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Abstract

In this paper, a direct method for approximating linear least squares solutions is derived and

formulated as a regularizing non-iterated variant of the Approximating Splitting Iteration

method with a certain previously chosen number of iterates. Furthermore, a heuristic formula

is developed for the a priori numerical estimation of the number of an iterate, at which

Approximating Splitting Iteration sequences would reach a good trade-o� between numerical

accuracy and stability. This formula is discussed as an a priori parameter estimator of the

number of iterates for the new method. By previously choosing the number of iterates through

such an a priori estimation, the general formula of a conditionedness-free regularizing method

is derived from the general Approximating Splitting Iteration formula.

Keywords: Linear least squares, Conditionedness, Approximating Splitting Iterations, Re-

gression, Approximation, Regularization.

1 Introduction

It is a well-known fact that the solution of many contemporary optimization,

regression, approximation and inverse problems leads to large-scale unstructured

linear least squares problems [2, 4, 7, 8, 12]. The strategy for solving such kind

of problems cannot be based on the previous identi�cation of the conditionedness

of the problem matrix, because the compact cluster of small singular values of the

problem matrices causes the conditionedness to be ill-determined. So, exact solutions

obviously cannot be expected [2, 4, 8, 9] and the choice among known methods

becomes unreliable.

If the problem were in fact ill-conditioned, "orthodox" methods from Lin-

ear Algebra (for instance, Pseudo-Inverse type and Truncated Singular Value

Decomposition-wise methods) might give numerically unstable approximate solu-

tions. On the other hand, if the problem were in fact well-conditioned, classical
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regularization methods might provide numerically inaccurate approximates [2, 4, 5, 8].

So, obviously, e�ective methods for approximating solutions of both well- and ill-

conditioned linear least squares problems are needed. The point is that those

methods have to be as free as possible from conditionedness and noise in order to

ensure both the numerical accuracy and stability of approximates.

The idea of such conditionedness-free algorithms has been latent in most of the

voluminous linear least squares and algebraic regularization literature since long (the

reader is invited to a useful review of [1], [11] and the works cited therein). Only

recently however, it has become more explicit in a few papers, such as [3, 5, 6, 9] and

particularly [11], which provided important results concerning iterative regularization

methods with improved accuracy for well-conditioned linear least squares problems.

Nevertheless, the purpose of ensuring both the numerical accuracy and stability of

linear least squares approximates has not been reached yet.

In this paper, a direct method for approximating linear least squares solutions is

derived and formulated as a conditionedness-free regularizing non-iterated variant of

the Approximating Splitting Iteration method [10] with a certain previously chosen

number of iterates.

2 Improvement of the numerical robustness of Approximating

Splitting Iterations. Approximating Splitting Pseudo-Iterations

In [10], it was proved that for every positive de�nite matrix V 2 R
n�n , the splitting

linear stationary iteration formula [2, 5, 12]

x[k+1] = (V +A0A)
�1

(V �A0A) x[k] + 2 (V +A0A)
�1

A0b;

k = 0; 1; 2; ::: (1)

produces globally convergent sequences of monotonically improved approximates of

solutions of linear least squares problems

min
x2Rn

f (x) = kAx� bk
2
2 (2)

where A 2 R
m�n and b 2 Rm , m;n 2 N .

Indeed, it was proved there that, for k = 0; 1; 2; ::: and from any initial guess x[0],

f
�
x[k+1]

�
< f

�
x[k]
�

(3)

at any x[k+1] 6= x[k],

lim
k!+1

x[k] = arg min
�
x� x[0]

�
x2ArgminkAx�bk22

x2Rn

0

V
�
x� x[0]

�
= x� 2 Rn (4)
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and, given a certain non-singular matrix P , P 2 R
n�n , such that V = P 0P ,


R�1 �x[k+1]

� x�
�




2
<




R�1 �x[k] � x�
�




2
(5)

at any x[k] 6= x� and

x[k+1] = R

 h
I � 2S0

A+
SA+

ik+1

0

0 I

!
R�1x[0]+

+R

0@ �
I �

h
I � 2S0

A+
SA+

ik+1
�
S�1
A+

0

0 I

1AL0
A
b (6)

where I is the identity matrix and LA, SA and R are certain real matrices which

follow from the Generalized Singular Value Decomposition (GSVD) [4, 6, 7] of the

matrices A and P .

The formula (6) is the formula of the Approximating Splitting Iteration method

[10].

Once the GSVD of the matrices A and P has been performed, the computation of

approximate solutions with the formula (6) requires neither the solution of a system

of equations nor some matrix inversion (and not even iterations in the usual way) [10].

