A Partition Algorithm for 0-1 Unconstrained Hyperbolic Programs

Anass Nagih Gérard Plateau
Université Paris 13, LIPN, UPRES-A CNRS 7030
Institut Galilée, 99, Avenue J-B Clément
93430 Villetaneuse, France
fax: +33148260712
\{anass.nagih, gerard.plateau\}@lipn.univ-paris13.fr

Abstract

The 0-1 unconstrained hyperbolic program is a key tool for solving Lagrangean decomposition or relaxation of the 0-1 constrained hyperbolic programs. It has to be solved numerous times in any subgradient algorithm. In this paper, we propose a revisited partition algorithm whose computation times dominate those of the best known linear time complexity algorithm.

Keywords: Hyperbolic Programming, 0-1 Integer Programming.

1 Introduction

Linear or nonlinear fractional programming problems, with discrete or continuous variables, occur in various fields such as computer science [11], mathematical programming [5, 10, 19]), stochastic programming [2], and economies [6, 12, 20].

We are concerned in this paper with the 0-1 unconstrained hyperbolic program:

$$
(P) \quad \begin{cases}\max & \frac{c_{0}+\sum_{j=1}^{n} c_{j} x_{j}}{d_{0}+\sum_{j=1}^{n} d_{j} x_{j}} \\ \text { s.t. } & x_{j} \in\{0,1\} \quad j=1, \ldots, n\end{cases}
$$

which is a key tool for solving Lagrangean decomposition or relaxation of the 0-1 constrained hyperbolic programs [14, 16].

Classically we assume that:

- $d_{0}+\sum_{j=1}^{n} d_{j} x_{j}>0 \quad \forall x_{j} \in\{0,1\}, j=1, \ldots, n$
- $c_{j}>0, \forall j \in\{1, \ldots, n\}$ and $d_{j}>0, \forall j \in\{0, \ldots, n\}$.

Note that the second hypothesis is not restrictive since it can be deduced by the following transformations assuming the first hypothesis holds (Hansen et al [11]):
(i) we obtain $d_{j} \geq 0, j=1, \ldots, n$ by replacing x_{j} by its complement $1-x_{j}$, for each j such that $d_{j}<0$ (note that the first hypothesis implies that $d_{0}>0$),
(ii) the second hypothesis is then obtained in two steps (by denoting x^{\star} an optimal solution of (P)):
step 1 : fix x_{j}^{\star} at 0 for all j such that $c_{j} \leq 0$,
step $2:$ fix x_{j}^{\star} at 1 for all j such that $d_{j}=0$.
The first works about problem (P) have been developed by Hammer and Rudeanu in their book devoted to boolean methods in operations research [9]. This problem is NP-hard [11], but for the class of instances where data are nonnegative, polynomial exact algorithms have been proposed by Hammer and Rudeanu [9], Robillard [17] and Hansen et al [11].

Section 2 recalls briefly these algorithms with some basic properties (see [13, 15] for a complete survey devoted to fractional programs). Section 3 deals with a revisited version of the linear time complexity algorithm of Hansen et al. The computational results of section 4 show the efficiency of our algorithm.

2 Algorithms survey

All the algorithms described here are based on the two following fundamental properties:
Property 1:

$$
\min \left\{\frac{c_{j}}{d_{j}}, \frac{c_{k}}{d_{k}}\right\} \leq \frac{c_{j}+c_{k}}{d_{j}+d_{k}} \leq \max \left\{\frac{c_{j}}{d_{j}}, \frac{c_{k}}{d_{k}}\right\} \quad \forall j, k \in\{1, \ldots, n\}
$$

Property 2: (elimination of variables)

$$
x_{j}^{\star}=0 \text { for all } j \in J=\{1, \ldots, n\} \text { such that } \frac{c_{j}}{d_{j}} \leq \frac{c_{0}}{d_{0}}
$$

