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Abstract

The 0-1 unconstrained hyperbolic program is a key tool for solving Lagrangean decomposition

or relaxation of the 0-1 constrained hyperbolic programs. It has to be solved numerous times

in any subgradient algorithm. In this paper, we propose a revisited partition algorithm whose

computation times dominate those of the best known linear time complexity algorithm.
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1 Introduction

Linear or nonlinear fractional programming problems, with discrete or continuous

variables, occur in various �elds such as computer science [11], mathematical

programming [5, 10, 19]), stochastic programming [2], and economies [6, 12, 20].

We are concerned in this paper with the 0-1 unconstrained hyperbolic program:

(P )

8>><
>>:

max
c0 +

P
n

j=1 cjxj

d0 +
P

n

j=1 djxj

s.t. xj 2 f0; 1g j = 1; :::; n

which is a key tool for solving Lagrangean decomposition or relaxation of the 0-1

constrained hyperbolic programs [14, 16].

Classically we assume that:

� d0 +
P

n

j=1 djxj > 0 8xj 2 f0; 1g; j = 1; :::; n
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� cj > 0;8j 2 f1; :::; ng and dj > 0;8j 2 f0; :::; ng:

Note that the second hypothesis is not restrictive since it can be deduced by the

following transformations assuming the �rst hypothesis holds (Hansen et al [11]):

(i) we obtain dj � 0; j = 1; :::; n by replacing xj by its complement 1�xj , for each

j such that dj < 0 (note that the �rst hypothesis implies that d0 > 0),

(ii) the second hypothesis is then obtained in two steps (by denoting x? an optimal

solution of (P)):

step 1 : �x x?
j
at 0 for all j such that cj � 0,

step 2 : �x x?
j
at 1 for all j such that dj = 0.

The �rst works about problem (P) have been developed by Hammer and Rudeanu

in their book devoted to boolean methods in operations research [9]. This problem is

NP-hard [11], but for the class of instances where data are nonnegative, polynomial

exact algorithms have been proposed by Hammer and Rudeanu [9], Robillard [17]

and Hansen et al [11].

Section 2 recalls briey these algorithms with some basic properties (see [13, 15]

for a complete survey devoted to fractional programs). Section 3 deals with a revisited

version of the linear time complexity algorithm of Hansen et al. The computational

results of section 4 show the e�ciency of our algorithm.

2 Algorithms survey

All the algorithms described here are based on the two following fundamental

properties:

Property 1:

min

�
cj

dj
;
ck

dk

�
�

cj + ck

dj + dk
� max

�
cj

dj
;
ck

dk

�
8j; k 2 f1; :::; ng:

Property 2: (elimination of variables)

x?
j
= 0 for all j 2 J = f1; :::; ng such that

cj

dj
�

c0

d0

Proof: Let J0 =

�
j 2 J j

cj

dj
�

c0

d0

�
. The result is deduced directly from property 1

and the relationship

c0 +
P

j2J
cjxj

d0 +
P

j2J
djxj

�
c0 +

P
j2J�J0

cjxj

d0 +
P

j2J�J0
djxj

; 8x 2 f0; 1gn: �

Remark 1: This elimination of variables is a preprocessing phase for all the algorithms.

It is henceforth supposed that data of (P) are such that
cj

dj
>

c0

d0
for all j 2 J =

f1; :::; ng.
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2.1 Hammer and Rudeanu's algorithm

finitializationg

J  f1; :::; ng;

fbeging

repeat

determine k such that
ck

dk
= max

�
cj

dj
j j 2 J

�
;

x?k  1; c0  c0 + ck; d0  d0 + dk;

J0  

�
j 2 J j

cj

dj
�

c0

d0

�
; J  J � J0;

�x x?j at 0 for all j in J0
until �xation of all variables fJ = ;g

�?  
c0

d0
foptimal value of (P)g

fendg

Fig. 1: HR68: Algorithm of Hammer and Rudeanu [9]

These authors propose an algorithm, denoted by HR68 (�gure 1) with a quadratic

time complexity based on the following property:

Property 3 ([9]):

x?
k
= 1 for all k 2 f1; :::; ng such that

ck

dk
= max

�
cj

dj
j j 2 f1; :::; ng

�
.

