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Abstract

In this paper we prove a basic convergent result related with the numerical solution of the

inverse problem in ODE dynamical models. First we recall the general approach to solve

it, proposed in a preceding paper, using Adams' schemes with variable step size. Su�cient

conditions for the convergence of sequences of stationary solutions of the discrete problems

to a stationary solution of the continuous problem are established.

1 General Approach

1.1 The parameter estimation problem

In [18] we considered the following continuous optimization problem:

min J(u) =
sP

i=1

'
i
[zi(� i); �zi] ;

_x(t) = f (x(t); u; t) ; t 2 [0; T ];

x0 = l(u);

z(t) = g (x(t); u; t) ; t 2 [0; T ];

0 � � i < � i+1 � T; i = 1; :::; s� 1;

(1)

where: x 2 <n; u 2 <m; z 2 <p; '
i
: <p � <p ! <; f : <n � <m � [0; T ] !

<n; l : <m ! <n; g : <n � <m � [0; T ] ! <p: This means that we are modelling

a dynamical process by a n�dimensional system of nonlinear ordinary di�erential

equations, which depends on an unknown m�vector of parameters u: To this end,

a set of data (measurements) f�z1; �z2; :::; �zsg of the observed p�vector variable z(:);
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at s di�erent instants of time f�1; � 2; :::; � sg; is given and we should minimize J; a

sum of functions depending on model and observed vectors (most frequently it is a

quadratic function of the residuals (zi(� i)� �zi)).

Parameter estimation problems for ODE systems (or ODE inverse problems)

is a classical matter and have been considered by many authors. Several methods

and points of view were proposed and special structures or statistical concepts were

exploited (see for example [1], [3], [13] [20]). New schemes of numerical integration

were also designed in order to deal with sti� ODE (see [6], [9] and [4]), appearing

frequently in chemical reaction models (see also [21], [22]) and other important �elds

of applications.

This paper is the second part of [18] where we were mainly interested in the

numerical computation of the solution. It is clear that the problem (1) only can be

approximately solved since, most time, the exact solution of the nonlinear di�erential

equation can not be exactly calculated and the optimization algorithms are iterative

process in character. Therefore, we proposed not to try to solve the continuous

problem (1), but to transform it in such a way that we obtain a simpler problem

which gives us a satisfactory approximated solution.

1.2 Problem transformation

The general idea introduced in [18] is to use numerical integration schemes as

constraints, instead of the di�erential equation, transforming the continuous problem

into a discrete one, which can be solved in an easier way. This transformation

depends directly on the numerical scheme of integration that is used. As a general

example, in [18] we considered the following discrete problem in which the system

of ordinary di�erential equations is substituted by a multi-step scheme of variable

order Qi and variable step size hi :

min Jk(u) =
kP
i=0

~'
i
[zi; ~zi] ;

xi+1 = xi + hiFi (xi; xi�1; :::; xi�Qi+1;u) ; i = 0; 1; 2; :::; k� 1;

x0 = l(u);

zi = gi (xi; u) ; i = 0; 1; 2; :::; k: (2)

The partition of integration:

t0 = 0; tk = T

ti+1 = ti + hi; i = 0; 1; :::; k � 1;
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contains the set of measurement times f�1; � 2; :::; � sg and hence, to each measurement

index j 2 f1; 2; :::; sg corresponds an integration index i 2 f0; 1; 2; :::; kg: We de�ned

the index correspondence:

I(i) =

�
j if i corresponds to j;

0 otherwise,
; i = 0; 1; :::; k (3)

and denoted by M the set of integration indexes corresponding to measurements:

M = fi 2 f0; 1; 2; :::; kg j I(i) 6= 0g;

then, the functions ~'
i
in Jk(u) are de�ned by:

~'
i
[zi; ~zi] = '

I(i)[zi; ~zi]1M [i];

~zi = �z
I(i);

where 1M is the characteristic function of the setM and '0; �z0 can be given arbitrarily.

