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Abstract

It is proposed that tra�c in a telecommunications network be secured in the event of a node

or link failure by the rerouting of tra�c over a reserve network. The problem consists of two

related parts: the dimensioning of a reserve network, and the re-allocation, or rerouting of

tra�c. We formulate the problem as a linear programming problem of huge size which we

solve using a cutting plane algorithm based on the concept of an analytic center. The method

enables the solution of the survivability problem for networks with up to 60 nodes and 120

links, which allows a realistic modelling of France Telecom's Main Interconnection Network.

Keywords: Survivability in telecommunication networks, cutting plane methods, interior

point methods, decomposition.

1 Introduction

Network survivability has always been a major preoccupation of telecommunication

operating companies. The explosion of new services, of which telephony represents

but a small fraction, is attracting a new, more demanding clientele. The competi-

tion between operating companies, now more intense due to market deregulation,

demands that an ever increasing attention be given to the quality and cost of services.

�This work was �nanced by contract No 94 5B 022 of CNET.
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The concerns of clients include the areas of network availability, tari�s levels,

and �nally network reliability. If the rupture of a single telephone line is not a

catastrophic event, for a commercial enterprise, the inability to transfer data, even

for a limited time, could be seen as unacceptable by the user. Even a small risk of

a failure in the operator's network could discourage a client from making use of the

services of that operator. Failures however cannot be entirely eliminated, whether

it be a question of equipment (switching, transmission,. . . ) at a network node, or

a physical break in a connecting link. In the event of such failures, the operator

in charge of real time network management must, as quickly as possible, see to the

rerouting of all the transmission demands which were being served by the failed

elements. This is only possible if the remainder of the network has excess capacity.

To ensure that su�cient capacity exists for any possible degree of failure, the current

practice is to install, in parallel with the base network, a second network of the same

type and with identical topology. This network is known as the reserve network, and

its dimensioning is the subject of this paper.

A telecommunication network is a complex web of transmission links and nodes.

So much so that one cannot speak of a single network, but rather of a hierarchy. In

the context of such a hierarchy the survivability problem is an extremely complex

one. One can nevertheless conceive of a Main Interconnection Network at its apex,

which can be modelled with the aid of a graph. Transmission demands are de�ned by

the volume of information to be sent and the origin-destination pairs. A routing table

is established in advance by the network operators, according to certain technical

criteria.

Basic network failures are of two types: arc failure (e.g., severing of an optical

cable), which also a�ects the corresponding reserve arc, and node failure (e.g., failure

of electronic equipment), which a�ects all adjacent arcs from both the base and the

reserve network. The fundamental hypothesis in network survivability problems is

that only one basic failure can be handled at once. The possibility of multiple basic

failures occurring simultaneously is considered extremely improbable.

There exists two types of rerouting, local and global. In the local case, it is

considered that the rupture of a link creates, at its endpoints, a demand equal to

the total 
ow which transitted through the link. This demand must be rerouted

through the reserve network. It can be described as a single commodity requirement.

In the global case, the interrupted 
ow is analyzed and the fraction of demands in

the nominal network a�ected by the failure is found. In this way a set of demands is

generated to be routed through the reserve network. The demand requirement may

now be described as one of multiple commodities. The 
ow analysis can be taken

further: those 
ows interrupted release capacity in the network. If the operating

conditions allow it, this released capacity can be used to advantage in the rerouting.

The global approach, although more di�cult to put into e�ect, is economically

preferable. It is the approach used in practice and the one we will study here.

The survivability problem can be stated as follows:

c
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Determine the capacities to be installed in the reserve network, and the

required rerouting of demands such that

i) for each basic failure, all demands are satis�ed,

ii) the total cost of investment be minimized.

In this problem, each failure creates a single (in case of local rerouting) or

multiple (in case of global rerouting) commodity requirement. Since our formulation

considers at most one failure at a time, the problem can be described [26] as \the

minimum cost network synthesis under single or multiple commodity requirement".

Under the hypotheses of linear capacity installation costs and divisible 
ows, the

survivability problem can be formulated as a linear programming problem. See [26].

Unfortunately the LP problem is of such a large size, even for networks of moderate

dimensions, that it challenges the capabilities of the most advanced LP codes. The

alternative is to turn to the principle of decomposition whose e�ect is to break down

the huge initial problem into interconnected problems of much smaller dimensions.

There are at least two ways of implementing decomposition. The �rst one consists

of separating the capacity design issue (the master program) and the nonsimultaneous

multi
ow requirements (the subproblems). The master program selects a tentative

capacity design. The subproblems test whether this proposal meets the multi
ows

requirements: If the proposal is not feasible, the subproblems return a cut, or

constraint, to the master program. The merit of this �rst approach is that the

master program is of moderate size. The di�culty lies in the subproblems, i.e., the

constraint generation scheme, that requires the solution of a nonsmooth optimization

problem, see [27]. This approach is usually named Benders decomposition [7]. In

[28, 29], the authors use a subgradient optimization technique to solve (approxi-

mately) the subproblems. They report results on small size networks (12 nodes,

25 arcs and 66 demands). Di�erent approaches for solving survivability problems

in telecommunications networks are reported in [1, 6, 12, 18, 19, 20, 23, 24, 25, 33, 34].

