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Abstract

Two condition numbers described by Ye, Vavasis, Stewart, Todd and others have been used to

study the complexity of interior point algorithms. The �rst one is given by the \smallest large

variable" in the optimal face of the linear programming problem, and the other by the supreme

of the norms of all the oblique projection operators on the range space of AT . The �rst one

has the disadvantage of depending on the knowledge of the optimal partition, and the second

depends only on the data but does not use the structure of the linear programming problem.

We give a characterization of the �rst one, based on the edges of the feasible polyhedron,

which does not depend on the knowledge of the optimal partition.

Keywords: Condition numbers, complexity, interior point algorithms.

1 Introduction

The complexity study of path following algorithms for linear programming tradition-

ally uses a stopping rule which involves the \bit-size" of the problem. This model,

based on the Turing machine computation model assumes that the data entries of

the linear programming problem are integers. The complexity study is a strategy to

measure the performance of the algorithm by counting the arithmetic operations in

each iteration, and estimating bounds to the number of iterations in the \worst case"
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instance. Given the continuous nature of the path following algorithms for linear

programming, it seems natural to establish a real model to study the complexity.

Blum, Shub and Smale [1] de�ne a computation model called \universal machine",

where the data are assumed to be real numbers, and the arithmetic operations are

simple operations. Several recent works follow these ideas in the study of interior

point algorithms for linear programming. For instance Renegar [5], Freund [4], Vera

[13] and others use the distance to \ill posedness" as condition measures, and Vavasis

and Ye use condition numbers based on the optimal set and on oblique projections.

In this work we shall consider the condition number of the \smallest large variable"

of the optimal set given by Ye [14]. This number has the disadvantage requiring the

knowledge of the optimal partition, and so the stopping rule that it establishes has

no practical sense. There is an attempt to characterize this condition measure, given

by Vavasis and Ye [9], based on all the oblique projection operators on the range

space of the matrix that de�nes the linear feasibility problem in Karmarkar's form.

Tun�cel [6] proved that this characterization might be poor, showing instances where

the smallest large variable is big, and the characterization too small. The main idea

in the complexity study is to give a stopping rule which ensures the identi�cation

of the optimal partition while following the central path. In [11] Vavasis and Ye

established an active set strategy where the condition number of oblique projections

is used to guess the partition. The complexity study of this algorithm is di�cult. In

this work we give a characterization of the smallest large variable condition number

for linear programming in standard form, that does not depend on the knowledge

of the optimal partition. This characterization relies on the edges of the polyhedron

that de�nes the feasible set. In this way we establish a stopping rule based on this

condition number that allows one to separate large and small variables, and identify

the optimal partition. In consequence we can study the complexity of path following

interior point algorithms in a real framework.

Notation: Vectors in IRn will be denoted with superscripts. The scalars will be

denoted with subscripts. Hence, for the scalar �, �i denotes � to the power i.

Given a vector x, the corresponding uppercase symbol denotes as usual the

diagonal matrix X , de�ned by the vector. The symbol e will represent the vector of

all ones, with dimension given by the context.

Given a matrix A, its null space and the column range space are denoted

respectively by N (A) and R(A). The projection matrix onto N (A) is PA, and its

complement ~PA = I � PA.

We shall denote component-wise operations on vectors by the usual notations

for the numbers. Thus, given two vectors u; v of the same dimension, uv, u=v, etc

will denote the vectors with components uivi, ui=vi, etc. This notation is consistent

as long as component-wise operations always have precedence in relation to matrix

operations. Note that uv � Uv and if A is a matrix, then Auv � AUv, but in general

Auv 6= (Au)v.

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 227

Given an index set f1; : : : ; ng and J � f1; : : : ; ng the cardinality of J will be

denoted by jJ j; Jc = f1; : : : ; ngnJ stand for the complement of J ; vJ represent the

restriction of the vector v indexed by J .

Given the vector d 2 IRn+, we de�ne B(d) = fi = 1; : : : ; n j di > 0g, and

N(d) = B(d)c.

The notation g = O(r) means that there exists a positive constant M such that

kgk �Mr.

Given a set A � IRn, and the vector v 2 IRn the sum of sets fvg + A will be

frequently written as v +A.

We shall denote the sequences in A by (xk) in A, and subsequences by (xk)K
where K � IN .

