rectangle and (6� 9)-faces: 37 boxes (optimal solution - level 1)

Thus the associated knapsack problem is

max 73x1 + 48x2 + 37x3

subject to 9x1 + 6x2 + 5x3 � 61

x1 � 0; x2 � 0; x3 � 0; integer

where x1; x2; x3 correspond respectively to the number of layers using the patterns of

the 2-D problems 1, 2, 3, as above.

The optimal solution for this knapsack problem is x1 = 0; x2 = 10; x3 = 0. There-

fore, we obtain a solution with 10 � 48 = 480 boxes (recall that the solution with

�xed vertical orientation loaded only 445 boxes).

By using the back-to-front direction to stack the boxes the three solutions for the

2-D problems are :

� 4. (61� 50)-rectangle and (6� 5)-faces: 101 boxes (optimal solution - level 1)

� 5. (61� 50)-rectangle and (5� 9)-faces: 67 boxes (optimal solution - level 1)

� 6. (61� 50)-rectangle and (6� 9)-faces: 53 boxes (optimal solution - level 1)

Thus the associated knapsack problem is

max 101x1 + 67x2 + 53x3

subject to 9x1 + 6x2 + 5x3 � 44

x1 � 0; x2 � 0; x3 � 0; integer

where x1; x2; x3 correspond respectively to the numer of layers using the patterns of

the 2-D problems 4, 5, 6, as above.

The optimal solution for this knapsack problem is x1 = 1; x2 = 5; x3 = 1. There-

fore, we obtain a solution with 1� 101+ 5� 67+ 1� 53 = 489 boxes, which is better

than the previous one with 480 boxes.

Finally, we stack the boxes in the top-to-bottom direction. The three solutions

for the 2-D problems are :
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� 7. (61� 44)-rectangle and (6� 5)-faces: 89 boxes (optimal solution - level 3)

� 8. (61� 44)-rectangle and (5� 9)-faces: 58 boxes (normal completion - level 3)

� 9. (61� 44)-rectangle and (6� 9)-faces: 46 boxes (optimal solution - level 1)

In order to check if the 2-D solution obtained for problem 8 is optimal, we solved

the LP-relaxation of the 0-1 model for this problem proposed by Beasley [3] (see sec-

tion 1). The optimal relaxed solution is less than 59 and, therefore, the solution above

(58 boxes) is indeed optimal.

The associated knapsack problem is

max 89x1 + 58x2 + 46x3

subject to 9x1 + 6x2 + 5x3 � 50

x1 � 0; x2 � 0; x3 � 0; integer

where x1; x2; x3 correspond respectively to the number of layers using the patterns of
the 2-D problems 7, 8, 9, as above.

The optimal solution for this knapsack problem is x1 = 5; x2 = 0; x3 = 1. There-

fore, we obtain a solution with 5� 89+1� 46 = 491 boxes, which is the best solution

based on the 2-D approaches above. Observe that a trivial upper bound for the

number of boxes is b61� 44� 50=9� 6� 5c = 497.

3.2 The 9-fold Partition Approach

In this section we show that the 3-D recursive algorithm based on the 9-fold partition

can produce better solutions than the 2-D approaches for such an example.

3.2.1 Level 1

The 3-D solution obtained at level n = 1 of the recursion already loads 490 boxes in

a complicated non-guillotine pattern involving 8 subcontainers, as shown below (Fig.

