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Abstract

The local Pontryagin's maximum principle for smooth optimal control problems with mixed

control-state constraints is proved. It is obtained from more general necessary optimality

conditions, given by a version of the Karush-Kuhn-Tucker theorem in Banach spaces. A

new condition is introduced, in order to identify the multiplier associated to mixed phase

constraints with a measurable function.
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1 Introduction

Karush-Kuhn-Tucker (KKT) theorems are �rst order necessary conditions for the

local minimum of smooth nonlinear optimization problems. In �nite dimensional

case, they are systematically studied in classical books of Nonlinear Programming.

In the in�nite dimensional case some limited versions were given in the books of

Luenberger [30] and Girsanov [13]. There are also many papers with generalized

versions of KKT-theorem (see for example [6], [9],[10], [12], [15], [18], [25], [26], [34],

[36], [39], [40] and [41]).

On the other hand, there are several proofs of Pontryagin's Maximum Principle, as

a necessary condition for optimal control problems, using di�erent general approaches.

We can mention, for example, the works of Neustadt [36] and Io�e-Tijomirov [18].

One of the more popular general optimization theories, the Dubovitskii-Milyutin

approach, is described extensively in the book of Girsanov [13]. In present days there

are extensions of the Maximum Principle even for di�erential inclusions in the non
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di�erentiable case (see for example [28] and [35]).

In a recent paper (see [9]) we presented a version of KKT theorem, for problems

containing equality and inequality operator constraints, and we applied this theorem

to optimal control problems without phase constraints, deriving the local Pontryagin

Maximum Principle from the KKT necessary conditions. The present paper is an

extension of the results given in [9], because phase constraints are also considered,

and is based in the internal report [10].

The optimal control problems with phase constraints have been studied by many

authors, (see for example [20], [32], [33], [42] and the extense bibliography given in

[17]). The necessary conditions are well known and widely used like a recipe but, as

is pointed out in the survey of Hartl, Sethi and Vickson [17], it seems that there is

no a published proof of the general case. This is the case when there are two phase

constraints, one depending on the control and state variables and the other one

depending only on the state variable. The desired proof should include conditions

for "regularizing" the multipliers, which means the existence of them as functions

instead of regular measures. A recent example of this kind of results is the paper of

Aseev [3], where su�cient conditions for the absence of singular component of the

measure are given, although the optimal control problem with phase constraints is

formulated in a di�erential inclusion context, where the control variable does not

appear explicitly.

In this paper we take a step to �ll this gap, giving a full proof of the local max-

imum principle, which is derived from the KKT theorem, and a new condition for

regularizing the multiplier corresponding to the mixed phase constraint.

2 Karush Kuhn Tucker theorem

The general optimization problem can be written as follows:

min F (x)

s:t: H(x) = �Y
G(x) � �Z
gj(x) � 0 j = 1; :::; n

x 2 X � X

(1)

where F; gj : X �! < are functionals; H : X �! Y; and G : X �! Z, are operators;

X;Y are Banach spaces and Z is a normed space, ordered by a cone P , which is

convex, pointed, proper and satis�es int(P ) 6= ;. Furthermore, �Y and �Z denote the

corresponding zeros of Y and Z and X is a convex subset of X.

We shall use the following general version of Karush-Kuhn-Tucker (KKT) theorem:

Theorem 1 (Karush-Kuhn-Tucker): : Let x0 be a local minimum of the problem (1)

and suppose F;G; gj (j = 1; n) are Frechet di�erentiable and H continuously Frechet
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di�erentiable in a neighborhood V of x0; and X is a convex set with non empty

interior in X. Suppose, in addition, that DH(x0)(X) is a closed subspace of Y and

there is h 2 X such that:

G(x0) +DG(x0)(h) 2 � (int(P )) : (2)

Then, there exist linear functionals y� 2 Y0; z� 2 Z0 and multipliers �0; �j 2 <,

( j = 1; n); not all zeros, satisfying:

�0DF (x0) + y� �DH(x0) + z� �DG(x0) +

nX
j=1

�jDgj(x0) = f; (3)

where z� � �Z0 ; z
� [G(x0)] = 0; �j � 0; �jgj(x0) = 0; (j = 1; n) and f is a sup-

port functional of X at x0: Moreover, if DH(x0) is surjective and �h also satis�es

Dgj(x0)(h) < 0; for all j 2 J0(x0), h = �(x � x0) ; for � > 0; x 2 intX ; and

DH(x0)(h) = �Y then, it can be taken �0 = 1 in (3).

Some versions of this theorem are proven in [6], [34] and [40]. The Gateaux

di�erentiability can be used instead of the Frechet one but then, a generalization

of Lyusternik theorem is needed. Ledzewicz-Kowalewska [26] had shown how to do

it, using results of Altman [1], but only for problems without inequality operator

constraints.

In the next section we give the landmarks of a proof, based in Dubovitskii-Milyutin

approach. An extension of this general theory is given in [27], where the Local Max-

imum Principle was also obtained, but it was applied to a simpler optimal control

problem which does not have inequality operator constraints. Full details of the fol-

lowing proof can be found in [10].