We also introduced J : f1; :::; sg ! f0; 1; :::; kg as a left inverse of I over f1; :::; sg,

i.e. J (j) is equal to the unique i 2 f0; :::; kg such that I(i) = j: Then,

~'
J (j)[zJ (j); �zj ] = '

j
[zj ; �zj ] ; j = 1; :::; s:

The functions Fi were de�ned by the Adams integration formulae, as a linear

predictor-corrector scheme:

Fi (xi; xi�1; :::; xi�Qi+1; u) = K
Qi+1
0 f (yi+1; u; ti+1) +

QiX
j=1

K
Qi+1
j

f (xi�j+1; u; ti�j+1) ;

(4)

yi+1 = xi + hi

QiX
j=1

�
Qi

j
f (xi�j+1; u; ti�j+1) ; i = 0; 1; :::; k � 1: (5)

where �
Q

j
, K

Q

j
are the coe�cients of the Q�order Adams-Bashford and Adams-

Moulton schemes, respectively (see, for example, [23]). The order policy of the scheme

was taken as:

Qi = min fi+ 1; Qmax � 1g; i = 0; 1; :::k � 1:

In addition, we considered a family of implicit multistep-multiderivative nonlinear

Q� order schemes with uniform steplength, proposed by Enright and Henrici in 1976,

with several theoretical and practical advantages [4]. They are specially adapted for

sti� problems and, for our purposes, we used the simpler and better known second

order formula to construct various schemes:

xi+1 = xi + h
QP
j=1

�
Q+2
j

f(xi�j+1; u) + h�
Q+2
0 f (xi+1; u)+

+h2�
Q+2
0 Dxf (xi+1; u) :f (xi+1; u) :

(6)
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In order to decrease the complexity of the calculation of the resulting nonlinear

equation and of the gradient computation, we used some explicit variants of such

scheme. The idea was to improve the corrector evaluation, using the Enright's second

order formula as a recorrector. For some details of the variants, gradient formulas,

etc..., see [18].

The substitution we made is some kind of "direct method" approach for the solu-

tion of the inverse problem. At the end, we have an approximated problem and, as a

consequence, we need some theoretical convergence theorem and we should solve this

approximated problem in the most exact possible way.

2 Theoretical results

2.1 Gradient formulae

In the �rst part [18], the following "sensitivity form" of the continuous gradient was

proved:

rJ(�u) =

sX
i=1

[Dx�i(�x(� i); �u)M(� i) +Du�i(�x(� i); �u)] ;

or

rJ(�u) =

sX
i=1

Dz'i[g(�x(� i); �u; � i); zi] [gx(�x(� i); �u; � i)M(� i) + gu(�x(� i); �u; � i)] ; (7)

where M(t) is the solution of the "sensitivity " matrix di�erential system:

dM(t)

dt
= fx(�x(t); �u; t)M(t) + fu(�x(t); �u; t); t 2 [0; T ];

M(0) = Dul(�u):
(8)

and

�i(x; u) = '
i
[g(x; u; � i); zi]; i = 1; :::; s:

In addition, in [18] was also proved the "sensitivity form" of the discrete gradient:

rJk(�u) =

kX
i=0

[Dx�i(�xi; �u)Mi +Du�i(�xi; �u)] ; (9)

where fMi; i = 0; 1; :::; kg is the solution of the discrete matrix system:

M0 = Dul(�u);

Mi+1 =Mi + hi

"
QiP
j=1

Dxi�j+1
Fi(�xi; �u)Mi�j+1 +DuFi(�xi; �u)

#
; i = 0; k � 1;

(10)
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We shall use these results in the next section.

2.2 Convergence of discrete solutions sequences

The following theorem shows a limit relation between the discrete and continuous

solutions, when we use the linear predictor-corrector scheme:

Theorem 1: Let be the continuous problem (1) and their associated discrete problems

(2), using predictor-corrector scheme (5)-(4), and decreasing uniform step lengths

hk = T

k
; k = 1; 2; :::. Assume that '; f; l; g are continuous and continuously

di�erentiable functions with respect to (x; u); such that fx; fu are bounded functions

on (x; u; t)�bounded sets.

Let fukg be any sequence of stationary points of the discrete problems, corre-

sponding to the steps fhkg ; and orders Qk

i
= min fi+ 1; Qmax � 1g ; i = 0; 1; :::; k;

k = 1; 2; :::. Then, every accumulation point of the sequence fukg is a stationary

point of the continuous problem.