This makes formula (6) numerically quite robust, because it essentially avoids the

error propagation [10], inherent to most iteration methods (including the so-called

iterated Tikhonov's regularization and Landweber's iteration-wise methods) [7, 8, 11].

Furthermore, for a previously given k, the formula (6) already could be assumed

to be the general formula of a certain class of special direct (non-iterated) methods

for approximating solutions of (2) for any matrix A, any vector b and any preliminary

approximate x[0].

At this point, one should notice two important facts:

{The numerical robustness of the results would be further improved if V were

choosen well-conditioned enough and formula (6) had been derived from the Singular

Value Decomposition (SVD) [4, 6, 7] of the matrix AP�1 instead of the GSVD of

the matrices A and P . That way, even for regularization purposes, the problem

conditionedness could be handled through the conditonedness of the only matrix

AP�1 [3, 7, 8, 11].

{It would be appropriate to have some formula for the a priori numerical

estimation of the number of some iterate at which Approximating Splitting Iteration

sequences reached a good trade-o� between numerical accuracy and stability.

Obviously, whereas P is a certain non-singular matrix, P 2 R
n�n , such that

V = P 0P , the iteration formula (1) can be rewritten in the following way

c
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x[k+1] =
�
I +

�
AP�1

�0 �
AP�1

���1 �
I �

�
AP�1

�0 �
AP�1

��
Px[k]+

+2P�1
�
I +

�
AP�1

�0 �
AP�1

���1 �
AP�1

�0
b

Notice that, after performing the SVD of AP�1, one has

AP�1 = L

0BB@
Sh 0 0 0

0 Iq1�q1 0 0

0 0 Sl 0

0 0 0 0

1CCA
m�n

R0

where Sh, I and Sl are those non-overlapping diagonally consecutive square sub-

matrices of the central SVD matrix-factor of AP�1, whose entries are all strictly

positive and respectively greater than 1, equal to 1 (the identity matrix) and less

than 1; L and R are respectively the left and right SVD real orthogonal matrices; and

qh, q1, ql, q0 2 N are the orders respectively of Sh, I , Sl and of the zero matrix on

the right-bottom corner. Of course,

qh + q1 + ql = rank (A)

and

q0 = min (m;n)� rank (A)

So, the iteration formula (1) can then be �nally written as follows

x
[k+1]

= P
�1

R

0
BB@

I � 2 (I + S
0

hSh)
�1

S
0

hSh 0 0 0

0 0 0 0

0 0 I � 2 (I + S
0

lSl)
�1

S
0

lSl 0

0 0 0 I

1
CCAR

0

Px
[k]
+

+P�1R

0BB@
2 (I + S0

h
Sh)

�1
S0
h

0 0 0

0 I 0 0

0 0 2 (I + S0
l
Sl)

�1
S0
l

0

0 0 0 0

1CCAL0b (7)

Let us denote

Dh = I � 2 (I + S0
h
Sh)

�1
S0
h
Sh

and

Dl = I � 2 (I + S0
l
Sl)

�1
S0
l
Sl

Obviously,
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�1 < Dh < 0 (8)

and

0 < Dl < 1 (9)

the latter inequalities meaning that each diagonal entry of matrices Dh and Dl

strictly lies respectively between �1 and 0 and 0 and 1.

Notice that the formula (7) is the formula of the (k + 1)-st term of a certain

globally convergent generalized geometric progression for any matrix A.

Indeed, one has by induction,

x[k+1] = P�1R

0BB@
Dk+1

h
0 0 0

0 0 0 0

0 0 Dk+1
l

0

0 0 0 I

1CCAR0Px[0]+

+P�1R

0BB@
�
I �Dk+1

h

�
S�1
h

0 0 0

0 I 0 0

0 0
�
I �Dk+1

l

�
S�1
l

0

0 0 0 0

1CCAL0b (10)

Moreover, since x� is the limit of the sequence
�
x[k]
	
k=0;1;2;:::

� R
n , x� is a �xed

point of the map (1). From this and the equality (7) it follows that

x[k+1]
� x� = P�1R

0BB@
Dh 0 0 0

0 0 0 0

0 0 Dl 0

0 0 0 I

1CCAR0P
�
x[k] � x�

�
(11)

at any x[k] 6= x�; for k = 0; 1; 2; :::;and from any initial gues x�.