The other approach, which we advocate in this paper, uses Lagrangian relaxation.

An extensive formulation of the problem includes capacity constraints on each

arc 
ow (one per arc and per failure con�guration) and 
ow constraints (one set

per commodity and per failure con�guration). The idea is to dualize the capacity

constraints and construct a Lagrangian in the space of the corresponding dual

variables. The master program consists of maximizing the Lagrangian in the dual

variables. The subproblems tests whether for a given set of dual variables there exist

more pro�table reroutings of the commodities. The information that is sent back

to the master takes the form of a column generation scheme. In this decomposition

mode, the subproblems are very simple: they are just shortest path problems. In

sharp contrast with Benders decomposition the master program can be very large.

However this program is sparse and structured. It can be solved using appropriate
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techniques for exploiting sparsity.

The classical approach in decomposition is to solve the master program to

optimality. The rate of convergence of this method is then known to be extremely

slow in some instances. Many alternatives have been proposed to achieve more stable

convergence rates. For a review see [11]. In this paper we use the analytic center

cutting plane method (ACCPM) [15]. This technique has been tested on a wide

variety of problems [15, 4, 5].

The paper is organized as follows. In section 2 we give a mathematical formulation

of the problem. In section 3 we o�er a succinct exposition of the method of cutting

planes. In the following section we set out the variant of this method based on the

analytic center: we outline brie
y the interior point algorithm used to calculate

approximations to analytic centers. In section 5 we review some important points

concerning the implementation, whereas section 6 reports on the numerical results.

Notation: Given a vector x, we shall denote by X the diagonal matrix whose diag-

onal components are equal to x. We shall also denote 1 to be the vector with each

component equal to one; its dimension is to be inferred from the context.

2 A Mathematical Model of the Dimensioning of the Reserve

Network

The telecommunications network is represented by a base graph G = (V;E). In the

language of graph theory this graph is simple, that is undirected, without loops and

with a maximum of one edge connecting any two vertices. The 
ows in the network

represent packets of information, or messages, which are transferred between nodes

in order to satisfy their demands.

2.1 The Multicommodity Net
ow Problem

We begin by recalling the basic problem, that of satisfaction of the total demand in

the nominal network. The real 
ows are directed, as they correspond to a routing of

messages away from origins toward destinations. When one wishes to measure the

utilization levels of network links however, absolute 
ow values need to be added.

To take this fact into account, we let G = (V;E) be undirected and de�ne for each

directed edge a = (j; k) 2 E two types of 
ows: a positive 
ow (xa)
+ which transits

from j to k and a negative 
ow (xa)
� which transits in the opposite direction. The

total 
ow over the edge is then:

xa = (xa)
+ + (xa)

�:
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These 
ows, positive and negative, are themselves superpositions of other 
ows,

corresponding to speci�c demands called commodities between origin-destination

pairs somewhere in the network. We index these 
ows by commodity. Thus for an

edge a:

xa =
X
i2I

�
(xi

a
)+ + (xi

a
)�
�
;

where I is the set of all commodities.

To de�ne the demand and 
ow conservation constraints we introduce a convenient

notation. For each vertex j 2 V , or more generally for any subset of vertices A � V ,

we de�ne !+(A) as the set of edges terminating in A, and !�(A) the set with origins

in A. We can then write for each vertex j, and commodity i with origin s and

destination t, the 
ow conservation equations.

X
a2!+(j)

�
(xi

a
)+ � (xi

a
)�
�
�

X
a2!�(j)

�
(xi

a
)+ � (xi

a
)�
�
=

8>>><
>>>:

�fi; if j = s;

fi; if j = t;

0; otherwise.

(1)

We de�ne the load of an edge a 2 E by the commodity i to be the sum of the two

directed 
ows

xi
a
= (xi

a
)+ + (xi

a
)�: (2)

The vector xi = fxi
a
g is a feasible load for the commodity i if there exist 
ows

(xi)+ and (xi)� satisfying (2) for all a 2 E and (1) for all j 2 V . The set of

feasible loads for commodity i is denoted by Fi. By introducing the load vector

x = (x1; : : : ; xjIj) over the set of all commodities, we can de�ne the set of feasible

loads as the set product

F =
Y
i2I

Fi:

Finally, if K is the capacity of the graph, the 
ow equations must be comple-

mented by the capacity constraints for each of the edges a 2 E:

X
i2I

xi
a
� Ka: (3)
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The Multicommodity Network Flow Problem is a LP problem with 
ow con-

straints (1) on each commodity, and capacity constraints (3) on each arc. It is

possible to add the cost of routing to this base model. If the unit cost is zero, we

need only solve the feasibility problem.

