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Abstract

We present a class of greedy heuristics for the Minimum Spanning k-Tree Problem, a NP-

Hard combinatorial optimization problem. This problem is a generalization of the Minimum

Spanning Tree Problem, a very well known problem in graphs, for which there are a number

of polynomial algorithms, among them is Prim's algorithm. Our heuristics are based on a

generalization of this algorithm. Computational experiences tested on random graphs show

the performance of three versions of the heuristic when it is applied to minimum spanning

2� trees instances.

Resumo

Apresentamos uma clase de heur��sticas greedy para o problema da k��arvore geradora de

peso m��nimo, um problema de otimiza�c~ao combinatorial NP-�arduo. Este problema �e uma

generaliza�c~ao do problema da �arvore geradora de peso m��nimo, um problema en grafos muito

conhecido, para o qual v�arios algoritmos polinomiais tem sido disenhados, entre eles o al-

goritmo de Prim. Nossas heur��sticas est~ao baseadas numa generaliza�c~ao desse algoritmo.

Testes computacionais sobre grafos aleatorios ilustram o desempenho das heur��sticas quando

s~ao aplicadas �a instancias do problema da 2-�arvore geradora de peso m��nimo.
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1 Introduction

We present a class of greedy heuristics for the Minimum Spanning k-Tree Problem

(MSkT), a NP-Hard combinatorial optimization problem. MSkT generalizes a

�This work was �nanced by contract No 94 5B 022 of CNET.
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classical problem in graphs, Minimum Spanning Tree Problem (MST), which has a

number of applications. A lot of polynomial algorithms have been designed for MST,

three of them are greedy algorithms: Prim's, Kruskal's, and Sollin's algorithms. Our

greedy heuristics for MSkT are based on a generalization of Prim's algorithm.

An interesting application of 2 � trees in optimal network design was developed

by Farley [10]. He proved that 2 � trees are Minimal Isolated Failures Immune

Networks (IFI networks), that is, networks that cannot be disconnected by removing

a set of vertices and edges in which no two vertices are adjacent, no two edges are

adjacent, and no vertex is less than a distance of two edges from an edge. IFI

networks remain connected even in the presence of a large number of failures. Wald

and Colbourn [18] established the equivalence between IFI networks and 2 � trees.

Farley [10] suggested to study the problem of �nding minimum-length spanning

2� trees for a set of vertices, that is, to �nd IFI networks of minimum cost.

Section 2 gives de�nitions and properties of k � trees, and discusses some algo-

rithmic problems concerning to k � trees, In Section 3 are presented known results

about the complexity of minimum spanning k�trees. Section 4 presents the heuristic

algorithm proposed for solving the minimum spanning k � tree problem along with

its complexity analysis; also includes an analysis of some variants of the heuristic.

Section 5 presents numerical results obtained from the application of the heuristic to

random instances of the minimum spanning 2 � tree problem. Finally, in Section 6,

the conclusions of the paper are presented.

2 k-Trees and some properties

In this section we give de�nitions and basic properties of k� trees and mention some

problems related to k � trees.

A k � clique is a complete graph with k vertices and it will be denoted by Kn.

De�nition 1. A k � tree is a member of a class of undirected graphs de�ned

recursively as follows:

� A k � clique is a k � tree.

� If T is a k�tree with (n�1) vertices, then a new k�tree with n vertices is

formed by creating a new vertex v and adding edges between v and every

vertex of an existing k � clique in T .

It is easy to note that the set of 1� trees is the set of trees, and that a k � tree

with n vertices has exactly k(k� 1)=2+ k(n� k) edges. The k� tree in the �rst part

of the de�nition is called the starting clique. Each k� tree may be constructed using

several di�erent sequences of the operations described in the two parts of de�nition

1.
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Rose [17] in an early work noted that k � trees are perfect elimination graphs

and gave simple characterizations of k � trees.

Here we present a summary of well-known properties of k � trees.

A simple cycle [v0; v1; v2; :::::; vl; v0] is chordless if (vi; vj) =2 E for i and j di�ering

by more than 1mod( l+ 1).

Theorem 1. Let k be a positive integer and T be a k � tree with n vertices, then:

� T contains no chordless cycle of length at least 4;

� T contains no clique of size k + 2;

� T has exactly (n� k) cliques of size k + 1;

� either T is a k � clique or every maximal clique of T is of size k + 1;

� the neighborhood of any vertex of T is a (k � 1)� tree;

� if n > k, every vertex of T has degree at least k;

� T has no cutset of size less than k:

k � trees have been extensively studied lately. Some NP-Hard problems are

tractable when they are restricted to k � trees; for instance, the Steiner Problem in

graphs, a classical NP-Hard problem, accepts a linear time algorithm when restricted

to 2� trees, see Wald and Colbourn [18]. Other optimization problems on k � trees

are discussed in the work of Granot and Skorin-Kapov [12]; in particular, they

design polynomial algorithms for several k � cable distance optimization problems.