So, according to (8)-(9), whereas V is a real positive de�nite matrix, such that

V = P 0P , the iteration formula (10) satis�es (3)-(4). Only condition (5) appears

slightly modi�ed according to (11) as follows


P �x[k+1]
� x�

�



2
<




P �x[k] � x�
�




2
(12)

at any x[k] 6= x�; for k = 0; 1; 2; :::;and from any initial guess x�. Therefore, by simple

induction,

f
�
x[k+1]

�
< f

�
x[k]
�

(13)

and
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P �x[k+1]
� x�

�



2
<




P �x[0] � x�
�




2
(14)

at any x[0] 6= x� and for k = 0; 1; 2; ::: .

Once the GSVD-based formula (6) has been reformulated into the equivalent

SVD-based formula (10), one can naturally de�ne Approximating Splitting Pseudo-

Iterations as a direct method for approximating solutions of (2), whose formula is

(10) with a certain previously chosen number of iterates � , that is,

cx� = P�1R

0BB@
D�

h
0 0 0

0 0 0 0

0 0 D�

l
0

0 0 0 I

1CCAR0Px[0]+

+P�1R

0BB@
[I �D�

h
]S�1

h
0 0 0

0 I 0 0

0 0 [I �D�

l
]S�1

l
0

0 0 0 0

1CCAL0b (15)

The number of iterates � which becomes a parameter of the Approximating

Splitting Pseudo-Iteration method and which has to be previously speci�ed is hence

named Number of Pseudo-Iterates.

So, the Approximating Splitting Pseudo-Iteration method (15) with a given

Number of Pseudo-Iterates is a non-iterated variant of the Approximating Splitting

Iteration method (10) with a certain previously chosen number of iterates.

Notice that the Approximating Splitting Pseudo-Iteration method (15) improves

any preliminary numerical approximate solution of (2). In other words, for any given

A, b and x[0] 6= x�; and any given non-singular P , cx� approximates x� better than

x[0] does.

In e�ect, by setting k = � � 1 respectively in (13) and (14),


Acx� � b




2
2
<




Ax[0] � b




2
2

and 


P �cx� � x�
�




2
<




P �x[0] � x�
�




2

for any given A, x[0] 6= x� and any non-singular P .

3 Regularizing properties of the Approximating Splitting

Pseudo-Iterations

In every real-world least squares problem (2), the data vector is always contamined by

various types of unknown errors, commonly called perturbations, such as measurement
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and approximation errors or, even, rounding-o� errors propagated along some previous

computations. Hence, while solving (2), one is �nding in fact an approximate solution

of a certain other problem instead namely

fx� = arg min
x2Rn

ef (x) =



Ax�eb


2

2
(16)

eb = b+�b (17)

where �b 2 Rm is the vector of unknown perturbations [7, 8, 11].

The major di�culty with severely ill-conditioned linear least squares problems

is, on the one hand, that they are essentialy ill-determined because of the cluster of

small singular values of the matrix and, on the other hand, that perturbations have

components, as a rule, along all the left singular vectors of A [8].

Let us formally rewrite (15) for approximating the solution of the perturbed prob-

lem (16)-(17)

fcx� = P�1R

0BB@
D�

h
0 0 0

0 0 0 0

0 0 D�

l
0

0 0 0 I

1CCAR0Px[0]+

+P�1R

0BB@
[I �D�

h
]S�1

h
0 0 0

0 I 0 0

0 0 [I �D�

l
]S�1

l
0

0 0 0 0

1CCAL0eb (18)

The Approximating Splitting Pseudo-Iteration method has the following proper-

ties which make it suitable for regularization purposes [7, 8, 11].

cx� continuously depends on data. Indeed, according to (15) and (18),

cx� �fcx� = P�1R

0BB@
[I �D�

h
]S�1

h
0 0 0

0 I 0 0

0 0 [I �D�

l
]S�1

l
0

0 0 0 0

1CCAL0
�
b�eb�

Therefore, whereas







P
�1R

0BB@
[I �D�

h
]S�1

h
0 0 0

0 I 0 0

0 0 [I �D�

l
]S�1

l
0

0 0 0 0

1CCAL0









 <1

at any given �; one has that

8cx�;fcx� 2 R
n ; b = eb)cx� =fcx�
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and

lim
k�bk!0





cx� �fcx�



 = 0

at any given � and for any given A, x[0] and any positive de�nite V , where k:::k

denotes any pre�xed norm.

Filter factors. It is not hard to realize that the matrix

� [�; S] =

0
BBBB@

I �

�
I � 2 (I + S

0

hSh)
�1

S
0

hSh

��
0 0 0

0 I 0 0

0 0 I �

�
I � 2 (I + S

0

lSl)
�1

S
0

lSl

��
0

0 0 0 0

1
CCCCA

is the matrix of the so-called �lter factors which play a central role in regularization

theory [7, 8, 11], characterizing, in each speci�c case, any Approximating Splitting

Pseudo-Iteration formula as the formula of a particular regularization method.