3 Proof of the KKT theorem

We denote by:

Q1 = fx 2 X j H(x) = �Yg ;

Q2 = fx 2 X j G(x) � �Zg ;

Q3 =

n\
j=1

Q3j =

n\
j=1

fx 2 X j gj(x) � 0g ;

Q4 = fx 2 X j x 2 Xg ;

the sets associated with operator and functional equality, inequality and inclusion

constraints.

Initially, some particular cases can be excluded:

c
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1. If DF (x0) = �L(X;Y); we take �0 = 1; z� = �Z0 ; y
� = �Y0 ; �j = 0; j = 1; n; and

f = �X0 .

2. If DH(x0) is not a surjective operator then, by Hanh-Banach's theorem, there

exists y� 2 Y0 , y� 6= �Y0 such that y� � DH(x0) = �Y; since DH(x0)(X) is a

closed subspace in Y. Therefore, we can take �0 = 0; z� = �Z0 ; �j = 0; j = 1; n;

and f = �X0 :

3. If Dgj0(x0) = �X0 ; for some j0 2 J0; where:

J0 = J0(x0) = fj 2 f1; :::; ng j gj(x0) = 0 g ;

we take �j0 = 1 and �0 = 0; z� = �Z0 ; y
� = �Y0 ; �j = 0; j 6= j0; and f = �X0 .

Hence, the theorem is true for these special cases and we may assume that

DF (x0) 6= �L(X;Y), Dgj(x0) 6= �X0 ; j 2 J0; and also that the operator DH(x0) is

surjective.

By Lyusternik's theorem, if H is continuously di�erentiable in a neighborhood of

x0 and if DH(x0) is surjective then, the tangent cone of the set Q1 at x0 is the kernell

(or nucleus) of the linear operator DH(x0):

KT = KT(Q1; x0) = N [DH(x0)] = fh 2 X j DH(x0)(h) = �Yg :

The dual cone K�

T
is the orthogonal (or annihilator) of the subspace Kt. Since

DH(x0) is continuous and its range R(DH(x0)) = DH(x0)(X) = Y is closed, we

have (see [30]) K�

T
= (N [DH(x0)])

?
= R[DH(x0)

�];where DH(x0)
� denotes the

corresponding adjoint operator. Then, we conclude that

K�

T
= ff 2 X0 j f = y� �DH(x0); y

� 2 Y0 g : (4)

For Q2 we introduce the following convex cone of feasible directions at x0:

KG = KG(Q2; x0) = fh 2 X j 9"0 > 0 : G(x0) + "DG(x0)(h) < �Z;8" 2 (0; "0)g ;

and its "plus equality " analogous:

KG� = fh 2 X j 9"0 > 0 : G(x0) + "DG(x0)(h) � �Z;8" 2 (0; "0)g :

It is not di�cult to deduce the following properties:

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 243

1) KG 6= ; ) K�

G = K�

G�;

2) P convex and G(x0) � �Z ) KG0
� KG and KG0�

� KG�; where:

KG0
= fh 2 X j G(x0) +DG(x0)(h) < �Zg ;

is a cone with apex at G(x0); and

KG0�
= fh 2 X j G(x0) +DG(x0)(h) � �Zg

is the corresponding "plus equality " analogous.

With these properties and using the following natural extension of Farkas Lemma

to cones with non zero apex (for a proof see [7]), we have a useful estimation of the

dual cone of KG.

Lemma 2: (Farkas Lemma) Let E1; E2 be normed spaces, K2 � E2 a convex cone

with apex at x2 such that the E2-zero satis�es �2 2 cl(K2)nint(K2): De�ne the

convex cone:

K1 = fx1 2 E1 j A(x1) 2 K2g ;

where A : E1 ! E2 is a continuous linear operator, and suppose there exists a �x1 2 E1

such that:

A(�x1) 2 int(K2):

Then, we have:

K�

1 = A�(K�

2 ) = ff1 2 E
�

1 j f1 = f2 �A; f2 2 K
�

2g ;

where A� denotes the adjoint operator corresponding to A:

Lemma 3: Suppose that G(x0) � �Z but G(x0) � �Z; i.e.:

G(x0) 2 � (P n int (P )) ; (5)

and KG0
6= ?; i.e. there exists h 2 X; such that:

G(x0) +DG(x0)(h) 2 � (int(P )) : (6)

Then

K�

G � ff 2 X0 j f = �z� �DG(x0); z
� 2 Z0; z� � �Z0 ; z

� (G(x0)) = 0g : (7)

Lemma 3 is the key for the calculation of the dual cone K�

G; and (6) is a crucial

hypothesis in order to use the Farkas' Lemma extension. It means that an awakening

of the assumption int(P ) 6= ; demands a �ner generalization of Farkas' Lemma,
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which is not available so far.

On the other hand, it is well known that:

Kj = Kj(Q3j ; x0) = fh 2 X j Dgj(x0)(h) < 0g ; j 2 J0

KX = KX (Q4; x0) = fh 2 X j h = �(x� x0) ; � > 0 ; x 2 intXg ;

are open convex cones of feasible directions at x0; for the sets Q3j and Q4 respectively.