2 The normalized linear programming problem

In this section we shall establish the linear programming problem, the assumptions

and a \normalization"of the problem. We consider the primal and dual linear pro-

gramming problems associated with the instance �A, �b, and �c, where �A 2 IRm�n; �c 2
IRn and b 2 IRm:

minimize �cTx

(P ) subject to �Ax = b

x � 0

and
maximize bT y

(D) subject to �AT y + s = �c

s � 0

We de�ne the primal-dual feasible set as

F = f(x; s) 2 IRn � IRn j �Ax = b; x � 0; s = �c� �AT y; s � 0; y 2 IRmg;

and the interior point set as

F o = f(x; s) 2 F j x > 0; s > 0g:

We enforce the following assumptions, standard in interior point path following

algorithms:

� F o 6= 0

� rank( �A) = m.

c
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� �c 62 R( �AT ).

The set of optimal solutions for the primal-dual pair of problems constitutes a

face 
 of the polyhedron of feasible solutions F . By the assumptions we can prove

that this face is a compact set. It is well known that this face is characterized by a

partition fB;Ng of the set of indices f1; : : : ; ng such that


 = f(x; s) 2 F j xN = 0; sB = 0g:

In the relative interior of the optimal face 
, xB > 0 and sN > 0. We call xB and

sN large variables, and xN and sB small variables.

We study algorithms that converge to the optimal face. Our main concern is with

the behavior of the iterates when they approach the optimal face, by following the

central path. For details on the central path, see Gonzaga [2].

Given � > 0, � 2 IR, the pair (x; s) 2 F is the central point (x(�); s(�)) associated

with � if

xs = �e: (1)

The central path is the curve in IR2n parameterized by the positive real �, that is

CP = f(x; s) 2 F j xs = �e; � > 0g:

We want to study the conditioning of the pair of problems (P ); (D), that is how

a problem de�ned by a given instance �A; b; �c is \hard" to be solved. We now imagine

an iterative procedure for �nding an optimal solution of the pair (P ); (D). It is

necessary to give the procedure an initial point, and the number of iterations clearly

depends on where the initial point is. In consequence, the instance will not be well

de�ned only with the data �A; b; �c. It is necessary to incorporate the initial point

in the de�nition of the instance to complete the information. When we study the

complexity of the algorithms we are interested in two questions: The �rst one is how

many computations the computer will perform to give us a response in the \worst

case" instance? and the second one is: how can we compare instances, in order to

label them as \easy" or \hard"?. In order to establish a standard criterion to answer

the second question, we will de�ne a pair of primal and dual problems, equivalents to

(P ) and (D), but incorporating additional information to the instance, coming from

the structure, giving a standard \initial point".

We denote (x̂; ŝ) = (x(1); s(1)), the point on the central path associated with

� = 1. We de�ne the scaling matrix D̂ = X̂
1
2 Ŝ�

1
2 . We now de�ne the scaled problem

by changing the primal and dual feasibility conditions, and the objective function in

the following way: We de�ne A = �AD̂, �x = D̂�1x, �s = D̂s and c = D̂�c. The primal

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 229

and dual scaled pair of problems is

Minimize cTx

subject to Ax = b

x � 0

and
Maximize bT y

subject to AT y + s = c

s � 0:

It can be easily veri�ed that the vector e is primal and dual feasible for this

pair of scaled problems. Now we have a standard initial point for a path following

algorithm.

The dual feasibility condition can be written as s 2 c+R(AT ) where R(AT ) is the
image space of the matrix AT . It can be easily veri�ed that c+R(AT ) = s+R(AT )
for all s 2 c + R(AT ); that is, we can replace c by some �s in the data, obtaining

the same problem. Since e 2 c + R(AT ), we write the dual feasibility condition as

s 2 e +R(AT ), and the primal objective function as eTx. On the other hand, since

Ae = b, the primal feasibility condition can be written as A(x�e) = 0 or x�e 2 N (A),

and the dual objective function can be expressed as eTAT y = eT (e� s) = eT e� eT s.

Maximizing eT e� eT s is equivalent to minimizing eT s, and the optimal values di�er

by the constant eT e = n. Now, the \normalized" primal and dual pair of problems

are
minimize eTx

(Pe) subject to x� e 2 N (A)

x � 0

and
minimize eT s

(De) subject to s� e 2 R(AT )
s � 0:

Written in this way, the problems (Pe); (De) are symmetric with respect to the

orthogonal subspaces N (A) and R(AT ). It is worth noting that the de�nition of the

pair of linear programming problems does not depends on the matrix A, but relies

on the orthogonal subspaces N (A) and R(AT ).

