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Abstract

An heuristic method is presented to approximate the number of machines as well as the time-

interval required to produce given volumes of works by employing multi-job adopted machines.

A transportation model is described as an approximation of the stated problem.
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problem.

1 Statement and NP-hardness of the problem

We have to realize, in the shortest possible time-interval, known volumes V1; V2; :::; Vn
in n di�erent categories of works. For this, there are available m di�erent types of

identical multi-job adopted machines. Each type of ai machines is multi-job adopted

in the sense that it could perform works of some of the n categories. Let pij be the

non-negative productivity per unit time of a machine of type i when assigned to

perform category j of works, and xij the number of machines so assigned.

With the advancement of technology and the consequent specialization, each type

of machines is generally best adopted to only one or few of the n works. However,

several factors often necessitate the employment of at least some of the machines of a

given type on categories of works for which they are not best adopted. The problem

posed is that of determining the optimal assignment of the machines so as to realize

all the given volumes of works in the shortest possible time-interval.

Problems of this nature are known from many applications [1,3-6,8]. They

are often encountered in many public works such as construction of buildings,

highways..., as well as in many production systems. Our objective in the present

paper is to formulate and approximate such problems in the framework of Linear
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Programming [7].

Let I = f1; 2; :::;mg and J = f1; 2; :::; ng. The problem posed, called P, is

min tX
j2J

xij � ai; i 2 I;

t
X
i2I

pijxij � Vj ; j 2 J;

xij 2 Z+; i 2 I; j 2 J;

t � 0:

Proposition 1: Problem P is NP-hard.

Proof. Consider the Partition Problem, known to be NP-complete [2]. Given m

positive integer numbers e1; e2; :::; em, whose sum is 2S. Can we partition them into

two disjoint subsets both having the same sum of their elements. The problem is to

�nd xi1; xi2; i = 1; 2; :::;m; such that

xi1 + xi2 � 1; i = 1; 2; :::;m;
mX
i=1

eixij � S; j = 1; 2;

xij 2 f0; 1g ; i = 1; :::;m; j = 1; 2:

Clearly, Partition is a special case (t = 1, n = 2, ai = 1, pij = ei, Vj = S) of

problem P and may be interpreted as follows: Is it possible to realize, in one unit

time, the volumes S, using one machine of each type i, which has productivity ei
when assigned to perform task j? Therefore problem P is at least as hard as Partition.

Problem P may have no solution (take for example: m = 1, a1 = 1, n = 2.) So,

we assume that
P

i2I
ai � n:

The set of feasible solutions of problem P, if not empty, is bounded. Therefore,

problem P has an optimal solution if and only if it is feasible. The next proposition

gives a necessary and su�cient condition for problem P to be feasible.

Consider the following transportation problem de�ned from problem P instance:

min
X
i2I

X
j2J

cijxij
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X
j2J

xij + xi;n+1 = ai; i 2 I;

X
i2I

xij = 1; j 2 J;

X
i2I

xi;n+1 =
X
i2I

ai � n;

xij � 0;

where

cij =

�
0 if pij � 0;

1 if pij = 0;

for i 2 I; j 2 J , and ci;n+1 = 0 for i 2 I , and let c� be the value of an optimal solution.

Proposition 2: Problem P is feasible if and only if c� = 0.

Proof. (i) Assume that c� = 0. An optimal solution of this transportation problem

(omitting the destination labeled n + 1) is a feasible solution of problem P. Indeed,

the �rst set of constraints of P is satis�ed. In order to satisfy the second, set

t = max
j2J

Vj

pijj
;

where ij is that unique i for which xij = 1.

(ii) Assume c� > 0. This means that there is at least one category of works for

which no machine could be assigned with a positive productivity. Therefore the

corresponding volume cannot be realized.

The following proposition shows that all the constraints of the LP-relaxation of

problem P are binding at an optimal solution fx�
ij
g.

Proposition 3: For each i 2 I , either there exists j0 2 J such that pi0j = 0 orP
j2J

x�
ij
= ai.

Proof. Let i0 be an arbitrary type of machines. Assume that pi0j � 0; 8j 2 J and

fi0 = ai0 �
X
j2J

x�
i0j

� 0:

Consider the system S of linear equations

X
j2J

yi0j = fi0 (1)
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pi01yi01

V1
= � � � =

pi0nyi0n

Vn
: (2)

Set J1 = Jnf1g and

hj = V1 /Vj ; j 2 J1: (3)

We can express system S as follows

X
j2J

yi0j = fi0

pi01yi01 � hjpi0jyi0j = 0; j 2 J1:

Let �j , j 2 J , be scalar numbers. Set

�1 +
X
j2J1

�j = 0

�1pi01 � �jhjpi0j = 0; j 2 J1:

The n� 1 last equations imply that

�j = �1
pi01

hjpi0j
; j 2 J1:

Hence, the �rst equation becomes

�1

0
@1 + pi01

X
j2J1

1

hjpi0j

1
A = 0

implying that �1 =0. Consequently, �j = 0, j 2 J , which proves that system S is not

singular. From equation (1), there exists at least one category j such that yi0j > 0.