Also,

K0 = fh 2 X j DF (x0)(h) < 0g

is a cone of decreasing directions of F at x0 and in the non empty case, the dual cones

have the form:

K�

j =
�
f 2 X0 j f = �jDgj(x0) ; �j � 0

	
; j 2 J0;

K�

X
= ff 2 X0 j f(x) � f(x0); 8x 2 Xg ;

K�

0 = ff 2 X0 j f = �0DF (x0) ; �0 � 0g :

The cone KG has non empty interior because it contains the open set KG0
which

is nonempty. Then, classical arguments can be used to prove that the following

intersection of cones is empty:

K0 \ int(KG)
\
j2J0

Kj \KT \KX = ;:

By Dubovitskii-Milyutin's Lemma, there exist functionals f0 2 K�
0 ; fG 2

(intKG)
�
= K�

G; fj 2 K
�

j ; j 2 J0, fT 2 K
�

T
, and fX 2 K�

X
such that:

f0 + fG +
X
j2J0

fj + fT + fX = 0: (8)

Assuming G(x0) 2 � (P n int (P )) and using the form of the dual cones and

Lemma 3 we have:

�0DF (x0) + y� �DH(x0) + z� �DG(x0) +

nX
j=1

�jDgj(x0) = fX ;

where z� � �Z0 , z
� [G(x0)] = 0 and fX is a support functional of X at x0: Taking

�j = 0 for j =2 J0 we obtain �j � 0 (j = 1; n) and �jgj(x0) = 0; j = 1; n: This is
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exactly the �rst thesis of the theorem.

The case when G(x0) < �Z produces a trivial feasible cone KG = X; and its dual

consists of the null functional K� = f�X0g : Then, the result is the same but with a

corresponding null multiplier z� = �Z0 .

Finally, if in addition to (2), the vector �h satis�es Dgj(x0)(h) < 0; j 2 J0(x0),

h = �(x � x0) ; � > 0 ; x 2 intX ; and DH(x0)(h) = �Y then, we would have

int(KG)
\
j2J0

Kj \KT \KX 6= ; and this implies �0 > 0. Therefore it can be taken

�0 = 1. .

4 Optimal Control Problem with phase constraints

Let us consider the following optimal control problem:

min
t1R
t0

f(x; u; t) dt

s:t: _x(t) = h(x; u; t); a:e: t 2 [t0; t1]

x(t0) = x0; x(t1) = x1
g(x(t); u(t); t) � 0p; a:e: t 2 [t0; t1]

q(x(t); t) � 0q; 8t 2 [t0; t1]

x 2 (C1
1
([t0; t1] ;<

n); k:k0)

u 2 (L1([t0; t1] ;<
m); k:k

1
)

u 2 U = fu 2 L1 j u(t) 2 U; a:e: t 2 [t0; t1]g

(9)

where C1
1

is the set of absolutely continuous functions with derivative in L1. The

functions f : <n �<m � [t0; t1] �! <, h : <n �<m � [t0; t1] �! <n;

g : <n�<m� [t0; t1] �! <p and q : <n� [t0; t1] �! <q are supposed to be continuous

and continuously di�erentiable with respect to (x; u) and x; respectively. U � <m is

a compact convex set with non empty interior and this implies that U is also a closed

convex set with non empty interior in L1([t0; t1] ;<
m):

Let be X =
�
C1
1
� L1; k:k0 � k:k

1

�
; where k:k0 and k:k

1
denote the uniform

norm and the essential supremum norm, respectively, and de�ne X = C11� U : We

introduce the following functionals and operators:

1. F : X! <, F (x; u) =
t1R
t0

f(x; u; t) dt;

2. H : X �!
�
C11; k:k0

�
;

H(x; u)(t) = x(t) � x0 �

tZ
t0

h(x(� ); u(� ); � ) d� ; t 2 [t0; t1] ;
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3. Et1 : X �! <n; Et1 (x; u) = x(t1)� x1;

4. H : X �! C1
1
�<n; H (x; u) = (H(x; u); Et1(x; u))

t
;

5. G : X �! (L1([t0; t1] ;<
p); k:k

1
); G(x; u)(t) = g(x(t); u(t); t); t 2 [t0; t1] ;

where we consider the set L1 as a normed space, ordered by the following

convex and proper cone:

P = fp 2 L1 j p(t) � 0p; a:e: t 2 [t0; t1]g : (10)

6. Q : C1
1
�! (C([t0; t1] ;<

q); k:k0); Q(x)(t) = q(x(t); t); t 2 [t0; t1] ;

where we also consider the set of continuous q�vector functions, C =

C([t0; t1] ;<
q); as a normed space, ordered by the following convex and proper

cone:

Pq = fq 2 C([t0; t1] ;<
q) j q(t) � 0q; 8 t 2 [t0; t1]g : (11)

7. G : X �! L1 � C; G (x; u) = (G(x; u); Q(x))
t
:

Then, the problem (9) can be written in the following form:

min F (x; u)

s:a: H(x; u) = �1;

G(x; u) � �2;

(x; u) 2 X ;

(12)

where �1 = (�n; 0n)
t and �2 = (�p; �q)

t denote the zeros of the spaces

C11([t0; t1] ;<
n)�<n and L1([t0; t1] ;<

p)� C([t0; t1] ;<
q) respectively.