We de�ne the normalized feasible set as

Fe := f(x; s) 2 IRn � IRn j Ax = b; x � 0; s = e�AT y; s � 0; y 2 IRmg;
the normalized central path

CPe := f(x; s) 2 Fe j xs = �e; � > 0g
and the optimal face


e := f(x; s) 2 Fe j xN = 0; sB = 0g:

c
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We also de�ne the proximity measure to the central path as

IRn++ � IRn++ � IR+ 3 (x; s; �) 7! �(x; s; �) := kxs
�
� ek:

3 The \smallest large variable"

Given the optimal face 
e, and the optimal partition fB;Ng of the indices f1; : : : ; ng
as above, we de�ne the following condition number:

�P = minj2Bfmaxxj j (x; s) 2 
eg;
�D = minj2Nfmax sj j (x; s) 2 
eg;

� = minf�P ; �Dg:
If the optimal face is non-degenerate then � is indeed the smallest large variable

of the unique optimal solution. It is intuitive that � should act as condition measure

for the linear programming problem, since the smaller this smallest large variable is,

the greater the di�culty that the methods face in identifying it as large variable.

In [14], Ye studied the complexity of some path following algorithms using � to

de�ne a stopping rule. He establishes a real model to express the complexity bounds

of those algorithms, under the assumption that all the data entries are real numbers.

The number � carries more information about the di�culty of the problem than the

input size L. In fact, there exist instances whose input data sizes are very large, but

which de�ne essentially easy linear programming problems. We now quote without

proof Ye's complexity theorem:

Consider a sequence (xk ; sk; �k) 2 F � IR+ verifying for � 2 (0; 1) that

�(xk; sk; �k) � � (2)

It is well known that several path following algorithms (for instance the short

step path following algorithm) generates sequences verifying (2) (see for exam-

ple Gonzaga [2]). We de�ne the sets Bk = fj 2 f1; : : : ; ng j sk
j
� xk

j
g and

Nk = fj 2 f1; : : : ; ng j xk
j
< sk

j
g.

Theorem 3.1: Consider a sequence (xk ; sk; �k) 2 F o� IR+ with �k ! 0 satisfying (2),

and the sets Bk; B;Nk; N de�ned as above. Then Bk = B and Nk = N for all k

such that

�k <
�2

n2
(1� �):

It is also well known, for several path following algorithms, that the parameter �k

satis�es, for all k 2 IN :

�k � �0(1� �p
n
)k; (3)
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where � 2 (0; 1). We can estimate a polynomial bound for the number of iterations of

the path following algorithms by using (3). The classical model assumes a stopping

rule given by �k < 2�L where L is the number of bits needed to store the data by

assuming each entry as an integer number. The following lemma calculates such

bound:

Lemma 3.2: Given a sequence (xk ; sk; �k) satisfying (2) and the number L de�ned as

above. Then:

k = O(
p
nL):

Proof.

By (3) we have

�k

�0
� (1� �p

n
)k:

Taking logarithms in both sides, and using the relation log(1� t) � �t, 8t 2 (0; 1)

we obtain

log
�k

�0
� k log(1� �p

n
) � � k�p

n
;

so

k � �
p
n

�
log

�
�k

�0

�
: (4)

Now we use the stopping rule �k < 2�L to obtain

k �
p
n log( 2

�0
)

�
L;

that is, k = O(
p
nL).

With an analogous argument it is possible to establish the following lemma (due

to Ye [14]), which describes the complexity of the central path algorithms by using

the real model given by the \smallest large variable":

Lemma 3.3: Given a sequence (xk ; sk; �k) satisfying (2), and the stopping rule �k �
�
2(1��)

n2
, then

k = O(
p
n(j log�j+ logn)):

Proof.

We substitute �k � �
2

n2
(1� �) in (4) to obtain

k � �
p
n

�
log(

�2

n2�0
(1� �)) =

2
p
n

�
(j log �j+ logn) +

p
n

�
(log j1� �j+ log�0):

The number � described above de�nes a real model for studying the complexity

of the path following algorithms. Although this model takes more structure of
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the instance than the \bit-size" model, and we do not need to assume the data as

integers, we cannot use the stopping rule that � de�nes, because it requires the

knowledge of the optimal partition fB;Ng.