Proof: This result comes from the relationship

c0 +
X

j2J�fkg

cjxj

d0 +
X

j2J�fkg

djxj
�

c0 + ck +
X

j2J�fkg

cjxj

d0 + dk +
X

j2J�fkg

djxj
8xj 2 f0; 1g; j 2 J � fkg:�

2.2 Robillard's algorithm

This algorithm (�gure 2) has also a quadratic time complexity. It is based on the

following characterization of an optimal solution.

Property 4 ([17]):

Suppose that
c0

d0
<

c1

d1
�

c2

d2
� ::: �

cn

dn
, let k an integer in f1; :::; ng such that:

c0 +
P

n

j=k
cj

d0 +
P

n

j=k
dj

<
ci

di
for all i � k
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finitializationg

J  f1; :::; ng ; J0  ;; J1  ;;

fbeging

for j = 1 to n do

if
cj

dj
>

c0

d0
then

J1  J1 [ fjg ; c0  c0 + cj ; d0  d0 + dj ;

repeat

J0  

�
i 2 J1 j

ci

di
�

c0

d0

�
; J1  J1 � J0;

c0  c0 �
P

i2J0
ci ; d0  d0 �

P
i2J0

di

until J0 = ;

endif

endfor ;

for j = 1 to n do

if j 2 J1 then x?j  1

else x?j  0

endif

endfor

fendg

Fig. 2: Algorithm of Robillard [17]

and
c0 +

P
n

j=k
cj

d0 +
P

n

j=k
dj

�
ci

di
for all i < k

then x? 2 f0; 1gn de�ned by: x?
j
= 1 if j � k

x?
j
= 0 if j < k

is an optimal solution of (P) whose optimal value is given by
c0 +

P
n

j=k
cj

d0 +
P

n

j=k
dj
.

2.3 Hansen-Poggi-Ribeiro's algorithm

The relationships of property 4 binding the value and an optimal solution of a 0-1

unconstrained hyperbolic program can be rewritten in the following form [11]:

Property 5:

If we denote �? the optimal value of (P), then any optimal solution x? of (P) is

such that for all j 2 f1; :::; ng:

x?
j
= 1 if

cj

dj
> �?

x?
j
= 0 if

cj

dj
< �?

x?
j
= 0 or 1 if

cj

dj
= �?.
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finitializationgec c0; ed d0; J  f1; :::; ng;

fbeging

stop false ;

repeat

�nd the median
ck

dk
of the list

�
cj

dj
; j 2 J

�
;

J0  

�
j 2 J j

cj

dj
<

ck

dk

�
; J1  

�
j 2 J j

cj

dj
>

ck

dk

�
; J2  

�
j 2 J j

cj

dj
=

ck

dk

�
;

ec c0 +
P

j2J1[J2
cj ; ed d0 +

P
j2J1[J2

dj ; � 
eced ;

if � >
ck

dk
then

x?j  0 8j 2 J0 [ J2 ; J  J1

else

x?j  1 8j 2 J1 [ J2 ; stop true ;

if J0 6= ; then

�nd the largest element
ck

dk
of the list

�
cj

dj
; j 2 J0

�
;

if � <
ck

dk
then

J  J0 ; c0  ec ; d0  ed ; stop false

else

x?j  0 8j 2 J0

endif

endif

endif

until stop

�?  � foptimal value of (P)g

fendg

Fig. 3: HPR91: Algorithm of Hansen-Poggi-Ribeiro [11]

Based on this characterization, Hansen et al [11] propose a dichotomic procedure,

denoted by HPR91 (�gure 3) with a linear time complexity.

Remark 2: The median search embedded in this algorithm (�gure 3) can be realized

for instance by the linear time algorithm of Blum et al [3].

3 A revisited partition algorithm

We recall that a geometrical interpretation of this problem is [18]: given two

points of R2+ with coordinates (di; ci) and (dj ; cj), the ratio cj=dj (respectively

(ci + cj)=(di + dj)) represents the slope of the vector (dj ; cj) (respectively the vector

addition (di+ dj ; ci+ cj)). Thus, the resolution of (P) consists in determining among

vectors (dj ; cj), j 2 J , those whose addition with the vector (d0; c0) gives a maximal
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slope.