Furthermore, the operators F;H and G are continuously Frechet di�erentiable,

and the following formulae hold:

DxF (x; u)(r) =

t1Z
t0

fx(x; u; t)r(t) dt; (13)

DuF (x; u)(v) =

t1Z
t0

fu(x; u; t)v(t) dt; (14)
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DH(x; u)(r; v) = (DH(x; u)(r; v); Et1 (x; u))
t
; where:

DH(x; u) = (DxH(x; u); DuH(x; u));

DxH(x; u)(r)(t) = r(t) �

tZ
t0

hx(x; u; �)r(� ) d� ; (15)

DuH(x; u)(v)(t) = �

tZ
t0

hu(x; u; � )v(� ) d� : (16)

Similarly:

DG(x; u) =

�
DxG DuG

DxQ DuQ

�
(x; u);

DxG(x; u)(r)(t) = (gx(x(t); u(t); t)r(t); qx(x(t); t)r(t))
t
; (17)

DuG(x; u)(v)(t) = (gu(x(t); u(t); t)v(t); 0)
t
: (18)

Next, we shall use the following:

Lemma 4: If the variational system:

_r(t) = hx(x; u; t)r(t) + hu(x; u; t)v(t); a:e: t 2 [t0; t1] (19)

is full controllable, then the operator DH(x; u) is surjective.

A proof can be found in [13] or [14].

De�nition 5: A feasible solution (�x; �u) of the problem (9) is called regular if the

variational system (19) is full controllable and

rank (gu(�x(t); �u(t); t)) = p ; a:e: t 2 [t0; t1] :

rank (qx(�x(t); t)) = q ; 8t 2 [t0; t1] :

Theorem 6 (Pontryagin's Maximum Principle): Let us consider the optimal control

problem (9), with the given above assumptions. Let (x0; u0) be a regular local minima

of the problem and suppose that the following condition holds:

9V j V � gu(x0(t); u0(t); t) (U � u0(t)) ; a:e: t 2 [t0; t1] ; (20)

c
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where V = V(0p) is a neighborhood of 0p 2 <
p.

Then, there exist multipliers �0 � 0; �T = (�1; :::; �n); not all zeros, a function

�0 2 L1 [t0; t1] , �0(t) � 0; a:e: t 2 [t0; t1] ; which can be non zero only in the set:

R0 = ft 2 [t0; t1] j g(x0(t); u0(t); t) = 0pg ;

or, more precisely, which satis�es:

�0(t) g(x0(t); u0(t); t) = 0p; a:e: t 2 [t0; t1] ;

a complete and positive Borel measure � with support in the set:

R1 = ft 2 [t0; t1] j q(x0(t); t) = 0qg ;

and a continuous function  0(t) : [t0; t1] ! <n; such that,  0 is the solution of the

integral equation:

� T(t) = �

t1Z
t

HT

x (x0(t);  (t); �0(t); u0(t); t) d� +

t1Z
t

qx(x0; �) d� + �T; (21)

and moreover, the (local) maximum condition:

[�Hu(x0(t);  0(t); �0(t); u0(t); t)] (u� u0(t)) � 0; 8u 2 U; a:e: t 2 [t0; t1] ; (22)

holds, where H(x;  ; �; u; t) is the Hamiltonian, de�ned by:

H(x;  ; �; u; t) =  Th(x; u; t) + �g(x; u; t)� �0f(x; u; t):

Proof. The problem (9) is equivalent to (12) and we shall show that we can apply

KKT theorem 1. In fact, we have di�erentiability of the functional and operators

and DH(x0; u0)(X) is closed because, by regularity, DH(x0; u0) is surjective (see

Lemma 4). In addition, X is a convex set with non empty interior since U has the

same properties. We still have to check the third assumption about inequalities, and

to do that we shall prove the following:

Lemma 7: If (x0; u0) is regular, then there is a (x; u) 2 X; such that:

G(x0; u0) +DG(x0; u0)(x; u) < �2 (23)

Proof. The expression (23) is equivalent to:

G(x0; u0)(t) +DG(x0; u0)(x; u)(t) < �2(t) = (0p; 0q) ;

or �
G(x0; u0)(t) +DG(x0; u0)(x; u)(t) < 0p; a:e: t 2 [t0; t1] ;

Q(x0)(t) +DQ(x0)(x)(t) < 0q; 8 t 2 [t0; t1] ;
(24)
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i.e.,�
g(x0(t); u0(t); t) + gx(x0(t); u0(t); t)x(t) + gu(x0(t); u0(t); t)u(t) < 0p ; a:e: t 2 [t0; t1] ;

q(x0(t); t) + qx(x0(t); t)x(t) < 0q ; 8 t 2 [t0; t1] :

Take ~x(t) = 0n for all t 2 [t0; t1]. If t =2 R0, the �rst inequality holds

with u(t) = 0m; because g(x0(t); u0(t); t) < 0p. If t 2 R0 then, choose eu(t) =

gTu (x0(t); u0(t); t)v1(t) for all t 2 R0, where v1(t) is the solution of the system:�
gu(x0(t); u0(t); t)g

T

u (x0(t); u0(t); t)
�
v1(t) = �"p;

"p = ("; "; � � � ; ") 2 <p and " > 0. This system has a solution because the matrix�
gu(x0(t); u0(t); t)g

T

u (x0(t); u0(t); t)
�
is invertible as a consequence of regularity. Now,

de�ning the measurable function u(t) = 1R0
(t)eu(t) for t 2 [t0; t1] ; we have a pair

(~x; u) 2 X such that, the �rst inequality of (24) holds.