Proof: Let $J_{0}=\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}} \leq \frac{c_{0}}{d_{0}}\right.\right\}$. The result is deduced directly from property 1 and the relationship

$$
\frac{c_{0}+\sum_{j \in J} c_{j} x_{j}}{d_{0}+\sum_{j \in J} d_{j} x_{j}} \leq \frac{c_{0}+\sum_{j \in J-J_{0}} c_{j} x_{j}}{d_{0}+\sum_{j \in J-J_{0}} d_{j} x_{j}}, \quad \forall x \in\{0,1\}^{n}
$$

Remark 1: This elimination of variables is a preprocessing phase for all the algorithms. It is henceforth supposed that data of (P) are such that $\frac{c_{j}}{d_{j}}>\frac{c_{0}}{d_{0}}$ for all $j \in J=$ $\{1, \ldots, n\}$.

2.1 Hammer and Rudeanu's algorithm

```
\{initialization\}
    \(J \leftarrow\{1, \ldots, n\} ;\)
\{begin \}
    repeat
            determine \(k\) such that \(\frac{c_{k}}{d_{k}}=\max \left\{\left.\frac{c_{j}}{d_{j}} \right\rvert\, j \in J\right\} ;\)
            \(x_{k}^{\star} \leftarrow 1 ; \quad c_{0} \leftarrow c_{0}+c_{k} ; \quad d_{0} \leftarrow d_{0}+d_{k} ;\)
            \(J_{0} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}} \leq \frac{c_{0}}{d_{0}}\right.\right\} ; \quad J \leftarrow J-J_{0} ;\)
            fix \(x_{j}^{\star}\) at 0 for all \(j\) in \(J_{0}\)
    until fixation of all variables \(\{J=\emptyset\}\)
    \(\lambda^{\star} \leftarrow \frac{c_{0}}{d_{0}} \quad\{\) optimal value of \((\mathrm{P})\}\)
\{end \}
```

Fig. 1: HR68: Algorithm of Hammer and Rudeanu [9]

These authors propose an algorithm, denoted by HR68 (figure 1) with a quadratic time complexity based on the following property:

Property 3 ([9]):

$$
x_{k}^{\star}=1 \text { for all } k \in\{1, \ldots, n\} \text { such that } \frac{c_{k}}{d_{k}}=\max \left\{\left.\frac{c_{j}}{d_{j}} \right\rvert\, j \in\{1, \ldots, n\}\right\} .
$$

Proof: This result comes from the relationship

$$
\frac{c_{0}+\sum_{j \in J-\{k\}} c_{j} x_{j}}{d_{0}+\sum_{j \in J-\{k\}} d_{j} x_{j}} \leq \frac{c_{0}+c_{k}+\sum_{j \in J-\{k\}} c_{j} x_{j}}{d_{0}+d_{k}+\sum_{j \in J-\{k\}} d_{j} x_{j}} \quad \forall x_{j} \in\{0,1\}, j \in J-\{k\} . \boxtimes
$$

2.2 Robillard's algorithm

This algorithm (figure 2) has also a quadratic time complexity. It is based on the following characterization of an optimal solution.

Property 4 ([17]):
Suppose that $\frac{c_{0}}{d_{0}}<\frac{c_{1}}{d_{1}} \leq \frac{c_{2}}{d_{2}} \leq \ldots \leq \frac{c_{n}}{d_{n}}$, let k an integer in $\{1, \ldots, n\}$ such that:

$$
\frac{c_{0}+\sum_{j=k}^{n} c_{j}}{d_{0}+\sum_{j=k}^{n} d_{j}}<\frac{c_{i}}{d_{i}} \quad \text { for all } i \geq k
$$

```
\{initialization\}
    \(J \leftarrow\{1, \ldots, n\} ; \quad J_{0} \leftarrow \emptyset ; \quad J_{1} \leftarrow \emptyset ;\)
\{begin \}
    for \(j=1\) to \(n\) do
        if \(\frac{c_{j}}{d_{j}}>\frac{c_{0}}{d_{0}}\) then
            \(J_{1} \leftarrow J_{1} \cup\{j\} ; \quad c_{0} \leftarrow c_{0}+c_{j} ; \quad d_{0} \leftarrow d_{0}+d_{j} ;\)
            repeat
                        \(J_{0} \leftarrow\left\{i \in J_{1} \left\lvert\, \frac{c_{i}}{d_{i}} \leq \frac{c_{0}}{d_{0}}\right.\right\} ; \quad J_{1} \leftarrow J_{1}-J_{0} ;\)
                            \(c_{0} \leftarrow c_{0}-\sum_{i \in J_{0}} c_{i} ; \quad d_{0} \leftarrow d_{0}-\sum_{i \in J_{0}} d_{i}\)
                until \(J_{0}=\emptyset\)
            endif
        endfor ;
        for \(j=1\) to \(n\) do
            if \(j \in J_{1} \quad\) then \(\quad x_{j}^{\star} \leftarrow 1\)
            else \(\quad x_{j}^{\star} \leftarrow 0\)
            endif
        endfor
\{end \(\}\)
```

