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Abstract

This paper deals with the stochastic modelling of a wide class of �nite retrial queueing systems

in a Markovian environment. The main characteristic of this class is its versatility, so we

discuss many applications associated with the speci�c choices of the system parameters. The

in�nitesimal generator of these queues can be reduced to a �nite block-tridiagonal structure

investigated in other papers [9, 10, 12, 13, 17]. The stationary distribution of the system

state and �rst passage times are obtained by matrix methods. A numerical illustration is

given.
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1 Introduction

Queueing systems with repeated attempts have wide practical use in designing local

area networks and telecommunication systems. These queues are characterized by

the following feature: a customer �nding all servers and waiting positions busy upon

arrival is obliged to leave the service area, but after some random time he repeats

his demand. Between trials a customer is said to be in `orbit '. The growing interest

on this topic is re
ected in the publication during the last decades of an important

number of papers. For a systematic account of the fundamental methods and re-

sults on this topic, we refer to the reader to the monograph by Falin and Templeton [7].
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It should be pointed out that the in�nitesimal generator of many Markovian

queues with repeated attempts can be re-expressed as an in�nite block-tridiagonal

one that generalizes the so-called `quasi birth and death processes ' [14]. The theory

for in�nite quasi birth and death processes assumes that transitions from a state

(i; j) do not depend on j. This condition of limited space homogeneity implies a

structural form where three matrix (A2, A1, A0) are recursively iterated. However,

the main feature of a retrial queue is space heterogeneity which is caused by

the transitions associated to the repeated attempts. That is the main di�erence

between Markovian retrial queues and the theory of Neuts for in�nite quasi birth

and death processes. However, as far as we know, the relationship between retrial

queues and �nite quasi birth and death processes has not been observed in the

existing literature. Thus, we hope that this paper would be useful to exploit in

future research the matrix-geometric methodology for �nite quasi birth and death

processes as a powerful tool for the investigation of a wide class of �nite retrial queues.

We are concerned with a versatile queueing system which is formalized as

a Markovian bivariate process f(Q(t); O(t)); t � 0g on the �nite state space

S = f0; :::;Mg � f0; :::; Ng: The variable Q(t) denotes the number of customers in

the service facility at time t, and O(t) is the number of customers in orbit. We

consider the most general setting by assuming that all rates involved in the model

description depend on the system state.

First, in Section 2, we describe the mathematical model. In Section 3, we reduce

the in�nitesimal generator of our Markovian process to a �nite block-tridiagonal one.

Thus, the methodology developed in [9] is the mathematical key for investigating the

steady state distribution and expectations of �rst passage times (Section 4). Our aim

is to show a novel use of matrix-geometric methods. To that end, in Section 5, we

illustrate how many retrial queues are connected with the model under consideration.

Finally, a numerical illustration is provided in Section 6.

2 Model description

We consider a retrial queueing system with �nite capacity in the service facility

and in the orbit. The arrival input, service times and intervals between successive

repeated attempts are assumed to be mutually independent. The state of the system

can be described in terms of the process f(Q(t); O(t)); t � 0g; where Q(t) is the

total number of servers and waiting positions occupied and O(t) is the number of

customers reapplying for service at time t. We assume a state dependent description

in which the jumps of (Q(t); O(t)) are governed by exponential laws with parameters

�ij (primary arrivals), �ij (service times) and �ij (repeated attempts). Taking into

account the lack of memory property of the exponential distribution, we conclude

that f(Q(t); O(t)); t � 0g is a time-homogeneous Markov chain with state space

S = f0; :::;Mg � f0; :::; Ng: Its in�nitesimal transition rates are given by

qij = lim
t!1

(PfQ(t) = m; O(t) = n j Q(0) = i; O(0) = jg � �(i;j);(m;n))t
�1
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=

8>>>>>>>><>>>>>>>>:

�ijpi; if (m;n) = (i+ 1; j);

(1� �jN )�ijqi; if (m;n) = (i; j + 1);

�ij ; if (m;n) = (i� 1; j);

�ijhi; if (m;n) = (i+ 1; j � 1);

(1� �j0)�iM�ijh; if (m;n) = (M; j � 1);

�(�ij(pi + (1-�jN )qi) + �ij + �ijhi + (1-�j0)�iM�ijh); if (m;n) = (i; j);

0; otherwise.