Finally, Fern�andez-Baca and Medepalli [11] considered the problem of �nding a

minimum-cost assignment of program modules for processors in a distributed system

where one of the processors has a limited memory. This problem is NP-Hard, even

if the communication graph is a tree; they showed that a fully polynomial-time

approximation scheme exists for the case when the communication graph is a par-

tial k�tree, that is, a graph which is embedded in a k�tree with the same vertex set.

Arnborg et al. [2] have shown that the embedding problem of a partial k � tree

into a k � tree is NP-Hard for an arbitrary k, but it can be solved in O(nk+2) for

�xed k: Bodlaender [7] improved their result and showed that the recognition and

embedding of a partial k � tree, when k is �xed, can be solved in O(n2). For partial

2 � trees and partial 3 � trees the recognition and embedding problems have been

solved in linear time by Wald and Colbourn [18] and Matousek and Thomas [15],

respectively. Mc Morris et al. [14] applied the results of Arnborg et al. [2] for

recognizing partial k�trees on the recognition of c-triangulated (k�1)-colored graphs.

Arnborg and Proskurowski [3] have de�ned an algorithm design methodology,

called a reduction paradigm, for partial k � trees that leads to the development of

e�cient algorithms for a variety of NP-Hard problems restricted to partial k� trees.

Mata-Montero [13] applied these results in his research on resilience of networks.
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3 The Minimum Spanning k-Tree Problem

De�nition 2. Let k be a positive integer and G = (V;E) an undirected graph with

non-negative edge lengths. TheMinimum Spanning k-Tree Problem (MSkT) is to �nd

in G a k � tree with vertex set V and edge set E0
� E of minimum total length.

We note that the MS1T corresponds to the classical minimum spanning tree

problem, for which there are some polynomial time algorithms, Prim's algorithm [16],

and Kruskal's algorithm [1], for instance.

In his doctoral thesis, Bern [6] proved that MSkT is NP-Hard for k � 2, even if the

input graph satis�es the triangular inequality, showing that 3-SAT is polynomially

reduced to MSkT. Furthermore, Cai and Ma�ray [8] proved that MS2T is NP-Hard

for maximal planar graphs.

We will need the following de�nitions. An addition sequence for a k � tree T

with n � k vertices is a sequence (v1;K1); (v2;K2); ::::; (vn�k ;Kn�k) where each vi is

a newly created vertex and each Ki is an already existing k � clique to which vi is

to be attached. The �rst k � clique K1 will be called the starting clique, and v1 is

the �rst new vertex. We say that vi is added to clique Ki. A vertex that is adjacent

to every vertex in a clique Ki will be said to be adjacent to Ki. (�;K1) represents

an addition sequence for the k � tree consisting of just a k � clique K1.

The following Lemmas 1 and 2 were proved by Bern [6].

Lemma 1. The number of distinct k � cliques in a k � tree with n vertices is

1 + (n� k)k.

Lemma 2. The number of legal addition sequences for k � trees with n vertices,

where n > k, is
�
n

k

�Q
n�k

i=1 i(ik � k + 1).

These Lemmas show that a brute force algorithm, based on Lemma 2, would have

running time no better than 
(
�
n

k

�Q
n�k

i=1 i(ik� k+1)), which is 
(n!(n� k� 1)!=k!)

a quite slow algorithm.

Bern [6] designed an exact algorithm based on a dynamic programming approach,

of much lower complexity than exhaustive search. He proved the following theorem.

Theorem 2. A minimum spanning k � tree in an arbitrary n-node network can be

computed in O(nk+13n) time.

Because the high time complexity of the dynamic programming algorithm for

�nding exact solutions, we suggest a greedy based heuristics of polynomial time for

�nding good feasible solutions at a low computational cost.
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4 Greedy Heuristics for MSkT.

The length of a k� clique is the sum of the edge lengths belonging to the k� clique.

The distance between a vertex v 2 V and a k � clique in K is the sum of the edge

lengths that connect v with every vertex of K.