Fig. 2: Algorithm of Robillard [17]
and

$$
\frac{c_{0}+\sum_{j=k}^{n} c_{j}}{d_{0}+\sum_{j=k}^{n} d_{j}} \geq \frac{c_{i}}{d_{i}} \quad \text { for all } i<k
$$

then $x^{\star} \in\{0,1\}^{n}$ defined by: $\quad x_{j}^{\star}=1 \quad$ if $j \geq k$

$$
x_{j}^{\star}=0 \quad \text { if } j<k
$$

is an optimal solution of (P) whose optimal value is given by $\frac{c_{0}+\sum_{j=k}^{n} c_{j}}{d_{0}+\sum_{j=k}^{n} d_{j}}$.

2.3 Hansen-Poggi-Ribeiro's algorithm

The relationships of property 4 binding the value and an optimal solution of a $0-1$ unconstrained hyperbolic program can be rewritten in the following form [11]:
Property 5:
If we denote λ^{\star} the optimal value of (P), then any optimal solution x^{\star} of (P) is such that for all $j \in\{1, \ldots, n\}$:

$$
\begin{array}{ll}
x_{j}^{\star}=1 & \text { if } \frac{c_{j}^{\prime}}{d_{j}}>\lambda^{\star} \\
x_{j}^{\star}=0 & \text { if } \frac{c_{j}}{d_{j}}<\lambda^{\star} \\
x_{j}^{\star}=0 \text { or } 1 & \text { if } \frac{c_{j}}{d_{j}}=\lambda^{\star} .
\end{array}
$$

```
\{initialization\}
    \(\widetilde{c} \leftarrow c_{0} ; \quad \widetilde{d} \leftarrow d_{0} ; \quad J \leftarrow\{1, \ldots, n\} ;\)
\{begin\}
        stop \(\leftarrow\) false ;
        repeat
            find the median \(\frac{c_{k}}{d_{k}}\) of the list \(\left\{\frac{c_{j}}{d_{j}}, j \in J\right\}\);
            \(J_{0} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}}<\frac{c_{k}}{d_{k}}\right.\right\} ; J_{1} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}}>\frac{c_{k}}{d_{k}}\right.\right\} ; J_{2} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}}=\frac{c_{k}}{d_{k}}\right.\right\} ;\)
            \(\widetilde{c} \leftarrow c_{0}+\sum_{j \in J_{1} \cup J_{2}} c_{j} ; \quad \widetilde{d} \leftarrow d_{0}+\sum_{j \in J_{1} \cup J_{2}} d_{j} ; \quad \lambda \leftarrow \frac{\widetilde{c}}{\widetilde{d}} ;\)
            if \(\lambda>\frac{c_{k}}{d_{k}}\) then
                \(x_{j}^{\star} \leftarrow 0 \quad \forall j \in J_{0} \cup J_{2} ; \quad J \leftarrow J_{1}\)
            else
                \(x_{j}^{\star} \leftarrow 1 \forall j \in J_{1} \cup J_{2} ; \quad\) stop \(\leftarrow\) true ;
                    if \(J_{0} \neq \emptyset\) then
                    find the largest element \(\frac{c_{k}}{d_{k}}\) of the list \(\left\{\frac{c_{j}}{d_{j}}, j \in J_{0}\right\} ;\)
                            if \(\lambda<\frac{c_{k}}{d_{k}}\) then
                        \(J \leftarrow J_{0} ; \quad c_{0} \leftarrow \widetilde{c} ; \quad d_{0} \leftarrow \widetilde{d} ; \quad\) stop \(\leftarrow\) false
                        else
                        \(x_{j}^{\star} \leftarrow 0 \quad \forall j \in J_{0}\)
                        endif
                endif
            endif
        until stop
        \(\overline{\lambda^{\star}} \leftarrow \lambda\) \{optimal value of \(\left.(P)\right\}\)
\{end\}
```