The operatorG(x0; u0)+DG(x0; u0)(x; u) is continuous with respect to (x; u); and

its image at (~x; �u) = (�n; �u) belongs to int(�P). Then, there is an open neighborhood

B = B0 �B1; de�ned by:

B0 = B(~x; ") =
�
x 2 C1

1
j kx� ~xk0 < "

	
;

and

B1 = B(u; ") = fu 2 L1 j ku� uk
1
< "g ;

such that:

G(x0; u0) +DG(x0; u0)(B) 2 int(�P); (25)

We shall prove that:

fQ(x0) +DQ(x0)(B0)g \ int(�Pq) 6= ;: (26)

Let be xn(t) = qTx (x0(t); t)x
0

n(t) and "nq = (
1

n
;
1

n
; :::;

1

n| {z }
q times

) where x0n(t) is the

solution of the system:

qx(x0(t); t)q
T

x (x0(t); t)x
0

n(t) = �"nq :

Since rank (qx(x0(t); t)) = q; 8t 2 [t0; t1], this solution exists for all t 2 [t0; t1] :

Furthermore, xn �!
n

~x = �n , in the norm k:k0 ; because:

xn(t) = �qTx (x0(t); t)
�
qx(x0(t); t)q

T

x (x0(t); t)
��1

"nq ;
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and qTx (x0(t); t)
�
qx(x0(t); t)q

T

x (x0(t); t)
��1

is a continuous map respect to t and hence,

is bounded for all t 2 [t0; t1]. We conclude that, for n big enough, the pair (�x; �u) =

(xn; �u) 2 B satis�es (25) and:

q(x0(t); t) + qx(x0(t); t)�x(t) = q(x0(t); t)� "nq < 0q; 8t 2 [t0; t1] :

Hence, the assumptions of the KKT theorem 1 are ful�lled, and for its application

we introduce the functionals:

hj(x) = xj(t1)� x1j ;

hj : C11 �! <;8j = 1; n; where xj(t1); x1j are j-th coordinates of x(t1) and x1;

respectively. Then, we can write:

Et1(x; u) = (h1(x); h2(x); � � � ; hn(x)) :

In addition, we shall use that, for (x0; u0) 2 X; DxH(x0; u0) is an homeomorphism

and its inverse has the form:

DxH
�1(x0; u0)(y)(t) = y(t) + eA(t)

tZ
t0

e�A(�)hx(x0(� ); u0(� ); � )y(� ) d� ; (27)

where:

A(t) =

tZ
t0

hx(x0(� ); u0(�); � ) d� : (28)

(see [13] or [14]).

Applying theorem 1, there exist �0 2 <; �j 2 <; j = 1; n , y� 2 (L1)
0
, z� 2�

C1
1

�0
; s� 2 (C)

0
and a support functional f of U in u0 such that:

�0DuF (x0; u0) + z� �DuH(x0; u0) + y� �DuG(x0; u0) = f; (29)

�0DxF (x0; u0)+z
��DxH(x0; u0)+y

��DxG(x0; u0)+s
��DxQ(x0)+

nX
j=1

�jDhj(x0) = ��n

(30)

From equation (30), applying DxH
�1(x0; u0); we have for any y 2 C

1
1 :

z�(y) = ��0DxF (x0; u0) �DxH
�1(x0; u0)(y)� y� �DG(x0; u0) �DxH

�1(x0; u0)(y)

�s� �DxQ(x0) �DxH
�1(x0; u0)(y)�

nP
j=1

�jDhj(x0) �DxH
�1(x0; u0)(y):

(31)
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But Dhj(x0)(r) = rj(t1); hence:

nX
j=1

�jDhj(x0)
�
DxH

�1(x0; u0)(y)
�
= �Ty(t1)+�

TeA(t1)
t1Z
t0

e�A(�)hx(x0; u0; �)y(� ) d� ;

(32)

where �T = (�1; :::; �n) and A(t) is de�ned in (28). Then, substituting (13), (17),

(27) and (32) in (31) we obtain:

z�(y) = �
t1R
t0

�T(� )y(� ) d� � �Ty(t1)� �TeA(t1)
t1R
t0

e�A(�)hx(x0; u0; � )y(� ) d��

�y� [gx(x0; u0; t)y(t)]� y�

"
gx(x0; u0; t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )y(� ) d�

#
�

�s� [qx(x0; t)y(t)]� s�

"
qx(x0(t); t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; �)y(� ) d�

#
;

(33)

with �T(� ) = �0

�
fx(x0; u0; �) +

�
t1R
�

fx(x0; u0; t)e
A(t) dt

�
e�A(�)hx(x0; u0; � )

�
.