The next algorithm computes feasible solutions for the MSkT in a complete

graph with edge-lengths . The algorithm accomplishes a greedy strategy based on

the recursive de�nition of the spanning k � tree for �nding solutions.

GREEDY

Input: A complete graph G = (V;E) with non-negative edge lengths and an integer

k � 2.

Output: A spanning k � tree in G.

Method:

Step 1. (Compute the starting clique)

Choose arbitrarily a k � clique in G. Let T be such a k � clique

Step 2. (Add a new vertex to partial k � tree T )

Compute the smallest distance between a vertex not in T to some k � clique in T .

Add the new vertex and the corresponding edges to T .

Step 3. (Stop condition)

If T includes all vertices in V then the algorithm �nishes with solution T . Otherwise,

go to step 2.

We note that GREEDY is a natural generalization of Prim's algorithm [16] for

the minimum spanning tree problem to the minimum spanning k � tree problem.

PRIM'S ALGORITHM

Input: A connected graph G = (V;E) with non-negative edge lengths.

Output: A minimum spanning tree in G.

Method:

Step 1.(Compute the initial vertex)

Choose arbitrarily a vertex u in G, forming a tree T = (U;E0), where U = fug and

E0 = ;.

Step 2.(Add a new vertex to partial tree T )

Find an edge of minimum length between a tree vertex u 2 U and a non tree vertex

v 2 V � U . Add the new vertex v and the edge (u; v) to T .

Step 3. (Stop Condition)

If T includes all vertices in V then the algorithm �nishes with solution T . Otherwise,

go to step 2.
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Lemma 3. GREEDY �nds a spanning k � tree in G.

Proof. Start with a k-clique in G. In the (i� 1)st iteration of step 2; i � 2; we have

a k�tree on k+ i� 1 vertices. In the i� th iteration, construct the cheapest k� tree

on k + i vertices that contains the above k � tree on k + i� 1 vertices.

We will use the following lemma in the analysis of GREEDY.}

Lemma 4. In the i� th iteration of step 2, i � 1; there are (ik� k+1)(n� k� i+1)

distances for computing the lowest distance.

Proof. (Induction on the number of iterations)

At �rst iteration we have n � k distances, because after step 1 there is one

k � clique and n� k possible vertices for adding.

After i� th iteration k new k � cliques were created. We note that it is possible

to eliminate from the set of distances those connecting the last vertex added with all

k� cliques formed until (i� 1)� th iteration, that is, we can eliminate k(i� 1)+ 1 =

ik � k + 1 distances (by lemma 1). At the (i + 1) � th iteration there are n � k � i

possible vertices for adding, and then there are k(n� k � i) new distances. Thus we

have:

(ik � k + 1)(n� k � i+ 1)� (ik � k + 1) + k(n� k � i) = (ik + 1)(n� k � i)

distances.}

Theorem 3. GREEDY �nds a feasible solution for the MSkT problem in

O(k(n� k)3) comparisons.

Proof. The time complexity of our heuristic is determined by step 2, because step

1 can be implemented in O(1) time. We must consider comparisons done at every

iteration in the step 2. Therefore, using lemma 4 we have:

S =
P

n�k

i=1 (ik � k + 1)(n� k � i+ 1)

= (nk � k2 � 1)
(n�k)(n�k�1)

2
�

k(n�k)(n�k+1)(2(n�k)+1)

6
+ (n� k)2

Thus:

S = O(k(n � k)3)

}

Remarks.

� If k << n then the time complexity of GREEDY is O(n3); and if k = n then

the MSkT problem is transformed into a trivial one, that is, �nd a n-clique in

a complete graph with n vertices.
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� Consider the input graph G = Kn for GREEDY and li;j = 1;8 (i; j) � G; i 6= j;

except li0j0 = M; i0 6= j0;M 2 R+: If GREEDY chooses in step 1 a k � clique

(k � n� 2) that contains the edge (i0; j0) then the length of the solution given

by GREEDY is k(k � 1)=2 + k(n � k) � 1 +M , and the optimal solution has

length k(k � 1)=2+ k(n� k). Thus, when M is arbitrarily large GREEDY can

give a solution far away of the optimum.

� It is possible to implement GREEDY considering two alternatives for step 1, the

starting k�clique is chosen randomly or the starting k�clique is the k�clique

of minimum length.

Furthermore, we can formulate a repetitive version of GREEDY which obtains

jV j solutions, such that at each repetition, step 1 chooses a di�erent starting

k� clique within the �rst jV j k� cliques of minimum length. Probably, the set

of jV j solutions so obtained contains some repeated solutions. It is clear that

repetitive GREEDY dominates simple GREEDY.