Fig. 3: HPR91: Algorithm of Hansen-Poggi-Ribeiro [11]

Based on this characterization, Hansen et al [11] propose a dichotomic procedure, denoted by HPR91 (figure 3) with a linear time complexity.

Remark 2: The median search embedded in this algorithm (figure 3) can be realized for instance by the linear time algorithm of Blum et al [3].

3 A revisited partition algorithm

We recall that a geometrical interpretation of this problem is [18]: given two points of \mathbb{R}_{+}^{2} with coordinates $\left(d_{i}, c_{i}\right)$ and $\left(d_{j}, c_{j}\right)$, the ratio c_{j} / d_{j} (respectively $\left.\left(c_{i}+c_{j}\right) /\left(d_{i}+d_{j}\right)\right)$ represents the slope of the vector $\left(d_{j}, c_{j}\right)$ (respectively the vector addition $\left(d_{i}+d_{j}, c_{i}+c_{j}\right)$). Thus, the resolution of (P) consists in determining among vectors $\left(d_{j}, c_{j}\right), j \in J$, those whose addition with the vector $\left(d_{0}, c_{0}\right)$ gives a maximal
slope.
Therefore, solving a 0-1 unconstrained hyperbolic program can be view as the search of a target λ^{\star} verifying property 5 . In other words, given the list of ratios c_{j} / d_{j}, we have to determine a pivot value around which J can be partitioned into two subsets J_{0} and J_{1} such that:

$$
\begin{equation*}
\forall i \in J_{0} \quad \frac{c_{i}}{d_{i}} \leq \frac{c_{0}+\sum_{j \in J_{1}} c_{j}}{d_{0}+\sum_{j \in J_{1}} d_{j}} \leq \frac{c_{k}}{d_{k}} \quad \forall k \in J_{1} \tag{1}
\end{equation*}
$$

The induced optimal solution x^{\star} of (P) is:

$$
\begin{equation*}
\forall j \in J_{0} \quad x_{j}^{\star}=0 \quad \text { and } \quad \forall j \in J_{1} \quad x_{j}^{\star}=1 \tag{2}
\end{equation*}
$$

In practice, the algorithm consists in finding a real number λ^{\star} (pivot value) which constructs a bipartition of J :

$$
\begin{equation*}
\forall i \in J_{0} \quad \forall k \in J_{1} \quad \frac{c_{i}}{d_{i}} \leq \lambda^{\star} \leq \frac{c_{k}}{d_{k}} \tag{3}
\end{equation*}
$$

satisfying the relationship (1).
We propose to construct a partition algorithm, denoted by NPUH96, according to a process already used to solve the relaxation of the 0-1 linear Knapsack problem (Balas and Zemel [1], Bourgeois and Plateau [4], Fayard and Plateau [7, 8]). It generates a sequence of pivot r and for each of them, the distribution given by the relationship 3 is performed.

If for the real value

$$
\lambda(r)=\frac{c_{0}+\sum_{j \in J_{1}(r)} c_{j}}{d_{0}+\sum_{j \in J_{1}(r)} d_{j}}
$$

where $J_{1}(r)$ denotes the subset produced by this distribution, there exists $j \in J_{1}(r)$ such that

$$
\lambda(r)>\frac{c_{j}}{d_{j}}
$$

the process is iterated by choosing a new pivot greater than r. In the opposite case, i.e. when there exists $j \in J_{0}(r)$ such that

$$
\lambda(r)<\frac{c_{j}}{d_{j}}
$$

the process is iterated by choosing a new pivot smaller than r, otherwise the current pivot is optimal $\left(\lambda^{\star}=\lambda(r)\right)$, and an optimal solution is given by relationship 2 (see figure 4).