Proof. It is su�cient to show that if fukg is a sequence convergent to u, then the

sequence of discrete gradients frJk(uk)g converges to the continuous gradientrJ(u):

In that case, if fukg is any sequence of stationary points of (2), we have rJk(uk) = 0

for all k: Then, at a limit point u of any convergent subsequence of fukg; we must

have rJ(u) = 0: The proof of this property shall be done in several steps.

2.2.1 Some properties of predictor-corrector schemes

Let u be an arbitrary vector in <m. We denote by �xk =
�
xk
i
; i = 0; 1; :::; k

	
and

�yk =
�
yk
i
; i = 0; 1; :::; k

	
; the two vector sequence solutions of the di�erence system

(4)-(5), corresponding to step hk and vector u: Then, we have:

xk
i+1 = xk

i
+ hkCi(x

k

i
; yk

i+1; u); i = 0; 1; :::; k � 1;

xk0 = l(u);

yk
i+1 = xk

i
+ hkPi(x

k

i
; u); i = 0; 1; :::; k � 1;

yk0 = l(u);

where xk
i
= (xk

i
; xk

i�1; :::; x
k

i�Qi
) and

Ci(x
k

i
; yk

i+1; uk) = K
Qi+1
0 f

�
yk
i+1; u; �

k

i+1

�
+

QiX
j=1

K
Qi+1
j

f
�
xk
i�j+1; u; �

k

i�j+1

�
;
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Pi(x
k

i
; uk) =

QiX
j=1

�
Qi

j
f
�
xk
i�j+1; u; �

k

i�j+1

�
:

Observe that, for all i and k:

Fi(x
k

i
; u) = Ci(x

k

i
; yk

i+1; u):

For the Adams' linear predictor-corrector schemes it is well known (see [23]) that

piecewise polynomial approximations can be associated with �xk and �yk: For example,

to them correspond, respectively, the continuous functions �xk [t]; �yk[t] de�ned, at inter-

val [�k
i
; �k

i+1]; as the Qi+1�degree interpolating polynomial (with vector coe�cients),

satisfying:

�xk [�k
i
] = xk

i
;

d

dt
�xk[�k

j
] = f(xk

j
; u; �k

j
); j = i; i� 1; :::; i�Qi + 1;

d

dt
�xk[�k

i+1] = f(yk
i+1; u; �

k

i+1);

(11)

and the Qi�degree interpolating polynomial, satisfying:

�yk[�k
i
] = xk

i
;

d

dt
�yk[�k

j
] = f(xk

j
; u; �k

j
); j = i; i� 1; :::; i�Qi + 1;

(12)

for i = 0; 1; :::; k � 1 and k = 1; 2; :::;where:

�k
j
=

jT

k
= jhk; j = 0; :::; k;

are the points of [0; T ] de�ning the partition of integration.

If we denote by x(t) the unique continuously di�erentiable solution of the Cauchy

initial problem:

_x(t) = f(x(t); u; t); t 2 [0; T ];

x(0) = x0;

corresponding to the vector u; and if (4)-(5) de�nes a p�order scheme (i.e. Qmax = p)

then, it is also known that the global errors tend to zero:

ek
x
(t) =



x(t) � �xk[t]



1
! 0;

ek
y
(t) =



x(t) � �yk[t]



1
! 0;

uniformly with respect to t 2 [0; T ]; if k ! +1. Furthermore, this limit is uniformly

with respect to u in any bounded set of <m in the case that fx and fu are bounded,

as we assumed here.
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In particular, this property and the continuity of x(t) show that the sequences�

xk
i



	
i=0;k

and
�

yk

i



	
i=0;k

are uniformly bounded for all k = 0; 1; ::: and all u in

any bounded set of <m. We even have the estimations (see [23]):

ek
x
(t) � constant � hp+1;

ek
y
(t) � constant � hp;

for t 2 [�k
p�1; T ].