In practice, it is often required that 
ows be modular. In this case the problem

loses its linearity property, and we enter the domain of integer programming.

2.2 The Failure Problem

Failure management cannot be de�ned independently of the 
ow routing in place

under normal operating conditions. In fact, in the event of a failure, only those


ows that transitted the failed elements require rerouting. This will be achieved

according to certain rules. The most restrictive is that rerouted 
ows use the

reserve network only. A wider concept of failure management is that these 
ows can

also be carried by the nominal network, to the extent that there is unutilized capacity.

More formally, we say that the failures p form a set P . These failures will modify

the topology of the base graph and give rise, via a deletion of elements, to the

partial-subgraphs G(p) = (V (p); E(p)), which we refer to as failure networks.

Each failure p disables a set of paths in the base graph. As a result there are

unsatis�ed demands between certain origin-destination pairs, and a corresponding

set of commodities I(p). Each commodity i 2 I(p) of the failure network is de�ned by

a demand of magnitude fi directed away from an origin si toward a destination ti.

These unsatis�ed demands are to be rerouted over the failure network G(p). So that

the rerouted 
ows can be managed in practice, we may need to constrain the 
ows

xi, i 2 I(p) to be integer valued.

The capacity of the failure network G(p) can be divided into two parts: the

capacity of the edges in the reserve network, and the spare capacity in the nominal

network. In the failure p con�guration, the spare capacity K(p) is made up of

the spare capacity in the base network under normal operating conditions and

the additional capacity generated by the interrupted 
ows under failure p. It is

important to realize that the spare capacity K(p) can be considered as �xed for any

given failure condition, whereas the capacity of the reserve network is a decision

variable.

Let K(p) be the spare capacity of the failure network G(p) and y = (ya)a2E the

capacity to be installed. The installation unit cost is c = (ca)a2E . We set an upper

bound �y = (�ya)a2E on it. The survivability problem (SPINT ) can be formulated as

follows:

min cTy
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s.t.
X
i2I(p)

x(i)
a
� K(p)

a
+ ya; 8a 2 E(p); 8p 2 P ;

xi 2 F (p); 8i 2 I(p); 8p 2 P ;

0 � ya � �ya; x, y integers:

Constraining the 
ows to be integer valued greatly complicates the problem. A

lower bound to the optimal solution can be obtained by dropping this condition. We

consider then the relaxed problem (SP )

min cTy (4)

s.t.
X
i2I(p)

x(i)
a
� K(p)

a
+ ya; 8a 2 E(p); 8p 2 P ; (5)

xi 2 F (p); 8i 2 I(p); 8p 2 P ; (6)

0 � ya � �ya: (7)

The problem (SP ) is linear, but its size can be signi�cant even for a nominal

network of moderate size.

3 The Method of Cutting Planes

The size of the survivability problem is almost certainly beyond any direct application

of a linear programming algorithm. The alternative is to use the principle of decom-

position, which converts the original problem into a smaller nondi�erentiable problem

in convex optimization. This is achieved by partial dualization. In this section we

recall this technique, show how to construct the elements of the sub-di�erential of

the function thus obtained, and present a generic cutting planes algorithm [22].

3.1 The Dual Problem

3.1.1 The Lagrangian and Partial Dualization

Consider the Lagrangian obtained by the dualization of the coupling constraints (5) of

(SP ) . The dual vector associated with the constraints (5) is v = (v1; : : : ; vp; : : : ; vjPj).

We obtain:

L(x; y; v) = cTy +
X
p2P

X
a2E(p)

vp
a

� X
i2I(p)

xi
a
�K(p)

a
� ya

�
: (8)

To simplify what follows we introduce the set product of the feasible 
ows:

F =
Y
p2P

Y
i2I(p)

F
(p)
i
:
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From (8) we de�ne the following two functions

L(x; y) := sup
v�0

L(x; y; v); (9)

and

L(v) := min fL(x; y; v) : 0 � y � �y; x 2 Fg : (10)

These two functions are respectively convex and concave. The former yields an

alternative formulation of the primal problem. The latter allows us to introduce the

dual problem.

max fL(v) : v � 0g : (11)

By the minmax theorem of convex programming, there exist vectors v� and (x�; y�)

such that

L(v�) = max fL(v) : v � 0g ;

L(x�; y�) = max
�
L(x; y) : 0 � y � �y; x 2 F

	
;

and

L(v�) = L(x�; y�):

The dual problem is concave but piecewise linear. It is thus nondi�erentiable.