In e�ect, for a given � > 0, each diagonal entry of the matrix � [�; S] can be viewed

as a discrete value of a continuous parametric �lter function �� : R
+ ! [0; 2) � R

+ ,

�� [s] = 1�

�
1� 2

s2

1 + s2

��

which has the following �ltering properties:

lim
s!+0

�� [s] = 0

lim
s!1

�� [s] = 1

and

lim
s!+1

�� [s] = 0

Finally, notice that

x[k] � x[0] = P�1R� [�; S]R0P
�
x� � x[0]

�
4 Previously choosing the number of iterates

Most iterative methods have an a posteriori stopping rule [4, 12]. As a logic conse-

quence, when the iteration is stopped, propagated errors have fatally contaminated

the results of all the performed computations. This happens even in the case of

regularization-wise methods with a stopping rule based on the number of iterates
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[7, 8, 11].

Fortunately, in the case of both the Approximating Splitting Iteration formulas

(6) and (10), the error propagation is essentially avoided, because iterations are not

required (at least not in the usual way) while computing each approximate solution

of (2) and they both should have an a priori stopping rule.

Of course, in the latter case, the overall number of useful iterates could be chosen

in several distinct ways, according to various criteria for diverse purposes.

Below, a heuristic formula is developed for the a priori numerical estimation

of the number of an iterate, at which Approximating Splitting Iteration sequences

would reach a good trade-o� between numerical accuracy and stability.

Let us denote

y = R0Px =

0BB@
yh
y1
yl
y0

1CCA
Thus, according to (11),0BBB@

y
[k]
h
� y�

h

0

y
[k]
l
� y�

l

y
[0]
0 � y�0

1CCCA =

0BB@
Dk

h
0 0 0

0 0 0 0

0 0 Dk

l
0

0 0 0 I

1CCA
0BBB@

y
[0]
h
� y�

h

y
[0]
1 � y�1

y
[0]
l
� y�

l

y
[0]
0 � y�0

1CCCA
Whereas y

[k]
1 and y

[0]
0 do not vary with k, one can directly state

y�1 = [L0b]1

and

y�0 = y
[0]
0

where [L0b]1 denotes that sub-vector of the vector L
0b, whose components correspond

to those of y1.

So, the attention can then be focused on the remaining components of y, that is,

just on those which do vary with k, namely: 
y
[k]
h
� y�

h

y
[k]
l
� y�

l

!
=

�
Dk

h
0

0 Dk

l

� 
y
[0]
h
� y�

h

y
[0]
l
� y�

l

!

Let us additionally denote
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yhl =

�
yh
yl

�

Dhl =

�
Dk

h
0

0 Dk

l

�
=

0BB@
�1 0 ::: 0

0 �2 ::: 0

::: ::: ::: :::

0 0 ::: �q

1CCA
where q = qh + ql.

Notice that, according to (4) and (12), a sequential monotonic improvement of

accuracy of approximates must be expected.

However, in spite of the mathematical simplicity of (10), an undesirable distortion

of the plot of the iterative approximates may appear at late iterates (not far from

x�) as an unstability symptom.

So, on the one hand, too early iterates may provide stable but inaccurate

approximates, while, on the other hand, too late iterates may provide accurate but

unstable approximates.

In order to more deeply investigate the aforementioned distortion, many numerical

simulation experiments were performed with the Approximating Splitting Iteration

formula (10) and the same well-conditioned matrix P (for instance, matrices P from

factorization of V = 2�I + A0A and V = �I , � 2 R, � > 0 etc.) on diverse well-

and ill-conditioned linear least squares problems with and without noise. The results

of those experiments revealed a clear link between the distortion and the unreliable


oating point computation of powers of the diagonal entries of the approximating

splitting iteration matrix 0BB@
Dh 0 0 0

0 0 0 0

0 0 Dl 0

0 0 0 I

1CCA
in (10) at large values of k, that is, while computing late approximates x� (near x�)

by means of any of formulas (6) or (10).

Even more so, the results of the performed experiments speci�cally with the for-

mula (10) showed that the distortion arises at about a certain iterate ��, which sati�es

either

cond (Dhl)
��

�

� "

if cond (Dhl) 6= 1 or

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 127

j�j
�
�

� "; � = �i < 1; i = 1; 2; :::; q

if cond (Dhl) = 1; where " is the computer 
oating point relative accuracy (the

distance from 1:0 to the next largest 
oating-point number) [4, 12].