From that, and from equations (2), it follows that yi0j > 0; j 2 J . By building,

fx�
ij
+ yijg is a feasible solution of the LP-relaxation of problem P. It is easy to see

that this solution gives a shorter time-interval. But this contradicts the optimality

of fx�
ij
g. Thence fi0 = 0.

Corollary 4: We can replace the �rst inequality constraints of the LP-relaxation of

problem P by equations.

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 267

Invoking similar arguments, we prove that the second inequality constraints of

the LP-relaxation of problem P could be replaced by equations. Therefore, the LP-

relaxation of problem P is equivalent to the following problem Q

min t

X
j2J

xij = ai; i 2 I; (4)

t
X
i2I

pijxij = Vj ; j 2 J; (5)

xij � 0; i 2 I; j 2 J; (6)

t � 0

2 Linearization of problem Q

Let p =
P

i2I

P
j2J

pijxij be the total production per unit time. By adding equations

(5), it follows that

tp =
X
j2J

Vj : (7)

Hence, for minimizing t, any set of fxijg satisfying (4), (5), and (6) must maximize
p. Problem Q can easily be transformed into a linear programming problem. We

eliminate t by setting P
i2I

pi1xi1P
i2I

pijxij
= hj ; j 2 J1:

Now, the minimization of t could be achieved by solving the linear program PP

min p =
X
i2I

X
j2J

pijxij subject to (4), (6), and

X
i2I

pi1xi1 � hj
X
i2I

pijxij = 0; j 2 J1: (8)

The optimal value of t is deducible from (7).

Proposition 5: The rank of the constraints matrix of problem PP is m+ n� 1.

Proof. This matrix has m + n � 1 rows and m � n columns. The coe�cients hj
de�ned in (3) are positive. So, any set of n� 1 column-vectors indexed by (i,j) with

j > 1 and pij > 0 is linearly independent. Add to this set the m column-vectors

indexed by (i; 1), i 2 I . The resulting set of m+n�1 vectors is linearly independent.
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De�ne

p0
i

= max
j2J

pij ; i 2 I; and

rij =
pij

p0
i

; i 2 I; j 2 J:

Therefore 0 � rij � 1; i 2 I; j 2 J . De�ne a linear program designated as PR as

follows

max r =
X
i2I

X
j2J

rijxij

X
j2J

xij = ai; i 2 I;

X
i2I

ri1xi1 � hj
X
i2I

rijxij = 0; j 2 J1;

xij � 0; i 2 I; j 2 J:

From proposition 4 we know that the rank of the constraints matrix of problem

PR ism+n�1. Problem PR has two nice properties: (i) The standard transportation

problem is a special case of problem PR as we shall see, and (ii).

Proposition 6: Every dual-feasible basis of problem PR is a dual-feasible basis of prob-

lem PP.

Proof. Let ui; i 2 I , and sj ; j 2 J1, be a dual basic feasible solution of problem PR.

It must satisfy

ui + ri1
X
j2J1

sj � ri1; i 2 I; (9)

ui � hjrijsj � rij ; i 2 I; j 2 J1: (10)

Multiplying the two sides of (9) and (10) by p0
i
, we obtain

p0
i
ui + pi1

X
j2J1

sj � pi1; i 2 I;

p0
i
ui � hjpijsj � pij ; i 2 I; j 2 J1:

The values u0
i
= p0

i
ui; i 2 I; s0

j
= sj ; j 2 J1; constitute a dual basic feasible

solution of problem PP, since the dual constraints are satis�ed.
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3 Heuristic approach

Set

b0
j
= Vj

P
i2I

aiP
j2J

Vj
; j 2 J:

Then
P

i2I
ai =

P
j2J

b0
j
and

b01
b0
j

= hj ; j 2 J1: (11)

Since the equations
P

i2I
xij = b0

j
; j 2 J; are equivalent to

X
i2I

xi1 � hj
X
i2I

xij = 0; j 2 J1;

the following problem TP

max r =
X
i2I

X
j2J

rijxij

X
j2J

xij = ai; i 2 I;

X
i2I

xi1 � hj
X
i2I

xij = 0; j 2 J1;

xij � 0; i 2 I; j 2 J;

is a transportation problem. Let B be an optimal basis. By setting

s1 =
X
j2J1

sj and

�j =

�
h1 = 1 if j = 1

�hj if j 2 J1;

a feasible and optimal dual solution ui; i 2 I , and sj ; j 2 J , must satisfy

ui + �jsj � fij = rij ; i 2 I; j 2 J; (12)

where fij are slack variables satisfying

fij

�
= 0 if (i; j) 2 B

� 0 if (i; j) =2 B:
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From proposition 4, if rij > 0, (i; j) 2 B, then B would be a basis of problem PR.