3.1.2 Calculating Values of the Dual Function

It is relatively easy to calculate L(v) for a given v. In fact, using the de�nition (8)

we can write

L(v) = 
(v) + '(v)�
X
p2P

X
a2E(p)

vp
a
K(p)
a
;

where 
 and ' are given by


(v) = min
x2F

X
p2P

X
i2I(p)

� X
a2E(p)

vp
a
xi
a

�
; (12)

and

'(v) = min
0�y��y

8<
:
X
a2E

yaca �
X
p2P

X
a2E(p)

yav
p

a

9=
; : (13)

At the risk of an abuse of notation, we extend the vector v with arbitrary compo-

nents vp
a
for each a 62 E(p) and introduce the parameters
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�p
a
=

8<
: 1 if a 2 E(p);

0 otherwise:

the functions 
 and ' can be decomposed into simple functions


i(v) = min
xi2F (p)

X
a2E(p)

vp
a
xi
a
; i 2 I(p) (14)

and

'a(v) = min
0�ya��ya

ya

�
ca �

X
p2P

�p
a
vp
a

�
: (15)

Thus we have


(v) =
X
p2P

X
i2I(p)


i(v)

and

'(v) =
X
a2E

'a(v):

The elementary functions 
i(v) and 'a(v) each have the form of a minimum of

functions linear in v: hence they are concave. In addition, their values at a given

point v are easily calculated. The functions 
 are the optimal values of simple 
ow

problems corresponding to the shortest path problem over a graph with non-negative

costs. The functions ' take either the value zero or (ca �
P

p2P
�p
a
v
(p)
a )�ya according

to the sign of (ca�
P

p2P
�p
a
v
(p)
a ). Thus �ya essentially takes only two values, 0 and �ya.

3.1.3 Calculation of the Sub-Di�erential

To determine an element of the sub-di�erential problem, it su�ces to express the

dependence of the optimal values of 
 and ' on v. Since this involves only simple

linear expressions, the components of the sub-gradients are just the coe�cients of v.

To be more precise, let v̂ be a point at at which we calculate 
i(v̂) and 'a(v̂), and

let x̂i and ŷa be the values respectively where these functions attain their minima.

Let v be an arbitrary point. Using the fact that, for a given v, 
i is the minimum ofP
a2E(p)

vp
a
xi
a
for xi 2 F (p), we obtain for i 2 I(p),


i(v) �
X

a2E(p)

vp
a
x̂i
a

= 
i(v̂) +
X

a2E(p)

x̂i
a
(vp
a
� v̂p

a
): (16)
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Inequality (16) de�nes a support of the concave function 
i, i 2 I
(p) at the point

v̂. The coe�cients (vp
a
� v̂p

a
) of x̂i

a
are the components of the sub-di�erential of the


i.

In the same way, we construct the sub-di�erential of 'a by the inequality

'a(v) � ŷa

0
@ca �X

p2P

�p
a
v(p)
a

1
A

= 'a(v̂)�
X
p2P

�p
a
ŷa(v

(p)
a
� v̂(p)

a
): (17)

Inequality (17) de�nes a support of the concave function 'a at the point v̂. The

sub-gradient is therefore a null vector, excepting those components corresponding to

edges in the failure network, which have value ŷa.

3.2 General Cutting Planes Algorithm

To summarize, we have shown that the survivability problem can be written as a

nondi�erentiable convex programming problem, of type

min ff(v) : v � 0 g

where f(v) = �L(v). The cutting planes method can be applied successfully to

problems of this type.

Let f1; f2; :::; fN : IRm

+ ! IR be convex functions and b a vector in IRm

+ . Now de�ne

the functions

f(v) =

NX
i=1

fi(v) + bTv:

We consider the problem

z� = minff(v) : 0 � v � hg: (18)

This is the same problem as before; the constraint v � h has been added simply

to ensure the compactness of the feasible domain. We call the inequalities box

constraints. Given that the bound h is arbitrary, for convenience we choose it to be

large. In the survivability problem the box constraints on v may be given a speci�c

value in the case where there is no capacity constraint y � �ya (or equivalently, the

capacity constraint is known to be inactive at the optimum). From (15) we can see

c
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that as �ya ! +1, the minimum of 'a is �nite if and only if ca �
P

p2P
�p
a
v
(p)
a � 0.

Hence we have the box constraint 0 � v
(p)
a � ca.

We will use the notation

@f(v) = f� 2 IRm

+ : f(w) � f(v) + �T (w � v);8w 2 IRm

+g

to describe the set of sub-gradients of f as functions of v. The procedure used to cal-

culate f(v) and elements of its sub-di�erential will henceforth be referred to as oracle.