The linear time complexity of the algorithm in the worst of case or in the mean case depends on the quality of the pivot whose choice has to bring to a balanced

```
\{initialization \(\}\)
    \(\widetilde{c} \leftarrow c_{0} ; \quad \widetilde{d} \leftarrow d_{0} ; \quad J \leftarrow\{1, \ldots, n\} ;\)
\{begin \}
            repeat
            calculate a pivot \(r\);
            \(J_{0} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}}<r\right.\right\} ; \quad J_{1} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}} \geq r\right.\right\} ;\)
            \(\widetilde{c} \leftarrow c_{0}+\sum_{j \in J_{1}} c_{j} ; \quad \tilde{d} \leftarrow d_{0}+\sum_{j \in J_{1}} d_{j} ; \quad \lambda \leftarrow \frac{\widetilde{c}}{\tilde{d}} ;\)
            if \(\lambda \geq r\) then
                    \(x_{j}^{\star} \leftarrow 0 \quad \forall j \in J_{0} ; \quad J \leftarrow J_{1}\)
            else
                    \(x_{j}^{\star} \leftarrow 1 \forall j \in J_{1} ;\)
                    \(x_{j}^{\star} \leftarrow 0 \forall j \in J_{0}\) such that \(\frac{c_{j}}{d_{j}} \leq \lambda ; \quad J_{0} \leftarrow J_{0}-\left\{j \in J_{0} \left\lvert\, \frac{c_{j}}{d_{j}} \leq \lambda\right.\right\} ;\)
                    \(c_{0} \leftarrow \widetilde{c} ; \quad d_{0} \leftarrow \widetilde{d} ; \quad J \leftarrow J_{0}\)
            endif
        until \(|J| \leq p\)
        repeat
            determine \(k\) such that \(\frac{c_{k}}{d_{k}}=\max \left\{\left.\frac{c_{j}}{d_{j}} \right\rvert\, j \in J\right\}\);
            \(x_{k}^{\star} \leftarrow 1 ; \quad c_{0} \leftarrow c_{0}+c_{k} ; \quad d_{0} \leftarrow d_{0}+d_{k} ;\)
            \(J_{0} \leftarrow\left\{j \in J \left\lvert\, \frac{c_{j}}{d_{j}} \leq \frac{c_{0}}{d_{0}}\right.\right\} ; \quad J \leftarrow J-J_{0} ;\)
            fix \(x_{j}^{\star}\) at 0 for all \(j\) in \(J_{0}\)
        until fixation of all variables \(\{J=\emptyset\}\)
        \(\lambda^{\star} \leftarrow \frac{c_{0}}{d_{0}} \quad\) \{optimal value of \(\left.(\mathrm{P})\right\}\)
\{end \}
```

Fig. 4: NPUH96: Partition algorithm
partition, i.e. to generate two sublists with closed sizes.

The best known algorithm designated by Hansen et al [11] (algorithm 3) is based on a pivot equal to the median ratio of the list c_{j} / d_{j}. Thus the goal is the balancing of the partition of the list.

We propose to take into account, in addition, the Euclidean norm of the vector associated with the pivot because it realizes a compromise between a balanced and optimal partition of data. The following small example shows the strong importance of this idea.

Let us consider the two following instances:

$$
(P 1) \quad \begin{cases}\max & \frac{1+13 x_{1}+20 x_{2}}{1+6 x_{1}+8 x_{2}} \\ \text { s.t. } & x_{1}, x_{2} \in\{0,1\}\end{cases}
$$

and

$$
(P 2) \quad \begin{cases}\max & \frac{1+13 x_{1}+5 x_{2}}{1+6 x_{1}+2 x_{2}} \\ \text { s.t. } & x_{1}, x_{2} \in\{0,1\}\end{cases}
$$

Although the ratios associated respectively with x_{1} and x_{2} have the same values, these two instances have different optimal solutions: $x^{1}=(0,1)$ for (P1) and $x^{2}=(1,1)$ for (P2).