(2.1)

It should be noted that pi and qi represent balking probabilities; i.e., an arriving

customer �nding the service facility at the state i decides either to join the service

facility, with probability pi, or to join the orbit and retry later, with probability

qi; or to leave the system, with probability 1 � pi � qi: The probability hi has the

same mean that pi but replacing primary arrivals by repeated attempts. In addi-

tion, a repeated attempt �nding all servers and waiting positions occupied decides

to leave the system with probability h. Obviously, we have pM = hM = �0j = �i0 = 0:

Since the process (Q(t); O(t)) is irreducible and its state space is �nite one

concludes that the process is positive recurrent and regular; i.e., it takes only a �nite

number of jumps in any �nite interval.

In Section 3 we will re-express the in�nitesimal generator Q = [qij ] in terms of a

�nite block-tridiagonal one, so the main probabilistic characteristics of our queueing

system follow as an application of the methodology developed by several authors [9,

10, 12, 13, 17].

3 Mathematical solution

Let Sn = f(i; j) 2 S j i + j = ng for 0 � n � M + N: Then S =
M+NS
n=0

Sn:

Such a grouping will not a�ect the basic properties of the process f(Q(t); O(t));
t � 0g. We arrange the states of the diagonal subset Sn as Sn = f(n; 0); (n � 1; 1);

:::; (1; n� 1); (0; n)g \ S: Then, we observe that the generator Q can be re-expressed

as follows:
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Q =

S0 S1 S2 S3 ... SM+N�2 SM+N�1 SM+N

S0 R0 A0 0 0 ... 0 0 0

S1 D1 R1 A1 0 ... 0 0 0

S2 0 D2 R2 A2 ... 0 0 0

. ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...

SM+N�1 0 0 0 0 ... DM+N�1 RM+M�1 AM+N�1

SM+N 0 0 0 0 ... 0 DM+N RM+N

;

(3.1)

where Rn = [rn
(i;j);(m;n)

] are square matrices of order ](Sn) and their elements are

given by

rn
(i;j);(m;n)

=

8<:
�ijhi; if (m;n) = (i+ 1; j � 1);

�(�ij(pi+(1-�jN )qi)+�ij+�ijhi+(1-�j0)�iM�ijh); if (m;n) = (i; j);

0; otherwise.

(3.2)

The matrices An = [an
(i;j);(m;n)

] govern the transitions from the subset Sn into

the states of Sn+1 and hence are rectangular ](Sn) � ](Sn+1) with the following

elements

an(i;j);(m;n) =

8<:
�ijpi; if (m;n) = (i+ 1; j);

(1� �jN )�ijqi; if (m;n) = (i; j + 1);

0; otherwise.

(3.3)

Finally, the matrices Dn = [dn
(i;j);(m;n)

] are also rectangular ](Sn)� ](Sn�1). The

matrix Dn governs the transitions from the states of Sn to Sn�1, so we have

dn(i;j);(m;n) =

8<:
�ij ; if (m;n) = (i� 1; j);

(1-�j0)�iM�ijh; if (m;n) = (M; j � 1);

0; otherwise.

(3.4)

The above �nite block-tridiagonal generator is called �nite birth and death

process. Existing literature for in�nite birth and death models assumes spatial

homogeneity assumptions as we mention in Section 1. However, the �nite case

with a general matrix structure can be investigated using a variety of mathematical
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approaches. We next brie
y review the main results for the �nite case. These results

provide the mathematical framework for the determination of the main performance

characteristics of our versatile Markovian retrial queue.

The literature devoted to �nite quasi birth and death processes has mostly

focused on the determination of the stationary distribution, the study of �rst passage

times and the analysis of sojourn times. Sometimes the results are given for the

case of a discrete time process but the developments can usually be extended to the

continuous time case.

Gaver at al. [9] developed a direct approach for computing the stationary

distribution. This method is similar to Gaussian elimination algorithms. The

interested reader may also found information about other previous papers and

comparisons among the numerical e�ciency of several approaches. The homogeneous

case has been studied by Hajek [10] and Ye and Li [17]. The method suggested by

Ye and Li is based on a bisection approach, leading to signi�cant improvements on

the computational e�orts.

Gaver et al. [9] also analyzed the �rst passage times for general �nite quasi

birth and death processes. They obtained two systems of recurrence equations

for the Laplace-Stieltjes transforms of passage times to higher and lower levels.

Recently, Latouche and Ramaswani [12] developed more e�cient algorithms for the

homogeneous case.

Finally, we mention the paper by Li and Sheng [13] who investigated a highly

stable folding algorithm for sojourn times of �nite quasi birth and death processes.