Finally we recall that the epigraph of f is de�ned by

epif = f(z; v) : z � f(v)g :

The aim of the method of cutting planes is to construct increasingly sharp approx-

imations to the epigraph of f . Note that if we use the form of f with the summation,

we can write

epif =
n
(z; v) : z =

X
i=1

zi + bTv; (zi; v) 2 epifi

o
:

3.2.1 The Polyhedral Approximation

Assume that a sequence of vectors fvkgk=1;:::� has been generated by some proce-

dure. From this the oracle then generates 2N new sequences : the values fk
i
and the

subgradients �k
i
2 @fi(v

k), i = 1; : : : ; N ,k = 1; : : : ; �. From these we can form a linear

approximation to the epigraphs of fi using the inequalities

zi � (�k
i
)Tv � fi(v

k)� (�k
i
)Tvk; k = 1; : : : ; �: (19)

We obtain an approximation of epif upon adding to (19) the equation

z =

NX
i=1

zi + bTv:

The linear program

min z =

NX
i=1

zi + bTv

s:t: zi � (xk
i
)Tv � fi(v

k)� (xk
i
)Tvk; k = 1; : : : ; �; i = 1; : : : ; N;

h � v � 0

c
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provides a lower bound z�
l
to the optimal solution z� of problem (18), whereas

z�
u
= min

k=1;:::;�

(X
i

fi(v
k) + bTvk

)

provides an upper bound.

When a new point v�+1 is obtained, the oracle generates more inequalities fol-

lowing (19) which are added to the existing set. The result is a re�nement of the

approximation to the epigraph of f . At step k the accuracy of the approximation to

the optimal solution is given by the duality gap

�� = z�
u
� z�

l
:

3.2.2 The Localization Set

We make use of the upper bound z�
u
to construct a compact set containing the optimal

solution (z�; v�). This set, known as the localization set and denoted by L(zu), is

de�ned by the inequalities

z�
u

�

NX
i=1

zi + bTv

zi � (�k
i
)Tv � fi(v

k)� (�k
i
)Tvk; i = 1; : : : ; N; k = 1; : : : ; �

l � v � h:

3.2.3 A Generic Cutting Plane Algorithm

We present here a generic algorithm for the case N = 1 in the de�nition of f . In this

case only a single subgradient is returned by the oracle, that is a single cut across

the localization set.

To simplify notation we omit the iteration index k. At the start of the iteration

are given a lower bound zl, an upper bound zu, and a localization set L(zu). The

iteration steps are:

1. Choose (�z; �v) 2 L(zu).

2. Calculate a lower bound z for each z such that (z; v) 2 L(zu).

3. Calculate f(�v) and � 2 @f(�v).

4. Update the bounds:

(a) zu := minff(�v); zug

(b) zl := maxfz; zlg:
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5. Update the localization set by adding

z � �Tv � f(�u)� �T�v

to the set of inequalities de�ning L(zu).

The algorithm halts when the duality gap � = zu � zl falls below the required

precision.

To implement the generic cutting plane algorithm, the way in which the point

(�z; �v) is chosen in the localization set must be speci�ed. Several choices are possible,

each de�ning a particular version of the algorithm. For example, in the decomposition

algorithm of Dantzig-Wolfe [9] (see also [22]), (�z; �v) is a point which minimizes z in

L(zu). In the following section, we propose an alternative, that of the analytic center

of the localization set.

It is convenient to use the terminology of Dantzig-Wolfe regardless of the version

of the algorithm used. The procedure which selects (�z; �v) in the �rst stage of the

algorithm will be called the master program. The oracle, which calculates f(�v) and

� 2 @(f(�v)), will be called the subproblem.

If there are more than one subproblem, the oracle may generate more than one

cut at a time.

4 The ACCPM

Having already stated that step 1 of the algorithm, the choosing of the point in

the localization set, is that which di�erentiates between the di�erent versions, we

now specify the method which de�nes the ACCPM. For a detailed description the

reader is referred to [13, 15]; for an analysis of convergence to [3, 31, 16]; and for the

implementations to [4, 5].

4.1 De�nition of the Analytic Center

The linear program (20) can be written in the following way:

min z1 + : : :+ zN + b0v

s:t GT

i
v + zi � 
i; i = 1; : : : ; N;

h � v � 0;

where we have put

(Gi)k = ��k
i

(
i)k = fi(v
k)� �k

i

T

fi(v
k);
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for all k = 1; : : : ; � et i = 1; : : : ; N .

Now de�ne

u =

0
BB@

v

z1
...

zN

1
CCA ; c =

0
BBBB@

0

�h



1

...



N

1
CCCCA ; b =

�
b0
1

�
; G =

�
I �I G1 G2 : : : G�

0 0 E1 E2 : : : E�

�
;

where the sub-matrices Ek of G are null except for the k i�th row which is the unit

vector 1T of the appropriate dimension.