We propose therefore to replace the notion of median ratio by a pivot which is a "mean ratio". Namely, given a list $\left\{\left.\frac{c_{j}}{d_{j}} \right\rvert\, j \in J=\{1, \ldots, n\}\right\}$, we consider as a pivot value

$$
\begin{equation*}
r=\frac{\sum_{j \in J^{\prime}} c_{j}}{\sum_{j \in J^{\prime}} d_{j}} \tag{4}
\end{equation*}
$$

with $J^{\prime} \subseteq J$.

4 Computational experiments

All runs were executed on a Sun Sparc station 5 with a C implementation of the HR68, HPR91 and NPUH96 algorithms for solving 0-1 unconstrained hyperbolic program.

To avoid trivial reductions, all ratios c_{j} / d_{j} are greater than c_{0} / d_{0} (see proposition $2)$.

Three classes of problems have been distinguished: a class with a great proportion (more than 80%) of ratios c_{j} / d_{j} close to c_{0} / d_{0}, i.e. a class of instances with solutions with a great proportion of components equal to 0 (class 1). In the opposite, a second class with a great proportion (more than 80%) of ratios distant from c_{0} / d_{0}. This induces solutions with a great proportion of components equal to 1 (class 2). The third class constitutes an intermediate distribution between the two others (proportion of components equal to 1 between 40% and 60%) (class 3).

Ten instances are generated for each class (1, 2 and 3) and each size (number of variables $n=100,1000$ or 5000) data.

A first series of experiments have for purpose the comparisons between algorithm HR68 (figure 1), algorithm HPR91 (figure 3) and our algorithm NPUH96 (figure 4)
in which pivot is the global mean ratio (i.e. $J^{\prime}=J$ in relationship 4).

Table 1 gives the average running CPU time (in hundredth of seconds) of the ten running. The last column gives the gain realized by using our revisited method.

class	n	HR68 t_{1}	HPR91 t_{2}	NPUH96 t_{3}	gain (in \%) $=100 \times \frac{t_{2}-t_{3}}{t_{2}}$
1	100	4.5	1.6	1.2	25
	1000	82.3	17.1	13.1	23
	5000	4000	92	72	22
2	100	9.8	1.9	1.4	26
	1000	1034.2	21.2	15.2	28
	5000	20000	110	82	25
3	100	22.7	2	1.2	40
	1000	2412.9	22.5	16.3	28
	5000	60000	120	90	25

Tab. 1: Average running CPU time (in hundredth of seconds) computed over 10 problem instances for the algorithms HR68 (figure 1), HPR91 (figure 3) and NPUH96 (figure 4)

Two others variants of the partition algorithms (HPR91 and NPUH96) are proposed. For both algorithms, they differ in the choice of the pivot: given a list J to be partitioned, the pivot is now chosen taking into account only a sublist J^{\prime} of J ("partial pivot"), namely such that $\left|J^{\prime}\right|=3$. These three elements are located at the beginning, the end and the middle of the list J. This choice has been used in the algorithm NKR dedicated to the 0-1 Knapsack problem (Fayard and Plateau [7]).

A comparison of the efficiency of these four implementations (two versions for HPR91, and two for NPUH96) is given by table 2.

This points out the gain realized by using "partial pivot" instead of "global pivot".

5 Conclusion

The 0-1 unconstrained hyperbolic program is a key tool for solving Lagrangean decomposition or relaxation of the $0-1$ constrained hyperbolic programs. It has to be solved numerous times in any subgradient algorithm. Thus a special attention has to be made in order to construct a really efficient tool. This paper shows that our revisited partition algorithm reaches this goal.