Using (33) in the equation (30), evaluated at y 2 C11; and with some transforma-

tions (see [8] or [9]) we obtain:

t1R
t0

h
�0fx(x0; u0; t)� �T(t) + �Thx(x0; u0; t)� �TeA(t1)e�A(t)hx(x0; u0; t)

i
y(t) dt

+
t1R
t0

�
t1R
t

�
�T(� ) + �TeA(t1)e�A(�)hx(x0; u0; � )

�
d�

�
hx(x0; u0; t)y(t) dt

+y�

"
gx(x0; u0;t)

tR
t0

hx(x0; u0; � )y(� ) d�

#

�y�

"
gx(x0; u0;t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )y(� ) d�

#

+y�

"
gx(x0; u0;t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )
�R
t0

hx(x0; u0; s)y(s) ds d�

#

+s�

"
qx(x0; t)

tR
t0

hx(x0; u0; �)y(� ) d�

#
� s�

"
qx(x0; t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )y(� ) d�

#

+s�

"
qx(x0; t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )
�R
t0

hx(x0; u0; s)y(s) ds d�

#
= 0:

(34)

From Theorem 1 , y� � 0 and s� � 0; hence, using Riesz's representation theorem,
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there exist positive and complete Borel measures �(t) and �(t); such that:

y� [y(t)] =

t1Z
t0

y(t)d�(t);

s� [y(t)] =

t1Z
t0

y(t)d�(t);

and using Fubini's Theorem, we obtain:

y
�

2
4gx(x0; u0;t)

tZ

t0

hx(x0; u0; �)y(�) d�

3
5 =

t1Z

t0

0
@

t1Z

t

gx(x0; u0;� ) d�(�)

1
Ahx(x0; u0; t)y(t) dt;

s
�

2
4qx(x0; t)

tZ

t0

hx(x0; u0; �)y(�) d�

3
5 =

t1Z

t0

0
@

t1Z

t

qx(x0; � ) d�(�)

1
Ahx(x0; u0; t)y(t) dt: (35)

In the same way, we arrive to analogous relations for:

y�

"
gx(x0; u0;t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; �)y(� ) d�

#
;

y�

"
gx(x0; u0;t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; �)
�R
t0

hx(x0; u0; s)y(s) ds

#
;

s�

"
qx(x0; t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )y(� ) d�

#
;

and s�

"
qx(x0; t)e

A(t)
tR
t0

e�A(�)hx(x0; u0; � )
�R
t0

hx(x0; u0; s)y(s) ds

#
:
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Substituting in (34) we obtain:

t1R
t0

h
�0fx(x0; u0; t)� �T(t) + �Thx(x0; u0; t)� �TeA(t1)e�A(t)hx(x0; u0; t)

i
y(t) dt�

�
t1R
t0

��
t1R
t

gx(x0; u0;� )e
A(�) d�(� )

�
e�A(t)hx(x0; u0; t)

�
y(t) dt�

�
t1R
t0

��
t1R
t

qx(x0; � )e
A(�) d�(� )

�
e�A(t)hx(x0; u0; t)

�
y(t) dt+

+
t1R
t0

�
t1R
t

�
�T(� ) + �TeA(t1)e�A(�)hx(x0; u0; � )

�
d�

�
hx(x0; u0; t)y(t) dt+

+
t1R
t0

�
t1R
t

gx(x0; u0;� ) d�(� ) +
t1R
t

qx(x0; �) d�(� )

�
hx(x0; u0; t)y(t) dt+

+
t1R
t0

�
t1R
t

gx(x0; u0;� )e
A(�)

�
�R
t

e�A(s)hx(x0; u0; s) ds

�
d�(� )

�
hx(x0; u0; t)y(t) dt+

+
t1R
t0

�
t1R
t

qx(x0; � )e
A(�)

�
�R
t

e�A(s)hx(x0; u0; s) ds

�
d�(� )

�
hx(x0; u0; t)y(t) dt = 0;

De�ning:

 T(t) = �
t1R
t

�
�T(� ) + �TeA(t1)e�A(�)hx(x0; u0; � )

�
d� �

t1R
t

gx(x0; u0; � ) d�(� )

�
t1R
t

qx(x0; � ) d�(� )�
t1R
t

gx(x0; u0; � )e
A(�)

�
�R
t

e�A(s)hx(x0; u0; s) ds

�
d�(� )

�
t1R
t

qx(x0; � )e
A(�)

�
�R
t

e�A(s)hx(x0; u0; s) ds

�
d�(� )� �T;

(36)

we arrive to the equation:

� T(t) = �T +
t1R
t

h
�0fx(x0; u0; � )�  T(� )hx(x0; u0; �)

i
d�

+
t1R
t

gx(x0; u0; �) d�(� ) +
t1R
t

qx(x0; � ) d�(� ):

(37)