Another condition number, denoted by ��A, studied by Stewart [7], Vavasis and

Ye [9] and others, was used to express the complexity bounds of some path following

algorithms. The number ��A is de�ned as the supreme of the norms of all the oblique

projection operators into the image space of the matrix AT . Vavasis and Ye [9] discuss

ways of relating this condition measure with �. It is easy to see that � can be made

arbitrarily large (or small) by changing b or c while keeping A �xed. Therefore, at

�rst glance, no apparent relationship exist. However, Vavasis and Ye [10] study these

condition number for feasibility problems over polyhedra expressed in Karmarkar's

standard form. They proved for this problem that � is bounded below by 1=��A. This

fact allows us to use the theorem 3.3 to study the complexity of some path following

algorithms in a real framework, and without the knowledge of the optimal partition

for the problem of �nding a feasible point of those polyhedra in Karmarkar's form,

achieving a bound of O(
p
n(log ��A + logn)) for the number of iterations. However,

this bound can be rough. In fact, Tun�cel, [6] describes a family of instances A� which

de�ne polyhedra in standard form, with �� of the order of 1=2 for all � su�ciently

small, and ��A�
growing inde�nitely when � goes to zero. That is, the problem de�ned

by A� is \well conditioned" in the sense of the smallest large variable, but we would

label it as \ill conditioned" by using the characterization given by ��A�
. This means

that, even for polyhedra in Karmarkar's form, there is no relationship between � and

��A. One possible explanation for the number ��A failure in characterizing � is that

it uses only information of the matrix A, and not on the other data b or c. We shall

de�ne a condition number that uses more information of the structure of the problem

than ��A, but without the knowledge of the optimal partition, as � needs. Later we

relate such number with � and establish a real framework for studying the complexity

of some path following algorithms for linear programming in standard form.

4 The edge condition number

We de�ne the sets

� = fJ � f1; : : : ; ng j dimN (AJ ) = 1g;
W = fw 2 IRn j J 2 �; wJ 2 N (AJ ); wJc = 0; eTw � 0g;

and

Ŵ = fw 2 W j eTw > 0g:
For the matrix Z de�ned in such way that its rows form a basis for N (A) we de�ne

�0 = fJ � f1; : : : ; ng j dimN (ZJ ) = 1g;
W 0 = fv 2 IRn j J 2 �0; vJ 2 N (ZJ); vJc = 0; eTv � 0g;

and

Ŵ 0 = fv 2 W 0 j eT v > 0g:

c
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Vectors in W are vectors in N (A) parallel to the edges of the polyhedron that

de�ne the primal feasible set, and elements of W 0 belong to R(AT ) and are parallel

to the edges of the dual feasible set. We de�ne the sets W ,� and Ŵ assuming only

the knowledge of the instance data, this is we assume the optimal set to be unknown.

We de�ne a condition number, based on this sets. For a vector t 2 IRn, we de�ne

t+ = maxfti j i = 1; : : : ; ng. We also de�ne the edge condition number as follows:

�P := minfe
Tw

w+
j w 2 Ŵg;

�D := minfe
Tv

v+
j v 2 Ŵ 0g;

and

� := minf�P ; �Dg:
The next theorem characterizes the dual smallest large variable �D :

Lemma 4.1: Consider j 2 N and let �Dj
= maxfsj j (x; s) 2 
eg. Then there exists

w(j) 2 Ŵ such that �Dj
= eTw(j)=w

(j)
j
.

Proof. By the de�nition, �Dj
is the optimal value of the problem

maximize sj = eT
j
sN

(Pj) subject to AT
B
y = eB

AT
N
y + sN = eN

sN � 0:

where ej denotes the j � th canonical vector of IRn. The dual problem associated

with (Pj) is

minimize eTw

(Dj) subject to Aw = 0

wN � 0

wj � 1

The problem (Pj) has a positive optimal value because the components indexed

by N are positive in the relative interior of the dual optimal face. It follows by

duality that the problem (Dj) also has a positive optimal value. Let w be an optimal

solution for (Dj). Then wj = 1, because otherwise wj > 1 and ~w = w=wj would also

be feasible, with eT ~w = eTw=wj < eTw, contradicting the optimality of w. Hence

(Dj) can be written as

minimize eTw

(Dj) subject to ABwB + ANj
wNj

= �Aj
wNj

� 0

wj = 1;

where Nj = Nnfjg.

c
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Among the optimal solutions for (Dj), let us choose w such that the number of

null components is maximum. Let J = fi = 1; : : : ; n j i 6= j; wi 6= 0g. Then
AJwJ = �Aj :

We now prove the following fact: the columns of AJ are linearly independent.