5 Experimental Results

In Beck and Candia [4] and Candia et al. [9] were proposed greedy heuristics

for MS2T. After that, Beltr�an and Skorin-Kapov [5], in a recent work developed

four heuristic algorithms to obtain good feasible solutions for MS2T. They used

these feasible solutions as starting solutions for a tabu search based heuristic.

Computational experience tested on both random graphs and real data sets showed

that all four heuristics occasionally led to the best solutions, dominating each other

in di�erent cases.

Table 1 shows our results obtained by GREEDY for MS2T, using two alternatives

for step 1, H1 chooses randomly the starting 2-clique and H2 chooses as starting

2-clique the edge of minimum length, H3 is a repetitive version of GREEDY where

the value shown is the best of the set of feasible solutions obtained considering the

best jV j 2-cliques as starting 2-clique in step 1. SH is one of the heuristics given

by Beltr�an and Skorin-Kapov [5] (Star Heuristic). It is based on an embedding of

a minimum cost spanning tree into a 2-tree. If G = (V;E) is a weighted complete

graph, the heuristic �rst �nds a minimum spanning tree T = (V;ET ) in G. For

i 2 V , let NT (i) represent the set of nodes adjacent to i in T . For each node i of

degree greater than one in T , the corresponding star Si is a subgraph of T induced

by fig and all of its neighbours NT (i). For each star Si we �nd a minimum spanning

tree Ti on the subgraph of G induced by the node set NT (i). The column OPT

shows the optimal solution (obtained by Bern's dynamic programming algorithm).

The last column shows dist = 100 � (H3�OPT )=OPT , that is, the relative distance

to optimum.
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n H1 H2 H3 SH OPT dist

5 210 210 210 218 210 0.0

161 161 161 161 161 0.0

129 129 129 203 129 0.0

246 234 234 250 234 0.0

212 213 212 240 212 0.0

10 421 446 421 479 409 2.93

282 282 278 303 269 3.35

273 273 273 433 270 1.11

252 326 252 419 252 0.0

382 382 358 506 358 0.0
Table 1: Values of H1, H2, H3, SH, OPT and dist for n = 5; 10

It is clear from table 1 that, for small values of n, the heuristic H3 produces very

good solutions. However, for higher values of n, because the computation increases

so rapidly it is not possible to know the optimal solution. Table 2 compares H1, H2,

H3 and SH and shows the relative distance between H3 and the best between H1,

H2, and SH for random instances of di�erent sizes. For most instances generated,

H3 produces solutions with a cost signi�cantly lower than H1, H2 and SH. It is also

clear that GREEDY is not very sensitive to starting clique, that is, in some cases

H1 is better than H2 and in other cases H2 is better than H1. Because the second

phase of SH heuristic, that is, the process of embedding of a minimum cost spanning

tree into a 2-tree by local criteria of optimization, the performance of SH is really poor.

n H1 H2 H3 SH dist n H1 H2 H3 SH dist

25 675 634 620 1428 2.26 75 1151 1171 1126 2991 2.20

653 679 653 1113 0.00 1040 1102 975 3221 6.67

631 608 608 946 0.00 1070 1138 986 2966 8.52

598 584 551 993 5.99 1073 1103 1000 3098 7.30

625 572 545 986 4.95 1048 999 997 3135 0.20

50 971 957 876 2279 9.25 100 1376 1337 1241 4367 7.74

857 948 815 2345 5.15 1264 1261 1144 3694 10.23

819 866 758 2147 8.05 1290 1377 1243 4011 3.78

893 837 796 2130 5.15 1185 1181 1139 3923 7.30

935 964 851 2296 9.87 1247 1239 1210 3823 2.40
Table 2: Values of H1, H2, H3 SH and dist for n = 25; 50; 75; 100

6 Conclusions

In closing, we have designed an heuristic for the Minimum Spanning k-Tree Problem.

Being this problem NP-Hard, our heuristic obtain feasible solutions in polynomial

time. The heuristic is a generalization of Prim's algorithm for solving the classical

Minimum Spanning Tree Problem. Lemma 4 proved the heuristic's correctness and

Theorem 3 analyzed the heuristic's complexity. We also analyzed some variations of
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the heuristic leading to improved numerical results.

We implemented GREEDY and its variations for MS2T obtaining feasible

solutions at low computational cost. These solutions could serve as good starting

solutions in e�cient applications of other strategies to MS2T, for example, Tabu

Search, Simulated Annealing or Genetic Algorithms.
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