We can write equations (12) as follows

ui + rij�jsj ��ij = rij ; i 2 I; j 2 J (13)

with �ij = (rij � 1)�jsj + fij :

Equations (13) represent the dual constraints of problem PR, �ij being slack

variables. We see that if �ij � 0, 8i; j, then B would be a dual-feasible basis of

problem PR. Note that most of the coe�cients rij through the optimal basis B would

be close to unity since the transportation problem TP is solved with maximization

form of the objective function. However, if we de�ne

� = min
i;j

f(rij � 1) �jsj + fijg ;

we can accept B as a \�-dual-feasible" basis of problem PR and, from proposition 5,

of problem PP. Set

bj = max
�
1;
�
b0
j

�	
; j 2 J: (14)

This de�nition ensures an integer optimal solution for problem TP though the

coe�cients hj in formula (11) are slightly modi�ed.

4 Algorithm outline

We have shown in the last section that an optimal solution of problem TP, when

accepted as an approximate solution of problem P, satis�es the integrity constraints

as well as the �rst set of constraints of P. It is not \far from optimality" as B is a

�-dual-feasible basis. In order to take into account the second set of constraints of

P , several policies might be adopted. One of which is the following:

Step1. Solve the transportation problem TP and accept its optimal solution as an

approximate solution of problem P.

Step 2. Work with this solution until one (or more) volume(s) is (are) fully realized,

and de�ne a new smaller problem whose volumes are the shortages and return

to step 1.

Step 2 avoids shortages as well as excesses in the volumes realized. It provides a

good time-interval (see table 6) but needs several (often n� 1) changes of planning.
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5 Numerical example (from [4])

Three volumes of works have to be realized according to the values given in the

�rst row of table 1. For this, there are available four types of machines (values ai
are given in the �rst column.) The remaining cells of the same table refer to the

productivities pij .

V1 = 5000 V2 = 10000 V3 = 10000

a1 = 20 4 10 11

a2 = 50 0:4 0 10

a3 = 30 0 4 6

a4 = 100 0:4 2:5 2:5

Table 1

Table 2 presents the transportation problem with the coe�cients bj de�ned in (14).

b1 = 40 b2 = 80 b3 = 80

a1 = 20 0:36 0:91 1

a2 = 50 0:04 0 1

a3 = 30 0 0:67 1

a4 = 100 0:16 1 1

Table 2

Table 3 gives an optimal solution of problem TP.

b1 = 40 b2 = 80 b3 = 80

a1 = 20 20

a2 = 50 50

a3 = 30 30

a4 = 100 20 80

Table 3

We work with this solution then we stop the planning after 14.7 units of time,

having fully realized volume V3. The shortages are shown in table 4.
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Jobs Volumes Volumes realized Shortages

1 5000 1294 3706

2 10000 2940 7060

3 10000 10000 0

Table 4

Table 5 gives the new problem instance.

V1 = 3706 V2 = 7060

a1 = 20 4 10

a2 = 50 0:4 0

a3 = 30 0 4

a4 = 100 0:4 2:5

Table 5

Summarizing, after two changes and 46.5 units of time, each of the volumes is fully

realized. Note that the optimal solution of problem PP, using the simplex method,

gives a time-interval of about 44 units of time.

6 Computational experience

We coded our heuristic in Turbo-Pascal and run on a Systems International 386 SX

(33 MHz). Twenty-four problems with up to 200 integer variables were randomly

generated according to the uniform law. All the coe�cients are non-negative integers.

The ai's belong to the range [1,20], the Vj 's to [100,10000], and the pij 's to [0,100].

Problem PP is solved using the simplex method. The corresponding optimal

time-interval is reported in the second column of table 6. The third column shows

the time-interval provided by our heuristic. Comparing these two values, we observe

that our heuristic provides a time-interval that is close to the optimal time-interval

of problem PP. The drawback, as previously mentioned, is that several changes of

the planning of the machines are necessary. Unless the production program is a

long-term one, such a policy might be prohibitive.

We point out that our heuristic is polynomial-time since the major e�ort is spent

in solving at most (n� 1) transportation problems.
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Size Problem PP

m� n solution Heuristic

5� 5 4:25 4:28

11:61 11:93

6:26 6:26

11:80 13:15

5� 10 16:85 18:65

17:27 17:42

24:05 24:10

12:13 12:17

5� 20 23:74 23:85

17:12 17:27

25:89 26:07

15:75 15:78

10� 5 5:33 5:36

1:85 1:90

1:91 1:93

2:59 2:67

10� 10 7:31 7:32

7:77 7:82

7:74 7:95

7:87 7:95

10� 20 9:27 9:27

10:49 10:54

11:14 11:15

10:36 10:45

Table 6. Computational results

c
 Investigaci�on Operativa 2000