With a similar analysis we deduce that, for all v 2 L1 :

t1Z
t0

h
�0fu(x0; u0; t)�  T(t)hu(x0; u0; t)

i
v(t) dt+ y� [gu(x0; u0; t)v(t)] = f(v): (38)

Now we shall prove that, if the condition (20) holds, the functional y� can be

represented, in integral form, by a function of L1: For this end, we recall �rst the

following Lemma, a proof of which can be found in [16].
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Lemma 8 (Measurable Selection ): Let be the set D � <m+1 and de�ne:

Dt = fv 2 <m j (t; v) 2 Dg ;

� =
�
t j Dt 6= ;

	
:

If the set D is �-compact (�nitely denumerable union of compact sets) then, there

exist a measurable function v(t) such that (t; v(t)) 2 D; for almost all t 2 �.

Second, we need a representation of some special simple functions:

Lemma 9: Let's suppose that (x0; u0) satis�es the condition (20) then, for any func-

tion of the form 1E(t)a with its image in V(�p) (where a 2 <pand E � [t0; t1] is a

measurable set), there exist v 2 U such that:

gu(x0; u0; t) (v(t)� u0(t)) = 1E(t)a; a:e: t 2 [t0; t1] :

Proof. Because Im [1E(t)a] � V(�p) and the regularity condition (20), for all t 2 E;

there exist v 2 U such that:

gu(x0; u0; t) (v � u0(t)) = 1E(t)a:

But 1E(t)a is a measurable function in [t0; t1], then by Luzin's theorem, there exist

a sequence of compact sets �1 � �2 � ::: such that:

[t0; t1] n (�1 [�2 [ :::)

has null measure and the restriction of 1E(t)a to each �i is a continuous function.

Let's de�ne:

Di = f(t; v) j t 2 �i ; v 2 U ; gu(x0; u0; t) (v � u0(t)) = 1E(t)ag ;

D = D1 [D2 [ ::: ; � = �1 [�2 [ :::

Let's also de�ne:

Dt = fv 2 <m j (t; v) 2 Dg

) Dt = fv 2 U j gu(x0; u0; t) (v � u0(t)) = 1E(t)ag ; t 2 �:

It's clear that � = ft j Dt 6= ;g ; because if t 2 � then there exist i 2 @ such

that t 2 �i and by the regularity condition (20) we have Di 6= ; and hence Dt 6= ;.

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 255

Conversely, if t is such that Dt 6= ; then t 2 �.

Now, for �-compactness we have only to prove that Di is compact for all i 2 @.

In fact, Di � �i � U where �i; U , are compacts and Di is a closed set, because for

any sequence (tn; vn) 2 Di such that (tn; vn) �! (t; v) we have:

gu(x0(tn); u0(tn); tn) (v � u0(tn)) = 1E(tn)a:

Since the function 1E(t)a is continuous in �i then, the function (t; v) !

gu(x0; u0; t) (v � u0(t)) is also continuous with respect to t in �i and also with respect

to v; as a dot product. Hence:

lim
n
gu(x0(tn); u0(tn); tn) (v � u0(tn)) = gu(x0(t); u0(t); t)

�
v � u0(t)

�
:

But

lim
n
gu(x0(tn); u0(tn); tn) (v � u0(tn)) = lim

n
1E(tn)a = 1E(t)a

and then (t; v) 2 Di, i.e., D is �-compact. Applying Lemma 8, there exists a measur-

able function v(t) such that (t; v(t)) 2 D for almost all t 2 �. Hence,

gu(x0; u0; t) (v(t)� u0(t)) = 1E(t)a; a:e: t 2 [t0; t1] :

Finally, since U is bounded then, v 2 L1 and this means that v 2 U .

Lemma 10: Let (x0; u0) satisfy the condition (20), then y� can be identi�ed with a

function �0 2 L1([t0; t1] ;<
p):

Proof. The proof follows the same idea of Colonius [11]. Let us consider the

subspace S of simple functions in L1([t0; t1] ;<
p). S is dense in L1([t0; t1] ;<

p).

We shall prove that y� j S is continuous with respect to the norm in L1([t0; t1] ;<
p)

on S. Then y� j S can be extended to a continuous linear functional �0 on

L1([t0; t1] ;<
p) which by duality of L1 and L1 can be identi�ed with an element �0

of L1([t0; t1] ;<
p). Then y� and the functional �0;de�ned by �0; coincide on S and

hence on L1([t0; t1] ;<
p).