We can now express the problem (20) in the condensed form

min bTu

GTu� s = c

s � 0:

(20)

The analytic center for the localization set L(zu) is de�ned as the point which

minimizes the product of the deviations from the constraints de�ning the localization

set. In other words it is the solution of the problem

min  (s; u; zu) = � ln(zu � bTu)�

nX
j=1

ln sj

s:t: GTu� s = c; s > 0

zu � bTu > 0:

(21)

It can be veri�ed that the conditions for �rst order optimality are

Gy = b; y > 0

GTu� s = c; s > 0 (22)

Y s = (zu � bTu)1 > 0:

Here Y is the diagonal matrix with elements equal to those of the vector y. It can

be shown [30], under the hypothesis that the sets

SP = fy : Gy = b; y > 0g

and

SD = fu : GTu > cg

are non empty, that the �rst order conditions (22) can always be satis�ed.
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4.2 The Projective Algorithm

The analytic center of the polytope L(zu) can also be de�ned with respect to the dual

problem (20)

min cT y

Gy = b

y � 0:

(23)

Consider

'(y; zu) = (n+ 1) ln(zu � cT y)�

nX
j=1

ln yj

the Karmarkar potential function [21]. It can be shown that the �rst order optimality

conditions associated with the problem

min '(y; zu) = (n+ 1) ln(zu � cT y)�
P

n

j=1 ln yj

s:t: Gy = b; y > 0

zu � cT y > 0

(24)

are the same as for (21).

To solve (24) we use the version of the projective algorithm of Karmarkar [21]

described in [10]. This involves embedding the problem in a projective space by the

addition of the variable y0 � 0. If we set ~G = (�b G), ~c = (zu;�c
T) and ~yT = (1; yT)

we obtain from (24) the equivalent formulation

min ~'(~y; zu) = (n+ 1) ln(~cT ~y)�
P

n

j=0 ln ~yj

s:t: ~G~y = 0; ~y > 0

~cT ~y > 0:

This is a positively homogeneous problem of degree zero. By dividing by ~y0 we

can recover the original formulation (24).

4.2.1 The Direction of Displacement

The minimum of ~' is calculated using the projected Newton's method. The direction

is ~Y q, where

q = 1n+1 �
~cT ~y

kP
N ( ~G ~Y )

~Y ~ck2
P
N ( ~G ~Y )

~Y ~c; (25)
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and where P
N ( ~G ~Y )

~Y ~c denotes the projection of ~Y ~c onto the null space of ~G ~Y . The

presence of the box constraints ensures that ~G is of full rank. The projection can

then be calculated by the following explicit formulae:

P
N ( ~G ~Y )

~Y ~c = ~Y ~s; (26)

together with

~s = ~c+ ~GTu; (27)

and

u = �( ~G ~Y 2 ~GT )�1 ~G ~Y 2~c: (28)

It can be veri�ed that the value uc calculated using (28) is the analytic center of

L(zu) if and only if q = 0. For a proof, we refer the reader to [14].

4.2.2 The Algorithm

The projective algorithm begins with a feasible interior point solution for which

y > 0 and Gy = b, and maintains the interiority throughout.

1. Calculate the direction q using (25).

2. If kqk � � < 1, the vector uc, calculated from (28), is close to an analytic center

L(zu).

3. Find an approximate solution to

min
�>0

�
~'(~y + � ~Y q) : ~y + � ~Y q > 0

	
:

4. Calculate the new point �y = ~y + �� ~Y q, and normalize ~y := �y
�y0

so as to satisfy

~y0 = 1.

4.2.3 Addition of Cutting Planes

The addition of a cutting plane corresponds to the appending of a new column to

G. The vector y is extended by an additional component. If this component is zero

we have a solution to Gy = b immediately, but one which violates the interiority

condition. There is a very e�cient technique, utilized in [15] and presented in detail

in [4, 5], which circumvents this problem. We employ this technique but do not

describe it here.
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5 Implementation

5.1 The oracle

The oracle is a procedure in the ACCPM which evaluates the objective function at

a point and generates an element of its subdi�erential. It is the only part of the

method where the objective function appears explicitly. We have seen that to solve

the survivability problem, we must minimize the objective function:

f(v) = �L(v) = �
X
p2P

X
i2I(p)


i(v)�
X
a2E

'a(v) +
X
p2P

X
a2E(p)

vp
a
K(p)
a
;

where


i(v) = min
xi2F (p)

X
a2E(p)

vp
a
xi
a
; i 2 I(p)

and

'a(v) = min
0�ya��ya

ya

�
ca �

X
p2P

�p
a
vp
a

�
:

The function 
i(v) reduces to the calculation of a shortest path problem in the

subgraph G(p). In addition, from the values of 
 and ' the oracle generates the

corresponding elements of the subdi�erential, as explained in section 3. Recall that

the subgradients of 
 correspond to shortest paths. We can store this information

economically in a sparse binary matrix to which we append an element equal to the


ow on the path. As for the subgradients of ' , they are determined by the two

extremal solutions ya = 0 and ya = �ya. They need only be generated once at the

beginning of the algorithm.