In addition, consider the following obvious inequality for t 2 [�k
i
; �k

i
+ hk]:



�xk[t]� x(t)


 � 

�xk[�k

i
]� x(� k

i
)


+ Z t

�
k
i





d�xk [� ]d�
� f(x(� ); u; �)





 d� ; (13)

since f is Lipschitz continuous with respect to x (fx is bounded), there exists a

constant Lx; the same for all u in any bounded set, such that the following estimation

hold: 


d�xk[� ]
d�

� f(x(� ); u; �)



 � 

f(�xk[� ]; u; � )� f(x(� ); u; �)



+
+


f(�xk[�k

i
]; u; �k

i
)� f(�xk[� ]; u; �)



+O1(
��� � �k

i

��) �
� Lx



�xk[� ]� x(� )


+ Lx



�xk[�k
i
]� �xk [t]



+O2(
��t� �k

i

��)
� Lx



�xk[� ]� x(t)


 +O3(

��t� �k
i

��);
where

Or(h)! 0; if h! 0; r = 1; 2; 3;

and for all u in any bounded set of <m:

Hence, substituting in (13) and applying Gronwall's inequality we obtain the es-

timation: 

�xk [t]� x(t)


 � �

�xk[�k

i
]� x(�k

i
)


+ hkO3(hk)

�
exp(Lxhk);

for all t 2 [�k
i
; �k

i
+ hk]: The same inequality holds for �yk[t] :

�yk[t]� x(t)



 � �

�yk[�k
i
]� x(�k

i
)


+ hkO3(hk)

�
exp(Lxhk):

and this shows that the convergence at any point t depends on the convergence at

the node points �k
i
:

2.2.2 Applications to the sensitivity matrix cases

Analogous results can be obtained if we apply the linear predictor-corrector scheme

to the matrix ODE system (8). Introducing the notations:

x()k
i
=
�
x(�k

i
); x(� k

i�1); :::; x(�
k

i�Qi
)
�
; (14)

M
k

i
=
�
M

k

i
;Mk

i�1; :::;M
k

i�Qi

�
; (15)

c
 Investigaci�on Operativa 2000



214 G�omez, J. A. and Marrero, A. � Convergence of Discrete Aproximations ...

DxCi

�
x()

k

i
;Mk

i
;N k

i+1; u
�

= K
Qi+1
0 fx

�
x(�k

i+1); u; �
k

i+1

�
N

k

i+1 +

+

QiX
j=1

K
Qi+1
j

fx
�
x(� k

i�j+1); u; �
k

i�j+1

�
M

k

i�j+1;(16)

DxPi

�
x()

k

i
;Mk

i
; u
�
=

QiX
j=1

�
Qi

j
fx
�
x(�k

i�j+1); u; �
k

i�j+1

�
Mi�j+1; (17)

and the corresponding meaning for DuCi(x
k

i
; yk

i+1;N
k

i+1; u) and DuPi(x
k

i
;Mk

i
; u); it

is easy to see that we have the following equations:

Mk

0 = Dul(u);

Mk

i+1 =Mk

i
+ hk

�
DxCi

�
x()k

i
;Mk

i
;N k

i+1; u
�
+DuCi

�
x()k

i
;Mk

i
;N k

i+1; u
��
; i = 0; k � 1;

(18)

N
k

i+1 =M
k

i
+ hk

�
DxPi

�
x()k

i
;Mk

i
; u
�
+DuPi

�
x()k

i
;Mk

i
; u
��
; i = 0; k � 1; (19)

for the scheme (4)-(5) in the case when it is applied to (8).

To the solution sequence M
k

=
�
Mk

i
; i = 0; 1; :::; k

	
of (18)-(19) corresponds

the piecewise polynomial approximation M
k

[t]; de�ned at interval [�k
j
; �k

j+1] as the

Qi + 1�degree interpolating polynomial (with matrix coe�cients), satisfying:

M
k

[�k
i
] =Mk

i
;

d

dt
M

k

[�k
j
] = fx(x(�

k

j
); u; �k

j
)Mk

j
+ fu(x(�

k

j
); u; �k

j
); j = i; :::; i�Qi + 1;

d

dt
M

k

[�k
i+1] = fx(x(�

k

j+1); u; �
k

j+1)N
k

j+1 + fu(x(�
k

j+1); u; �
k

j+1);

(20)

for i = 0; 1; :::; k � 1; k = 1; 2; :::; and the error convergence to zero:

E
k(t) =




Mk

[t]�M(t)



! 0; for hk ! 0;

uniformly with respect to u in any bounded set. HereM(t) denotes the unique matrix

solution of the sensitivity ODE system (8). We have similar results for the solution

sequence N
k

=
�
N k

i
; i = 0; 1; :::; k

	
and, in addition, the estimates:


Mk

[t]�M(t)



 �

�


Mk

[�k
i
]�M(�k

i
)



+ hkO(hk)

�
exp(Lxhk);


Nk

[t]�M(t)



 �

�


Nk

[�k
i
]�M(�k

i
)



+ hkO(hk)

�
exp(Lxhk);

for all t 2 [�k
i
; �k

i
+hk]; i = 0; 1; :::; k; k 2 @ and the uniform boundedness properties:

N k

i



 � K1;


Mk

i



 � K2;

for i = 0; 1; :::; k; k 2 @; u bounded.
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On the other hand, using de�nitions in (4)-(5), it is not di�cult to see that:

Dxs
Fi(x

k

i
; u) = K

Qi+1
0 fx(y

k

i+1; u; �
k

i+1)
@yi+1

@xs
+K

Qi+1
i�s+1fx(x

k

s
; u; �k

s
); s = i; :::; i�Qi+1;

DuFi(x
k

i
; u) = K

Qi+1
0 fu (yi+1; u; ti+1) +

QiX
j=1

K
Qi+1
j

fu (xi�j+1; u; ti�j+1) ;

@yi+1

@xi
= I + hk�

Qi

1 fx(x
k

i
; u; �k

i
);

@yi+1

@xs
= hk�

Qi

i�s+1fx(x
k

s
; u; �k

s
); s = i� 1; :::; i�Qi + 1:

Hence, if we denote by �M
k =

�
Mk

i
; i = 0; 1; :::; k

	
the matrix sequence, solution

of the "sensitivity" discrete system (10) corresponding to step hk; then:

QiP
j=1

Dxi�j+1
Fi(x

k

i
; u)Mk

i�j+1 =

=
QiP
j=1

h
K

Qi+1
0 fx(y

k

i+1; u; �
k

i+1)
@yi+1

@xi�j+1
+K

Qi+1
j

fx(x
k

i�j+1; u; �
k

i�j+1)
i
Mk

i�j+1 =

= K
Qi+1
0 fx(y

k

i+1; u; �
k

i+1)

"
Mk

i
+ hk

QiP
j=1

�
Qi

j
fx(x

k

i�j+1 ; u; �
k

i�j+1)M
k

i�j+1

#
+

+
QiP
j=1

K
Qi+1
j

fx(x
k

i�j+1 ; u; �
k

i�j+1)M
k

i�j+1:

De�ning the matrix sequence
�
Nk

i
; i = 1; :::; k

	
as:

N
k
i+1 = M

k
i +hk

QiX
j=1

�
Qi
j

h
fx(x

k
i�j+1; u; �

k
i�j+1)M

k
i�j+1 + fu(x

k
i�j+1; u; �

k
i�j+1)

i
; i = 0; k � 1;

we obtained that the "sensitivity" system (10) can also be written in the following

form:

Mk

0 = Dul(u);

Mk

i+1 =Mk

i
+ hkK

Qi+1
0

�
fx(y

k

i+1; u; �
k

i+1)N
k

i+1 + fu(y
k

i+1; u; �
k

i+1)
�
+

+hk
QiP
j=1

K
Qi+1
j

�
fx(x

k

i�j+1; u; �
k

i�j+1)M
k

i�j+1 + fu(x
k

i�j+1; u; �
k

i�j+1)
�
;

or equivalently:

Mk

0 = Dul(u);

Mk

i+1 =Mk

i
+ hk

�
DxCi

�
x
k

i
;Mk

i
; Nk

i+1; u
�
+DuCi

�
x
k

i
;Mk

i
; Nk

i+1; u
��
; i = 0; k � 1;

(21)
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Nk

i+1 =Mk

i
+ hk

�
DxPi

�
x
k

i
;Mk

i
; u
�
+DuPi

�
x
k

i
;Mk

i
; u
��
; i = 0; k � 1; (22)

with the same meanings as in (14)-(17) for the notation x
k

i
; Mk

i
; DxCi; DxPi and

DuCi; DuPi, changing x(�
k

i
);Mk

i
and N k

i
by xk

i
;Mk

i
and Nk

i
respectively.