Suppose by contradiction that AJ�J = 0 for some �J 6= 0. Let �Jc = 0. Then

for 
 2 IR, AJ(wJ + 
�J ) = �Aj . It follows that for j
j su�ciently small, w + 
� is

feasible for (Dj).

| If eT� 6= 0, we can choose 
 2 IR such that 
eT� < 0 and w + 
� is feasible.

Then eT (w + 
�) < eTw, contradicting the optimality of w.

| Assume that eT� = 0. Let � be the set of all 
 2 IR such that all components

of w + 
� and w have the same signs. Since �J 6= 0, � 6= IR, and hence there exists

�
 such that all components of w + 
� and w have the same signs for 
 2 (0; �
) and

wi + 
�i = 0 for some i 2 J . This point is obviously feasible (and hence optimal) for

(Dj) and has more null components than w, which contradicts the de�nition of w,

and completes the proof of the fact.

So, AJwJ = �Aj and the columns of AJ are linearly independent. Hence for
�J = J [ fjg, N (AJ ) has dimension 1. We have shown that w 2 Ŵ with wj = 1, and

�Dj
= eTw, completing the proof.

Theorem 4.2: Consider the condition numbers de�ned above. We have

�D � �P ; �P � �D; � � �:

Proof. From the lemma above, for j 2 N there exists w(j) 2 Ŵ such that

�Dj
=
eTw(j)

w
(j)
j

� eTw(j)

w(j)+
:

Hence

�D = min
j2N

eTw(j)

w
(j)
j

� min
w2Ŵ

eTw

w+
= �P :

The second inequality has an analogous proof by the symmetry of the treatment, and

the third follows directly from the �rst two, completing the proof.

This result gives us an interesting relationship between the primal feasible set and

the dual optimal face. In fact, the dual \smallest large variable" is bounded below

by a number that depends on the \edges" of some primal feasible set. Given � and �

de�ned as above, it follows

� � �:

This result allows us to establish a bound for the number of the iteration of an

interior point path following algorithm, in function of �, whose de�nition does not

depend on the knowledge of optimal partition:

c
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Corollary 4.3: Given a sequence (xk ; sk; �k) generated by some interior point path

following algorithm, satisfying (2); and the stopping rule

�k � �2

n2
(1� �);

then k = O(
p
n(j log �j+ logn)).

Proof. Immediate, by theorems 4.2 and 3.3.

In our knowledge, this number � is the �rst characterization of the \smallest large

variable" given by the linear programming problem in standard form. The number

relies on the data A; b; c; xo whose entries are real numbers. This model establishes

a real model to study the complexity of the path following algorithms better than �

in the sense that it does not depend on the knowledge of the optimal partition. The

relation of the \smallest large variable" with the \edges" of the feasible polyhedra is

an interesting feature developed in this paper.

5 A simple example

In order to provide intuition on how the condition numbers measure the com-

plexity of interior point methods, we consider the primal-dual linear programming

problems de�ned by the following family of data instances: A(�) = [2; 1; 2(1 � �)],

b(�) = [5 � 2�] and c(�) = e, where � 2 (0; 1=2). Our aim is to calculate both

the condition numbers studied in former sections. We begin by computing the

smallest large variable condition number: First we determine the primal-dual

optimal set 
(�) = f(x; s) = (( 5�2�
2

; 0; 0)T ; (0; 1
2
; �)T )g. It is easy to verify that

�P (�) = (5 � 2�)=2 > 2 and �D(�) = � < 1=2, in consequence �(�) = �. While �

get smaller the di�culty to identify the third dual component as a large variable

increases. This can be seen as a primal near degeneracy, because if � = 0 then the

primal optimal set becomes a line segment, instead a singleton. In this case the

smallest large variable is large (�(0) = 1=2) that is the degeneration is not a problem,

the hardness arises in the near-degeneracy.

Let us calculate the edges condition number: First we compute

WP = fw1; w2; w3g = f(�1=2; 1; 0)T ; (0; 1;�1=2(1 � �))T ; (�1 + �; 0; 1)Tg
and WD = fv1g = f(1; 1=2; 1 � �)T g. Then �P (�) = eTw3 = � < 1=2,

�D(�) = eT v1 = (5 � 2�)=2 > 2, and so �(�) = �. Note that the dual smallest

large variable is calculated by using primal directions that are parallel to the edges

of the primal optimal set, this is we �nd information about the size of dual optimal

variables in the primal feasible set, and vise versa.

In this example both the numbers coincide, but unfortunately this not always

happens. When the near degeneracy is far from the optimal face, � can be much

smaller than �.

c
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