5.2 The Projective Method

5.2.1 Matrix Structure

For the survivability problem the ACCPM generates a master program for which the

matrix ~G = (�b G) has a block structure. We label these blocks as follows

G =

0
@G11 G12 0 G14

0 G22 0 0

0 0 G33 G34

1
A : (29)

Each bloc has its own structure. To illustrate this, in �gure (1), we have put the

vector b and G into tabular form.

We begin by describing the vertical bands G:1, G:2, G:3 and G:4. The �rst band

is associated with the box constraints. The matrix G11 is composed of the identity

matrix and its negation.
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Fig. 1: Master program matrix: vector b and matrix G

The second band concerns the subproblem 
. Block G12 contains the subgra-

dients and G22 the convexity constraints. These two blocks have themselves a

block-diagonal structure of jP j blocks: each subblock corresponds to a subprogram


. The mutually disjoint nature of the di�erent failure networks induces the

block-diagonal structure. The submatrix G22 contains the row vectors associated

with the convexity constraints, each row corresponding to a failure network. This is

therefore the same block-diagonal structure as G12, which has subblocks which are

row vectors. Note that trivially, these rows are mutually orthogonal.

Band G:2 has a dynamic structure, growing with the contribution of new

subgradients as the algorithm progresses. Also note that each sub-block is of the

type seen in multicommodity problems: in fact each failure network must route

several commodities.

The two �nal bands G:3 andG:4 hold the information associated with the subprob-

lem '. Each function 'a has two extreme subgradients: the null vector, and another

whose elements equal �ya when the edge a 2 E is present in the failure network E(p),

else zero. Block G14 is therefore a concatenation of pseudo diagonal blocks (one per

failure network).

5.2.2 Dealing with Sparse Matrices

The most expensive operation in the projective method is the solution of system (28)

u = �( ~G ~Y 2 ~GT )�1 ~G ~Y 2~c:

The solution is obtained using the Cholesky factorization of ( ~G ~Y 2 ~GT ). The

operation consists of two main stages, the formation of the product ( ~G ~Y 2 ~GT ) itself,

and its factorization. These stages have a comparable theoretical complexity. Note
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that the presence of the diagonal matrix ~Y is equivalent to a normalization (or,

more accurately, a rescaling) of ~G. At each iteration of the projective method ~Y is

normalized so that its �rst component is 1.

The master program matrix is extremely sparse and highly structured, whereas

b is dense. On examination of the contribution of each block of ~G in the product

( ~G ~Y 2 ~GT ), it can be seen that, if it were not for b and and the block G14, there would

be a diagonal block structure. To exploit this, we calculate separately the contribution

of b and G14 in the inversion of ( ~G ~Y 2 ~GT ), using the Shermann-Morrison-Woodburry

formula. First let us denote �G the scaled matrix G. Let U = ( �G:1
�G:2

�G:3) be a

submatrix of �G and let V = (b �G:4). Clearly ( ~G ~Y 2 ~GT ) = (UV )(UV )T . Using the

Shermann-Morrison-Woodburry formula, one can therefore write�
(U V )(U V )T

�
�1

= (UUT + V V T )�1

= (UUT )�1 � (UUT )�1V (I + V T (UUT )�1V )�1V T (UUT )�1:

We now show how to exploit the structure of (UUT ). Given the structure of U ,

we have

H = (UUT ) =

0
@H11 H12 0

HT

12 H22 0

0 0 H33

1
A :

The submatrices H22 = �G22
�GT

22 and H33 = �G33
�GT

33 are diagonal. This property

follows from the fact that �G22 and �G33 are made of simple convexity constraints.

This structure is common to all decomposition problems (multiregional decomposi-

tion, stochastic linear programming, etc.) which involve several subprograms. The

exploitation of this structure has been described in [5]. This consists essentially of

using the Schurr complement

F = H11 �H12H
�1
22 H

T

12: (30)

The dimension of F is the number of the coupling constraints in the decomposition

problem. This number can be very large (over 20,000 in some of the cases detailed

in the next section). To cope with this problem we exploit the block-structure of F

inherited from H11.

The factorization is therefore best performed block by block. The advantages of

this approach are signi�cant, both in terms of the complexity of the calculation and

in memory requirements.

5.3 Reconstruction of the Primal Solution

When the algorithm stops we readily have the optimal value of the objective function

and the vector of dual variables associated with the coupling constraints. The primal
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variables, which are the capacities installed and the rerouting lists, are not given

directly. Nevertheless we can easily reconstruct them from the columns of G and the

primal variables of problem (24). In fact, the value of these variables gives us the

convex combination of the columns of G, i.e., the mix of paths for rerouting. The

rerouting list is therefore easily constructed. As for the capacities, they are given by

the corresponding variables (24) as a fraction of the maximal capacity �ya.