n			HPR91 algorithm			NPUH96 algorithm		
			gain (in \%) $100 \times \frac{t_{2}-t_{2}^{\prime}}{t_{2}}$	global t_{3}	partial t_{3}^{\prime}	gain (in \%) $=100 \times \frac{t_{3}-t_{3}^{\prime}}{t_{3}}$		
	1	1.6	1.6	0	1.2	1.2	0	
	2	1.9	1.6	16	1.4	1.2	14	
	3	2	1.6	20	1.2	1.2	0	
1000	1	17.1	12.7	26	13.1	11.2	15	
	2	21.2	15.1	29	15.2	13.6	11	
	3	22.5	15.3	32	16.3	13.8	15	
5000	1	92	75	18	72	66	8	
	2	110	89	19	82	74	10	
	3	120	91	24	90	89	1	

Tab. 2: Average running CPU time (in hundredth of second) computed over 10 problem instances for the four versions of partition algorithm

References

[1] E. Balas et E. Zemel "An algorithm for large zero-one Knapsack problems", Operations Research 28 (1980) 1130-1145.
[2] B. Bereanu, "Decision regions and minimum risk solutions in linear programming," in : A. Prekopa, Ed., Colloquium on applications of mathematics to economics, Budapest, 1963, (Publ. house of the Hungarian academy of sciences, Budapest, 1965, 37-42).
[3] M. Blum, R. W. Floyd, V. Pratt, R. L. Rivest et R. E. Tarjan "Time bounds for selection", Journal of Computer and System Sciences 7 (1973) 448-461.
[4] P. Bourgeois and G. Plateau, "BPK92 : A Revisited Hybrid Algorithm for 0-1 Knapsack Problem", EURO XI, Helsinki, June 1992.
[5] B. D. Craven, "Fractional Programming," Helderman, Berlin, 1988.
[6] C. Derman, "On sequential decisions and Markov chains," Management Science 9 (1962) 16-24.
[7] D. Fayard et G. Plateau "An algorithm for the solution of the 0-1 Knapsack problem", Computing 28 (1982) 269-287.
[8] D. Fayard et G. Plateau "An exact algorithm for the 0-1 collapsing Knapsack problem", Discrete Applied Mathematics 49 (1994) 175-87.
[9] P. L. Hammer et S. Rudeanu "Boolean methods in operations research and related areas", (Springer, Berlin - New York, 1968).
[10] P. Hansen, M. Minoux and M. Labbé, "Extension de la programmation linéaire généralisée au cas des programmes mixtes," Comptes Rendus de l'Académie des Sciences de Paris 305 (series I) (1987) 569-572.
[11] P. Hansen, M. V. Poggi de Aragao and C. C. Ribeiro, "Hyperbolic 0-1 programming and query information retrieval," Mathematical Programming 52 (1991) 255-263.
[12] M. Klein, "Inspection - maintenance - replacement schedule under Markovian deterioration," Management Science 9 (1963) 25-32.
[13] A. Nagih et G. Plateau "Programmes fractionnaires : tour d'horizon sur les applications et méthodes de résolution", RAIRO - Operations Research Vol. 33 (4) (1999) 383-419.
[14] A. Nagih et G. Plateau "A Lagrangean Decomposition For 0-1 Hyperbolic Programming Problems", To appear in International Journal of Mathematical Algorithms.
[15] A. Nagih et G. Plateau "Méthodes Lagrangiennes pour les problèmes hyperboliques en variables 0-1", FRANCORO : Rencontres Francophones de Recherche Opérationnelle, Mons, Belgique, june 1995.
[16] A. Nagih and G. Plateau "An exact Method for the 0-1 Fractional Knapsack Problem", INFORMS, New Orleans, USA, october 29 - novembre 1, 1995.
[17] P. Robillard "0-1 hyperbolic programming", Naval Research Logistic Quarterly 18 (1971) 47-58.
[18] Alan L. Saipe "Solving a $(0,1)$ hyperbolic program by branch and bound", Naval Research Logistic Quarterly 22 (1975) 397-416.
[19] H. M. Wagner and J. S. C. Yuan, "Algorithmic equivalence in linear fractional programming," Management Science 14 (1968) 301-306.
[20] W. T. Ziemba, C. Parkanand and R. Brooks-Hill, "Calculation of investment portfolios with risk free borrowing and lending," Management Science 21 (1974) 209-222.