The general element s 2 S can be taken in the form:

s(t) =

lX
i=1

pX
k=1

sik1Ei
(t)ak; t 2 [t0; t1] ;
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where fakg
p

k=1 is a basis of vectors in <p such that, ak 2 V(�p) for all k ; fEig
l

i=1 is

a measurable decomposition of the interval [t0; t1] and sik 2 <; for all i; k: Then,

y�(s) = y�
�

lP
i=1

pP
k=1

sik1Ei
(t)ak

�
=

lP
i=1

pP
k=1

(s+ik � s�ik) y
� (1Ei

(t)ak)

=
lP

i=1

pP
k=1

s+ik y
� (1Ei

(t)ak) +
lP

i=1

pP
k=1

s�ik y
� (�1Ei

(t)ak)

with s+ik and s�ik; non negative real numbers. Applying Lemma 9, there exist v+ik ,

v�ik 2 U such that:

gu(x0; u0; t)
�
v�ik(t)� u0(t)

�
= �1Ei

(t)ak 8i; k

) y�(s) =
lP

i=1

pP
k=1

s+ik y
�
�
gu(x0; u0; t)

�
v+ik(t)� u0(t)

��
+

lP
i=1

pP
k=1

s�ik y
�
�
gu(x0; u0; t)

�
v�ik(t)� u0(t)

��
;

From the expression (38), using the facts that f is a support functional of U at u0
and that

�
v�ik(t)� u0(t)

�
= 0 if t =2 Ei, we have:

y�
�
gu(x0; u0; t)

�
v�ik(t)� u0(t)

��
�

� �
R
Ei

h
�0fu(x0; u0; t)�  T(t)hu(x0; u0; t)

i �
v�ik(t)� u0(t)

�
dt:

Hence,

y
�(s) � �

lP
i=1

pP
k=1

s
+

ik

R
Ei

�
�0fu(x0; u0; t)�  

T(t)hu(x0; u0; t)
� �
v
+

ik
(t)� u0(t)

�
dt

�

lP
i=1

pP
k=1

s
�

ik

R
Ei

�
�0fu(x0; u0; t)�  

T(t)hu(x0; u0; t)
� �
v
�

ik
(t)� u0(t)

�
dt

) y
�(s) � �

lP
i=1

pP
k=1

s
+

ik
sup
t2Ei

���0fu(x0; u0; t)�  T(t)hu(x0; u0; t)�� ��v+ik(t)� u0(t)
�� �(Ei)

�

lP
i=1

pP
k=1

s
�

ik
sup
t2Ei

���0fu(x0; u0; t)�  T(t)hu(x0; u0; t)�� ��v�ik(t)� u0(t)
�� �(Ei)

where � denotes the Lebesgue measure in [t0; t1].

But:

sup
t2Ei

����0fu(x0; u0; t)�  T(t)hu(x0; u0; t)
��� ��v�ik(t)� u0(t)

�� �
sup

t2[t0;t1]

����0fu(x0; u0; t)�  T(t)hu(x0; u0; t)
��� sup
t2[t0;t1]

��v�ik(t)� u0(t)
�� �

sup
t2[t0;t1]

����0fu(x0; u0; t)�  T(t)hu(x0; u0; t)
��� sup
v2U

sup
t2[t0;t1]

jv � u0(t)j ;
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and
����0fu(x0; u0; t)�  T(t)hu(x0; u0; t)

��� is continuous respect to t and bounded. Fur-
thermore, U is compact and then sup

v2U

sup
t2[t0;t1]

jv � u0(t)j exists, then the number:

c0 = sup
t2[t0;t1]

����0fu(x0; u0; t)�  T(t)hu(x0; u0; t)
��� sup
v2U

sup
t2[t0;t1]

jv � u0(t)j

does not depend on s and we have:

y�(s) � �

lX
i=1

pX
k=1

(s+ik + s�ik)�(Ei) c0

or

y�(s) � �c0 kskL1
:

Switching s! (�s) we prove that

jy�(s)j � c0 kskL1
;

and y� is continuous on S in L1-norm.

Hence, �0 is the Radon-Nykodim derivative of measure � with respect to

Lebesgue's measure, i.e.:

d� = �0 dt

and the equation (37) can be written:

� T(t) =
t1R
t

h
�0fx(x0; u0; � )�  T(� )hx(x0; u0; � ) + �0(� )gx(x0; u0; � )

i
d�+

+
t1R
t

qx(x0; �) d� + �T

(39)

In the same way, the equation (38) is equivalent to:

t1Z
t0

h
�0fu(x0; u0; t) + gu(x0; u0; t)�0(t)�  T(t)hu(x0; u0; t)

i
v(t) dt = f(v); 8v 2 L1:

Since f is a support functional of integral type of U at u0;we obtain (see [13]):h
�0fu(x0; u0; t) + gu(x0; u0; t)�0(t)�  T(t)hu(x0; u0; t)

i
(u� u0(t)) � 0 ;

8u 2 U a:e: t 2 [t0; t1]
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If we de�ne H(x;  ; u; t) =  Th(x; u; t)+� g(x; u; t)��0f(x; u; t) and substitute in

the equations (37) and (38), we obtain the relations (21) and (22). Furthermore, by

the complementary slackness relation of the Karush-Kuhn-Tucker theorem, we obtain

that �(t) and �(t) are positive measures with support in the sets:

R0 = ft 2 [t0; t1] j g(x0(t); u0(t); t) = 0pg ;

R1 = ft 2 [t0; t1] j q(x0(t); t) = 0qg

and then, �0 must satisfy the conditions:

�0(t) � 0p; a:e: t 2 [t0; t1] ;

�0(t) g(x0(t); u0(t); t) = 0; a:e: t 2 [t0; t1] :
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