Therefore, solving a 0-1 unconstrained hyperbolic program can be view as the

search of a target �? verifying property 5. In other words, given the list of ratios

cj=dj , we have to determine a pivot value around which J can be partitioned into

two subsets J0 and J1 such that:

8i 2 J0
ci

di
�

c0 +
P

j2J1
cj

d0 +
P

j2J1
dj

�
ck

dk
8k 2 J1 (1)

The induced optimal solution x? of (P) is:

8j 2 J0 x?
j
= 0 and 8j 2 J1 x?

j
= 1 (2)

In practice, the algorithm consists in �nding a real number �? (pivot value) which

constructs a bipartition of J :

8i 2 J0 8k 2 J1
ci

di
� �? �

ck

dk
(3)

satisfying the relationship (1).

We propose to construct a partition algorithm, denoted by NPUH96, according

to a process already used to solve the relaxation of the 0-1 linear Knapsack problem

(Balas and Zemel [1], Bourgeois and Plateau [4], Fayard and Plateau [7, 8]). It

generates a sequence of pivot r and for each of them, the distribution given by the

relationship 3 is performed.

If for the real value

�(r) =
c0 +

P
j2J1(r)

cj

d0 +
P

j2J1(r)
dj

where J1(r) denotes the subset produced by this distribution, there exists j 2 J1(r)

such that

�(r) >
cj

dj

the process is iterated by choosing a new pivot greater than r. In the opposite case,

i.e. when there exists j 2 J0(r) such that

�(r) <
cj

dj

the process is iterated by choosing a new pivot smaller than r, otherwise the current

pivot is optimal (�? = �(r)), and an optimal solution is given by relationship 2 (see

�gure 4).

The linear time complexity of the algorithm in the worst of case or in the mean

case depends on the quality of the pivot whose choice has to bring to a balanced
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finitialization gec c0; ed d0; J  f1; :::; ng;

fbegin g

repeat

calculate a pivot r ;

J0  

�
j 2 J j

cj

dj
< r

�
; J1  

�
j 2 J j

cj

dj
� r

�
;

ec c0 +
P

j2J1
cj ; ed d0 +

P
j2J1

dj ; � 
eced ;

if � � r then

x?j  0 8j 2 J0; J  J1
else

x?j  1 8j 2 J1;

x?j  0 8j 2 J0 such that
cj

dj
� �; J0  J0 �

�
j 2 J0 j

cj

dj
� �

�
;

c0  ec; d0  ed; J  J0
endif

until jJ j � p

repeat

determine k such that
ck

dk
= max

�
cj

dj
j j 2 J

�
;

x?k  1; c0  c0 + ck; d0  d0 + dk;

J0  

�
j 2 J j

cj

dj
�

c0

d0

�
; J  J � J0;

�x x?j at 0 for all j in J0
until �xation of all variables fJ = ;g

�?  
c0

d0
foptimal value of (P)g

fend g

Fig. 4: NPUH96: Partition algorithm

partition, i.e. to generate two sublists with closed sizes.

The best known algorithm designated by Hansen et al [11] (algorithm 3) is based

on a pivot equal to the median ratio of the list cj=dj . Thus the goal is the balancing

of the partition of the list.

We propose to take into account, in addition, the Euclidean norm of the vector

associated with the pivot because it realizes a compromise between a balanced and

optimal partition of data. The following small example shows the strong importance

of this idea.
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Let us consider the two following instances:

(P1)

8><
>:

max
1 + 13x1 + 20x2

1 + 6x1 + 8x2

s.t. x1; x2 2 f0; 1g

and

(P2)

8><
>:

max
1 + 13x1 + 5x2

1 + 6x1 + 2x2

s.t. x1; x2 2 f0; 1g

Although the ratios associated respectively with x1 and x2 have the same values,

these two instances have di�erent optimal solutions: x1 = (0; 1) for (P1) and

x2 = (1; 1) for (P2).