Now it is clear that the only di�erence between the matrix schemes (18)-(19) and

(21)-(22) is the evaluation of the matrix coe�cients at x(� k
i
) instead of xk

i
: There-

fore, if �Mk[t] denotes the piecewise polynomial approximation, analogous to (20) and

corresponding to �M
k; it satis�es the equalities:

�M
k[�k

i
] =Mk

i
;

d

dt

�M
k[�k

j
] = fx(x

k

j
; u; �k

j
)Mk

j
+ fu(x

k

j
; u; �k

j
); j = i; i� 1; :::; i�Qi + 1;

d

dt

�M
k[�k

i+1] = fx(x
k

j+1; u; �
k

j+1)N
k

j+1 + fu(x
k

j+1; u; �
k

j+1);

(23)

for all i = 0; 1; :::; k and k 2 @:

2.2.3 Two essential estimations

Moreover, we have the estimations:

�vk
i+1 � (1 + hkV1) �w

k

i
+ hkV2; (24)

�wk

i+1 � (1 + hkW1) �w
k

i
+ hkW2; (25)

for i = 0; 1; :::; k and k 2 @; and all u in any bounded set, where:

vk
i

=


Nk

i
�N

k

i



 ; wk

i
=


Mk

i
�M

k

i



 ;
�vk
i

= max
�
vk
j
; i�Qi + 1 � j � i

	
;

�wk

i
= max

�
wk

j
; i�Qi + 1 � j � i

	
;

and V1;W1; V2;W2 are constants, independent on i and k:

In fact, for any k and reasoning by induction, for i = 0 we can write:



Nk

1 �N
k

1



 � hk




DxP0

�
x
k

0 ;M
k

0 ; u
�
�DxP0

�
x()

k

0 ;M
k

0 ; u
�


+

+hk




DuP0

�
x
k

0 ;M
k

0 ; u
�
�DuP0

�
x()

k

0 ;M
k

0 ; u
�


 �

�


Mk

0 �M
k

0



+ hk


fx(xk0 ; u; �k0)� fx(x(�

k

0); u; �
k

0)


 

Mk

0



+
+hk



fx(xk0 ; u; �k0)

 

Mk

0 �M
k

0



+ hk


fu(xk0 ; u; �k0)� fu(x(�

k

0); u; �
k

0)


 ;

and by the continuity of x(t); fx; fu; the uniform convergence of xk [� ] to x(� ) and the

uniform boundedness of the sequences fxk0g; f�
k

0g;
�

Mk

0



	 and of the function fx;

we have: 

Nk

1 �N
k

1



 � (1 + hkV1)


Mk

0 �M
k

0



+ o(hk)V2; (26)

o(hk)

hk
! 0; k ! +1;
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for some constants V1; V2; independent on u and k: In addition,

Mk

1 �M
k

1



 � 

Mk

0 �M
k

0



+
+hk




DxCi
�
x
k

i
;Mk

i
; Nk

i+1; u
�
�DxCi

�
x()

k

i
;Mk

i
;N k

i+1; u
�


+

+hk




DuCi
�
x
k

i
;Mk

i
; Nk

i+1; u
�
�DuCi

�
x()

k

i
;Mk

i
;N k

i+1; u
�


 �

�


Mk

0 �M
k

0



+ hkK
Q0+1
0



fx(yk1 ; u; �k1)� fx(x(�
k

1); u; �
k

1)


 

Nk

1



+
+hkK

Q0+1
0



fx(x(�k1); u; �k1)

 

Nk

1 �N
k

1



+
+hkK

Q0+1
0



fu(yk1 ; u; �k1)� fu(x(�
k

1); u; �
k

1)


+

+hkK
Q0+1
1



fx(xk0 ; u; �k0)� fx(x(�
k

0); u; �
k

0)


 

Mk

0



+
+hkK

Q0+1
1



fx(x(�k0); u; �k0)

 

Mk

0 �M
k

0



+
+hkK

Q0+1
1



fu(xk0 ; u; �k0)� fu(x(�
k

0); u; �
k

0)


 :

Once more, continuity of x(t); fx; fu; uniform convergence of xk [t] to x(t) and

boundedness of sequences and functions involved, jointly with (26), give the inequal-

ity: 

Mk

1 �M
k

1



 � (1 + hkW1)


Mk

0 �M
k

0



+ o(hk)W2;

for some constants W1;W2 independent on k and u.