6 Numerical results

The survivability algorithm for failures was tested on two types of problem: a

problem reported in [8] (the JLLGV) and several randomly generated problems. For

the latter a random problem generator was developed [32]. In this generator, the

problems are characterized by the number of links and nodes in the nominal network

and the initial number of active routes. These parameters can be �xed by the user.

In principle this is all the data we need to de�ne the problem. However to provide a

self contained formulation, the number of demands to be rerouted in the event of a

basic failure should be calculated. The size of this quantity impacts on the di�culty

of the problem. It can not be �xed in advance by the user.

The survivability problem can be formulated as a single linear programming

problem of huge size. The capacity constraints for each failure con�guration form

the coupling constraints. The routing constraints are simple 
ow constraints in the

network. Let n be the number of nodes, m the number of links, and p the number

of demands to be rerouted. Each link failure generates m � 1 coupling constraints.

A node failure generates n � d coupling constraints, where d is the degree of the

node. We denote the average degree by �d. The number of coupling constraints can

be estimated to be m(m � 1) + n(m � �d). There are n 
ow constraints for each

rerouting, thus np in total1. There are mp variables for the 
ows and m for the ca-

pacities. We arrive �nally at a problem of size (m(m�1)+n(m� �d)+np)�(m(p+1)).

The parameters of the test problems are given by the following table.

The dimension of the extensive formulation for the test problems are given in

table 2.

With the exception of JLLGV, all of these problems consider both node and link

failures. In the case of JLLGV there exists a node failure which separates the network

into two connected components. It is thus impossible to ensure the survivability of

the network with respect to such a failure. Thus only link failures are considered.

The numerics were performed on an HP 735/125 with 180 megabytes of RAM. The

code was written in C, and compiled with HP's cc compiler with options +O2.

1 This true only for the case of a link failure. For node failure the number is n� 1 because of the

loss of a node in the reserve network. We do not take this distinction into account.
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Tests Arcs Nodes Routing Failures Rerouting

JLLGV 42 26 264 42 786

P1 57 30 150 81 1100

P2 71 37 300 102 3266

P3 77 40 200 109 1942

P4 87 45 300 123 3658

P5 127 65 400 177 4612

Tab. 1: Dimensioning of the base networks

tests Coupling Constraints 
ow Constraints Variables

JLLGV 5280 20436 33012

P1 4465 39816 62700

P2 7048 120842 231886

P3 8191 77680 149634

P4 10472 164610 318246

P5 22153 299780 585724

Tab. 2: Dimension of the extensive formulation

To evaluate the performance of the ACCPM, the following measures were

calculated.

1. Gap: the duality gap;

2. Iter: the number of calls to the oracle;

3. Newton: the total number of iterations in the projective module of the master

program;

4. Cuts: the number of independent columns introduced after elimination of

copies;

5. CPU: the CPU time in seconds on the dedicated machine.

Table 3, page 42, summarizes the results obtained.
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Tests Iter Newton Cuts GAP CPU

JLLGV 31 205 4333 7: 10�7 293

P1 41 525 5494 6: 10�7 2487

P2 29 709 20008 7: 10�7 11297

P3 38 663 11924 3: 10�7 10038

P4 37 1022 22401 9: 10�7 29290

P5 21 612 60389 7: 10�5 80541

Tab. 3: The ACCPM solution

A precision of 6 digits was obtained for every problem except for P5. For it we

contented ourselves with 3 digits, a precision considered acceptable for the majority

of practical applications.

To analyze the behavior of the algorithm, we have extracted statistics from P1

to plot the graphs in �gure 2. Comparable results were obtained from P3 using the

same analysis.

The �rst graph shows the number of columns introduced at each exterior

iteration. Recall that when the oracle generates a column which is already in the

master program, that column is not appended. Note that after 20 exterior iterations

no further columns are introduced. All the linear forms necessary to the de�nition

of the optimal solution are present.

The second graph gives the CPU time as a function of the number of interior

iterations (or iterations of the projective method). We see an initial growth which

then levels o�. This corresponds to the addition of columns which ceases after

approximately 20 exterior iterations.

The third graph shows the evolution of the duality gap as a function of the

number of exterior iterations, using a logarithmic scale. It can be seen that after

an initial phase the drop o� is log-linear. This behaviour is typical of cutting plane

methods. A graph of exactly the same form was obtained in [4] in the very di�erent

context of geometric programming.

From this analysis one sees that a large proportion of time is spent in locating

the optimum after all the necessary cuts have been generated. We made a similar

observation on the other problems of the test set. vIt would de�nitely be pro�table

in problem P1 to use a mixed algorithm that would switch from the analytic center

of the localisation set to the lower point of the set, the Dantzig-Wolfe point, after

the 22nd outer iteration.
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Fig. 2: Statistics for the problem P1.
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