We propose therefore to replace the notion of median ratio by a pivot which is a

\mean ratio". Namely, given a list

�
cj

dj
j j 2 J = f1; :::; ng

�
, we consider as a pivot

value

r =

P
j2J0

cjP
j2J0

dj
(4)

with J 0 � J .

4 Computational experiments

All runs were executed on a Sun Sparc station 5 with a C implementation of the

HR68, HPR91 and NPUH96 algorithms for solving 0-1 unconstrained hyperbolic

program.

To avoid trivial reductions, all ratios cj=dj are greater than c0=d0 (see proposition

2).

Three classes of problems have been distinguished: a class with a great proportion

(more than 80%) of ratios cj=dj close to c0=d0, i.e. a class of instances with solutions

with a great proportion of components equal to 0 (class 1). In the opposite, a

second class with a great proportion (more than 80%) of ratios distant from c0=d0.

This induces solutions with a great proportion of components equal to 1 (class 2).

The third class constitutes an intermediate distribution between the two others

(proportion of components equal to 1 between 40% and 60%) (class 3).

Ten instances are generated for each class (1, 2 and 3) and each size (number of

variables n= 100, 1000 or 5000) data.

A �rst series of experiments have for purpose the comparisons between algorithm

HR68 (�gure 1), algorithm HPR91 (�gure 3) and our algorithm NPUH96 (�gure 4)
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in which pivot is the global mean ratio (i.e. J 0 = J in relationship 4).

Table 1 gives the average running CPU time (in hundredth of seconds) of the ten

running. The last column gives the gain realized by using our revisited method.

class n HR68 HPR91 NPUH96 gain (in %)

t1 t2 t3 = 100�
t2 � t3

t2
100 4.5 1.6 1.2 25

1 1000 82.3 17.1 13.1 23

5000 4000 92 72 22

100 9.8 1.9 1.4 26

2 1000 1034.2 21.2 15.2 28

5000 20000 110 82 25

100 22.7 2 1.2 40

3 1000 2412.9 22.5 16.3 28

5000 60000 120 90 25

Tab. 1: Average running CPU time (in hundredth of seconds) computed over 10

problem instances for the algorithms HR68 (�gure 1), HPR91 (�gure 3) and

NPUH96 (�gure 4)

Two others variants of the partition algorithms (HPR91 and NPUH96) are

proposed. For both algorithms, they di�er in the choice of the pivot: given a list J

to be partitioned, the pivot is now chosen taking into account only a sublist J 0 of J

(\partial pivot"), namely such that jJ 0j = 3. These three elements are located at the

beginning, the end and the middle of the list J . This choice has been used in the

algorithm NKR dedicated to the 0-1 Knapsack problem (Fayard and Plateau [7]).

A comparison of the e�ciency of these four implementations (two versions for

HPR91, and two for NPUH96) is given by table 2.

This points out the gain realized by using \partial pivot" instead of \global pivot".

5 Conclusion

The 0-1 unconstrained hyperbolic program is a key tool for solving Lagrangean de-

composition or relaxation of the 0-1 constrained hyperbolic programs. It has to be

solved numerous times in any subgradient algorithm. Thus a special attention has

to be made in order to construct a really e�cient tool. This paper shows that our

revisited partition algorithm reaches this goal.
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HPR91 algorithm NPUH96 algorithm

n class global partial gain (in %) global partial gain (in %)

t2 t02 100�
t2 � t02

t2
t3 t03 = 100�

t3 � t03
t3

1 1.6 1.6 0 1.2 1.2 0

100 2 1.9 1.6 16 1.4 1.2 14

3 2 1.6 20 1.2 1.2 0

1 17.1 12.7 26 13.1 11.2 15

1000 2 21.2 15.1 29 15.2 13.6 11

3 22.5 15.3 32 16.3 13.8 15

1 92 75 18 72 66 8

5000 2 110 89 19 82 74 10

3 120 91 24 90 89 1

Tab. 2: Average running CPU time (in hundredth of second) computed over 10 prob-

lem instances for the four versions of partition algorithm
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