Of course, we do not pretend to describe here the technical characteristics and

di�erences among the existing algorithms. More detailed information on the com-

putational complexity, memory requirements and another approaches and queueing

applications can be obtained from the above references.

4 The stationary distribution and �rst passage times

For the sake of completeness, we next summarize some useful results for computing

the stationary distribution and the expected value of some upper and lower �rst

passage times. These results are the key for developing the numerical example given

in Section 6.

For 0 � n � M + N , we observe the process f(Q(t); O(t)); t � 0g during those

intervals of time spent at Sn, before it enters Sn+1 for the �rst time. We denote

the in�nitesimal generator of this restricted process by Cn: Cn can be determined as

follows

Cn =

�
R0; for n = 0;

Rn +Dn(�C
�1
n�1)An�1; for 1 � n �M +N;

(4.1)
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where Cn-processes, for 0 � n � M +N � 1; are all transient while CM+N -process

is positive recurrent.

On the other hand, for 0 � n � M + N , we denote by bCn the in�nitesimal

generator of the restriction of the process f(Q(t); O(t)); t � 0g, observed during

those intervals of time spent at Sn before the original process moves to Sn�1 for the

�rst time. Then, all bCn-processes, 1 � n �M +N; are transient while bC0 is positive

recurrent. The matrices bCn are recursively computed as follows

bCn =

�
Rn +An(�bC�1n+1)Dn+1; for 0 � n �M +N � 1;

RM+N for n =M +N:
(4.2)

Let us denote the stationary probability vector of the process f(Q(t); O(t)); t � 0g
by P = (P0; :::; PM+N ) so that PQ = 0 and Pe = 1; where e denotes a column

vector with all its elements equal to one, and Pn, 0 � n �M +N , are row vectors of

dimension ](Sn). Then, P = (P0; :::; PM+N ) satis�es the following

PM+NCM+N = 0; (4.3)

Pn = Pn+1Dn+1(�C
�1
n ); for 0 � n �M +N � 1; (4.4)

M+NX
n=0

Pne = 1: (4.5)

From (4.3), vector PM+N could be determined uniquely, up to a multiplicative

constant. This constant is decided by (4.4) and (4.5).

Now we turn our attention to the computation of the �rst passage times. Let the

expected values of the �rst passage time from the states of Sn�1 to the states of Sn
be u(n) and that of the states of Sn+1 to Sn be v(n). Then, they satisfy the following

recurrence relations

u(n) =

�
�C�10 e; for n = 1;

�C�1n�1(e+Dn�1u
(n�1)); for 2 � n �M +N;

(4.6)

c
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v(n) =

(
�bC�1n+1(e+An+1v

(n+1)); for 0 � n �M +N � 2;

�bC�1M+Ne; for n =M +N � 1:
(4.7)

5 Particular cases

In this section, we illustrate the usefulness of our retrial queueing system by

describing a variety of queueing phenomena which are obtained as particular cases of

our model description.

1. Truncated Poisson input (Falin and Templeton [7], Pearce [15] and Stepanov

[16])

The arrival process can be modelled by taking �ij = � for 0 � i � M � 1;

0 � j � N; �Mj = � for 0 � j � N � 1 and �MN = 0:

2. Service facility with c servers and M-c waiting positions

The service time parameters are now given by �ij = min(i; c)� for 0 � i � M;

0 � j � N:

3. Linear retrial policy (Artalejo and G�omez-Corral [2] and Fayolle [8])

The retrial policy studied in [2] considers simultaneously the classical retrial rate

which depends on the orbit size and the homogeneous one introduced in [8]. Thus,

we have �ij = �(1� �j0) + j� for 0 � j � N:

4. Balking/retrial policy (Artalejo [1] and Falin and Artalejo [4])

If we choose pi + qi < 1 then an arriving customer may leave the system without

receive service. On the other hand, pi = hi = 1; for 0 � i � c � 1, means that any

customer �nding a server free starts automatically to be served. Many practical

applications satisfy that pi is a decreasing function of the number of customers at

the service facility.