Suppose (24)-(25) are true for all j � i; from (18)-(19) and (21)-(22), we can write

the inequalities: 

Nk

i+1 �N
k

i+1



 � 

Mk

i
�Mk

i



+
+hk




DxPi
�
x
k

i
;Mk

i
; u
�
�DxPi

�
x()

k

i
;Mk

i
; u
�


+

+hk




DuPi
�
x
k

i
;Mk

i
; u
�
�DuPi

�
x()

k

i
;Mk

i
; u
�


 ;



Mk

i+1 �M
k

i+1



 � 

Mk

i
�Mk

i



+
+hk




DxCi
�
x
k

i
;Mk

i
; Nk

i+1; u
�
�DxCi

�
x()

k

i
;Mk

i
;N k

i+1; u
�


+

+hk




DuCi
�
x
k

i
;Mk

i
; Nk

i+1; u
�
�DuCi

�
x()

k

i
;Mk

i
;N k

i+1; u
�


 :

Then, using again the continuity of x(t); fx; fu; the uniform convergence of xk [t]

to x(t); the uniform boundedness of the sequences fxk
i
g; fyk

i
g; f�k

i
g; fMk

i
g; fNk

i
g and

of the function fx; and induction, we obtain the estimations:

Nk

i+1 �N
k

i+1



 � (1 + hkV1) �w
k

i
+ o(hk)V2;

Mk

i+1 �M
k

i+1



 � (1 + hkW1) �w
k

i
+ o(hk)W2:

From induction hypothesis, we also have for all j � i� 1 :

Nk

j+1 �N
k

j+1



 � (1 + hkV1) �w
k

j
+ o(hk)V2 � (1 + hkV1) �w

k

i
+ o(hk)V2;

Mk

j+1 �M
k

j+1



 � (1 + hkW1) �w
k

j
+ o(hk)W2 � (1 + hkW1) �w

k

i
+ o(hk)W2;
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and then:

max i�Qi+2�j�i+1



Nk

j
�N k

j



 = �vk
i+1 � (1 + hkV1) �w

k

i
+ o(hk)V2;

max i�Qi+2�j�i+1



Mk

i+1 �M
k

i+1



 = �wk

i+1 � (1 + hkW1) �w
k

i
+ o(hk)W2:

2.2.4 Convergence of sensitivity matrices

Now we can apply the following well known Lemma (for a proof see [24]):

Lemma 2: Suppose the real numbers f�
i
g
i=0;1;:::satisfy a recurrence estimate of the

form: ���
i+1

�� � (1 + �) j�
i
j+B; i = 0; 1; :::

for some �xed � > 0 and B � 0: Then, we have the global estimate:

j�
i
j � ei� j�0j+

ei� � 1

�
B; n = 1; 2; :::

Applying Lemma 2 to the sequences �k
i
= �wk

i
; and recalling that �wk

0 = 0; we have

the global estimate:

�wk

i
�

eihkW2 � 1

hkW1

o(hk)W2;

for all i = 0; 1; :::; k; and all k 2 @; and this implies:



Mk

i
�M

k

i



 �
 �

eTW2 � 1
�
W2

W1

!
o(hk)

hk
! 0 if k ! +1: (27)

From this last estimation we obtain:


 �Mk[t]�M
k

[t]



! 0; if k !1;

since from (20), (23) and (27) the values of the interpolating polynomials converge

uniformly to zero:


 �Mk[�k
i
]�M

k

[�k
i
]



!

k

0;


 d

dt

�M
k[�k

j
]� d

dt
M

k

[�k
j
]



!

k

0; j = i�Qi + 1; ::::; i+ 1;

and the �nite and �xed number of coe�cients of those interpolating polynomials

depend continuosly on this values.