6). This solution required a microcomputer runtime of 5 minutes.
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Fig. 6: 3-D solution: level 1 | 490 boxes | 8 Subcontainers

In Fig 6 the 490 boxes are packed using 8 subcontainers as follows:

� Subcontainer A: 1-stack of (1� 3)-arrangement of (6� 9� 5)-boxes: 3 boxes;

� Subcontainer B: 1-stack of (1� 1)-arrangement of (6� 9� 5)-boxes: 1 box;

� Subcontainer C: 1-stack of (6� 4)-arrangement of (9� 6� 5)-boxes: 24 boxes;

� Subcontainer D: 1-stack of (6� 3)-arrangement of (9� 6� 5)-boxes: 18 boxes;

� Subcontainer E: 5-stack of (1� 7)-arrangement of (6� 5� 9)-boxes: 35 boxes;

� Subcontainer F : 9-stack of (1� 1)-arrangement of (6� 9� 5)-boxes: 9 boxes;

� Subcontainer G: 5-stack of (11�4)-arrangement of (5�6�9)-boxes: 220 boxes;

� Subcontainer H : 5-stack of (9�4)-arrangement of (6�5�9)-boxes: 180 boxes.

Note in Fig. 6 that the �rst four blocks start at depth 0 and the last four at depth

5.
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3.2.2 Higher Levels

Let us see what happens at higher levels, for example, at level 2:
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Fig. 7 shows that the packing pattern obtained at level 2 (493 boxes) is better

than the best pattern found by the 2-D approaches (491 boxes). Let us also see what

happens at level 3:

The number of boxes put in the subcontainers A, : : :, S are

A=5 B=5 C=20 D=10 E=4 F=1 G=3 H=1 I=8 J=30

K=220 L=12 M=6 N=35 O=54 P=35 Q=25 R=11 S=9,

for a total of 494 boxes.

Limiting the runtime in one day, the best 3-D pattern obtained at level 3 (Fig. 8)

loaded 4 boxes more than the pattern found at level 1 (Fig. 6), and 1 box more than

the pattern at level 2 (Fig. 7). It loaded 3 boxes more than the best solution found

by the 2-D approaches.

In order to check for the optimality of this solution, we solved the LP-relaxation

of the 0-1 model in Beasley [3] for three di�erent 2-D problems:

� 1. (50� 44)-rectangle and (5� 6), (5� 9) and (6� 9) faces
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� 2. (61� 44)-rectangle and (5� 6), (5� 9) and (6� 9) faces

� 3. (61� 50)-rectangle and (5� 6), (5� 9) and (6� 9) faces

The minimum upper bound derived from the LP-solutions for these three problems

was 496 boxes, that is, a gap of only two boxes relative to the solution of Fig. 8.

Running the Morabito-Morales 2D heuristic for the �rst of these problems, at level

20 provided a lower bound of 10 for the wasted area of a 44� 50 slice. Accepting this

as optimal we found that the minimum wasted volume was 61� 10 = 610. Since

b(61� 50� 44� 610)=(9� 6� 5)c = 494;

this would imply that our solution in Fig. 8 is optimal.

4 Conclusion and Further Developments

The example of the previous section suggests that the recursive 9-fold approach intro-

duced in this paper is interesting and merits further consideration. Implementation

aspects and details to improve the running time are currently being developed. Triad

representation has revealed itself as an important tool to deal with symmetry and

isomorphism issues (Herz [10]).

Consideration of these issues has so far reduced the running time by a factor of

�ve. Despite this, the running time for the relatively di�cult example of the previous

section is still prohibitively high in practice: �ve minutes for level 1, several hours

for level 2 and almost one day for the �rst solution for level 3 (interrupted before

termination). This leaves a gap of only 2 boxes relative to the upper bound generated

by the LP-relaxation of a 0-1 formulation for the problem.

It is of the utmost importance to decrease these running times, since the solutions

with the layers-knapsack approach were obtained instantaneously. An e�ective way

to improve the running time of the algorithm, which has not been implemented yet,

is to use the best solution of the layers-knapsack method to provide a good initial

lower bound. Indeed, the e�ort required to solve the 9 associated 2-D problems, plus

the 3 knapsack problems, should be more than compensated by presenting a lower

bound which will most likely curtail the implicit enumeration considerably. Another

technique involves an adaptative thickening of the discretization. We believe that an

appropriate calibration of various heuristic techniques will make the running times

acceptable for most problems from practical situations.
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