5. Retrial queues with priority customers (Choi and Park [3] and Falin et al. [6])

We now consider c = 1; p0 = 1; pi = p 2 (0; 1) for 0 � i �M � 1 and qi = 1� pi
for 0 � i � M: A priority customer joins the service facility whereas a non priority

one only joins the server if it is idle upon arrival. Otherwise, he joins the orbit. We

also assume that the priority discipline is of the head-of-the-line type. Note that

h0 = 1; hi = 0 for 0 � i �M � 1:

c
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6. Non persistent customers (Falin and Templeton [7])

In this case a customer after some unsuccessful retrials gives up further repeated

attempts and leaves the system. It occurs with a probability h which does not

depend on the number of previous repeated attempts.

7. Quasi-random input (Falin and Artalejo [5], Falin and Templeton [7] and

Kornyshev [11])

We consider a system with K identical sources that request service according

to an exponential distribution with rate �: Then, the arrival parameters are �ij =

�(K� i� j) for 0 � i �M < K and 0 � j � N = K� c: c denotes again the number

of servers. We assume that pi = hi = 1; for 0 � i � c�1, to guarantee that customers

�nding any server idle automatically get it. In this case, the state space reduces to

S = f(i; j) j 0 � i � c; 0 � j � Ng[ f(i; j) j c+ 1 � i �M; 0 � j � N; i+ j � Kg :

6 Numerical example

It is clear that the size of the queue length at the service facility and the size of the

retrial group are in
uenced by the decisions of retrial customers. Hence the way of

joining the service facility by any unit in orbit can be considered as one of the most

important characteristics of a retrial queue. This ensures that fhi; 0 � i �M � 1g
and the value of h are signi�cant parameters for the above system.

We next assume that in some local area network, customers are classi�ed into

primary types and retrial types as described in Sections 1 and 2. It is reasonable

to incorporate a reward structure and to choose the best value of h (probability of

leaving the system when a repeated attempt �nds the service facility full) optimizing

the superimposed reward function. In view of the fact that for any given queueing

problem the cost/reward structure is not uniquely de�ned, we have not pursued op-

timization too far. Thus the reward structure chosen below and the ensuing analysis

should be considered as a simple sample of possible approaches to optimization and

not as a vital stage in the development of the study.

We construct a reward function of the simplest possible type: The contributions

of the components to the total pro�t are assumed to be linear with respect to their

averages values. Essentially we must consider two such components: The expected

number of customers in the service facility, Q = lim
t�!1

E [Q(t)], and the expected

number of customers in orbit, O = lim
t�!1

E [O(t)] : Let the amount of collections per

unit time be made as � and � monetary units per customer from the service facility

and the orbit, respectively. Thus, we obtain

T (h) = �Q+ �O: (6.1)
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As the explicit expressions for Q and O are not available in terms of h, one could

trace the optimal value of h from the values of T (h) by varying the value of h. For

this purpose, we next choose the system parameters as follows

M = 3; N = 2; � = 1000; � = 370;

�ij = �(i+ 1)2(j + 1)2; for 0 � i �M; 0 � j � N;

�ij = �i2(j + 1)2; for 1 � i �M; 0 � j � N;

�ij = �(i+ 1)2j2; for 0 � i �M; 1 � j � N; (6.2)

p0 = 0:35; p1 = 0:45; p2 = 0:55; p3 = 0:0;

qi = 1� pi; 0 � i �M � 1; q3 = 0:35;

hi = 2(i+ 1)=M(M + 1); for 0 � i �M � 1; h3 = 0;

where (�; �; �) = (60; 30; 25):

With the help of the general methodology summarized in Section 4, we may

compute the in�nitesimal generators fCn; 0 � n �M +Ng and then the stationary

probability vector P = (P0; :::; PM+N ). Once vector P is computed, it is easy to

derive the expectations Q and O, and many other probabilistic descriptors.

h Q O T (h)

0.41 1.6397 1.6200 2239.1280

0.42 1.6419 1.6143 2239.1370

0.43 1.6440 1.6085 2239.1430

0.44 1.6441 1.6028 2239.1460

0.45 1.6482 1.5972 2239.1460

0.46 1.6503 1.5915 2239.1430

0.47 1.6524 1.5858 2239.1370

0.48 1.6545 1.5802 2239.1290

0.49 1.6565 1.5745 2239.1180

0.50 1.6586 1.5689 2239.1050
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Table 1. Q, O and T (h), for h 2 [0:41; 0:5]

In Table 1, the value of Q, O and T (h) are given for various values of h. In

addition, in Figure 1, we plot the total pro�t T (h) versus h. It is concluded that, for

the set of parameters under consideration, T (h) attains its maximum in the interval

[0:44; 0.45] :

Fig. 1: The total pro�t T(h) versus h.
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