Then, we have the convergence of the sequence �M
k[t] to M(t) for each t 2 [0; T ];

because: 

 �Mk[t]�M(t)


 � 


 �Mk[t]�M

k

[t]



+ 


Mk

[t]�M(t)



!

k

0:
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2.2.5 Convergence of gradients

Now we are ready to prove the convergence of the sequence of discrete gradients

frJk(u)gk2@ to the continuous gradient rJ(u). We recall the expressions of the

continuous and discrete gradient for this case:

rJ(u) =

sX
j=1

h
Dx

~�j(x(� j); u)M(� j) +Du
~�j(x(� j); u)

i
; (28)

rJk(u) =

kX
i=0

�
Dx�i(x

k

i
; u)Mk

i
+Du�i(x

k

i
; u)
�
;

where:

~�j(x(� j); u) = '
j
[g(x(� j); u; � j); �zj ]; j = 1; 2; :::; s;

�i(x
k

i
; u) = ~'

i
[g(xk

i
; u; �k

i
); �z

I(i)]; i = 0; 1; :::; k;

~'
i
[zi; ~zi] = '

I(i)[zi; �zI(i)]1M [i]; i = 0; 1; :::; k;

M = fi 2 f0; 1; 2; :::; kg j I(i) 6= 0g;

and the numbers f� j ; j = 1; 2; :::; sg are the measure points in [0; T ].

For the index function J we have:

�k
J (j) = � j ; j = 1; :::; s;

since J (j) is precisely the index i; corresponding to the j�th measure, in the

partition of integration
�
�k
i
; i = 0; 1; :::; k

	
. Then, we can write:

rJk(u) =
P

k

i=0

�
Dx�i(x

k

i
; u)Mk

i
+Du�i(x

k

i
; u)
�
=

=
P

k

i=0 1M [i]
h
Dx'I(i)[g(x

k

i
; u; �k

i
); �z

I(i)]M
k

i
+Du'I(i)[g(x

k

i
; u; �k

i
); �z

I(i)]
i
=

=
P

s

j=1

h
Dx'j [g(x

k

J (i); u; �
k

J (i)); �zj ]M
k

J (i) +Du'j [g(x
k

J (i); u; �
k

J (i)); �zj ]
i
=

=
P

s

j=1

h
Dx'j [g(�x

k [�k
J (i)

]; u; �k
J (i)

); �zj ] �M
k[�k

J (i)
] +Du'j [g(�x

k[�k
J (i)

]; u; �k
J (i)

); �zj ]
i
=

=
P

s

j=1

�
Dx'j [g(�x

k[� j ]; u; � j); �zj ] �M
k[� j ] +Du'j [g(�x

k[� j ]; u; � j); �zj ]
�
;

and

rJk(u) =

sX
j=1

h
Dx

~�j(x
k [� j ]; u) �M

k[� j ] +Du
~�j(x

k [� j ]; u)
i
: (29)
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Comparing (28) with (29), it is clear that the convergence of rJk(u) to rJ(u); if

k ! +1; is a consequence of the uniform convergence of xk[� j ] to x(� j) and �M
k[� j ]

to M(� j) for all j = 1; 2; :::; s; and all u in any bounded set, and using the continuity

of ' and g:

Finally, from the continuity of rJ at u; for every _" > 0 there exists r > 0 such

that if v belongs to the closed ball �Br; with center at u and radius r; then

krJ(v) �rJ(u)k < ":

If fukg is any sequence of vectors in <m converging to u; for k big enough (�

N1), the sequence fukg belongs to the compact neighborhood �Br of u: Since the

convergence of xk[� j ] to x(� j) and �M
k[� j ] to M(� j) is also uniform for u in �Br, we

have for any " > 0; the existence of N2 = N2("); such that:

krJk(v)�rJ(v)k < "; if k � N2 and for any v 2 �Br:

Then,

krJk(uk)�rJ(u)k � krJk(uk)�rJ(uk)k+ krJ(uk)�rJ(u)k

krJk(uk)�rJ(u)k � 2"; for k � N = max(N1; N2):

3 Conclusions

In the present paper we stated and proved fundamental results related with inverse

problems in ODE modelling which we resume as follows:

1) We proposed some kind of "direct approach " for the solution of the inverse

problem, substituting the ordinary di�erential equation by a di�erence scheme. This

is a general approach and can be used also for other dynamical model (as PDE),

2) We strongly recommend to use the exact formulas for the gradients of the

discrete approximation schemes instead of using a �nite di�erence approach. In [18]

we give a general algorithm to their calculation.

3) We proved the convergence of sequences of discrete gradients to the continuous

gradient. This implies that limit points of sequences of stationary points for the

discrete problems are stationary points of the continuos problem.
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