So, the experimental facts described above suggest that the iterative improvement

of accuracy of approximates should be kept only until k = ��, when the conditioned-

ness of the sub-matrix Dhl reach a top value about "�1, in order to prevent the plot

distortion. That way, the formula

�� =<
dinteger

�
� log(")

log(cond(Dhl))

�
; cond (Dhl) 6= 1

binteger
�

log(")
log(j�j)

�
; cond (Dhl) = 1

(19)

results the heuristic formula of a good a priori numerical estimator of the number of

the iterate about which the plot distortion might originate with the Approximating

Splitting Iteration method.

Thus, �� can be assumed as an appropriate a priori numerical estimator of the

number of that iterate, at which each sequence (10) would reach a good trade-o�

between numerical accuracy and stability with the Approximating Splitting Iteration

method.

Therefore, the general Approximating Splitting Pseudo-Iteration formula (15)

with �� as the Number of Pseudo-Iterates becomes the general formula of a certain

conditionedness-free method for approximating solutions of (2).

Indeed, notice that, choosing V well-contidioned enough, according to (19),

well-conditioned problems must yield large numbers of iterates while ill-conditioned

problems must yield small ones. So, conditionedness-free Approximating Split-

ting Pseudo-Iterations numerically must behave similar to both "orthodox" and

regularization methods while approximating solutions respectively of well- and

ill-conditioned problems.

5 An important particular case: the conditionedness-free

Pseudo-Iterated Tikhonov's Regularization

Notice that, according to the Iterated Tikhonov's Regularization properties proved

in [10], an interesting class of Approximating Splitting Pseudo-Iterations -Pseudo-

Iterated Tikhonov's Regularization- can be derived from (15) if and are assumed to

be there respectively

x[0] = 0

c
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and

P j P 0P = 2�D0D +A0A; � 2 R; � > 0

where is either the identity matrix (regularization in standard form) or some real

discretized di�erential operator-matrix [6, 7, 8, 11] (regularization in general form),

which satis�es

Null (D) \Null (A) = f0g

and the regularization parameter � [7, 8, 11] can be found by means of any of the

procedures described therein.

Therefore, cx� can be viewed as a conditionedness-free regularized minimal norm

least squares approximate of a certain unknown discretized function [6, 7, 8, 11].

Finally notice that, if the Number of Pseudo-Iterates � were chosen as computed

with (19), an important conditioneness-free particular case of Pseudo-Iterated

Tikhonov's Regularization would be issued.

Numerical simulation experiments. The �gures 1 and 2 illustrate the results of

the numerical experiments performed with the conditionedness-free Pseudo-Iterated

Tikhonov's Regularization (PITR) in standard form as a particular case of Ap-

proximating Splitting Pseudo-Iteration and compare these results with results of

other well-known methods. They show the plots of the approximates resulting

from the simulations made on the well-conditioned (� = 5; cond � 2:5387) and the

ill-conditioned (� = 1; cond � 7:3793� 1023) "Heat" test problems (discretized heat

equation inverse problems) from Regutool [8]. Both test problems were constructed

with the same arbitrary, previously chosen exact solution and right-hand sides were

produced by post-multiplying the discretized operator-matrix on the given solution.

Noise was generated assuming an uncorrelated unbiased gaussian distribution with

variance � = 0:0049 and � = 0:0015 respectively for the well- and ill-conditioned cases.

The regularization parameter � was chosen according to the Generalized Cross-

Validation (GCV) rule [8, 11].

In both �gures, dashed lines correspond to the exact solution plot; the two

�rst row plots correspond to PITR, the two second ones, to the Pseudo-Inverse

method (PINV) and the third two ones, to the known Tikhonov's Regularization

method (TR) in standard form. Furthermore, the three left column plots corre-

spond to cases without noise, while the three right ones correspond to cases with noise.

In both well-conditioned cases (with and without noise), the average Number

of Pseudo-Iterates resulted in 27. In the ill-conditioned cases, an average of 2 was

obtained for the noiseless case. When noise was added, the average number became

3:6667.
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Finally, notice that if x[0] were assumed to be x[0] 6= 0 and P , some real non-

singular discretized di�erential operator-matrix, then, according to (4), cx� could be

viewed as that approximate, whose plot sinuosity (maxima and minima points, con-

vexity change points, etc.) would be the most smoothly similar to the one of the

preliminary approximate x[0] [6, 10].

6 Conclusions

In this paper, a new direct method for approximating linear least squares solutions,

named Approximating Splitting Pseudo-Iterations, was derived and formulated

as a regularizing non-iterated variant of the Approximating Splitting Iteration

method with a certain previously chosen number of iterates, named Number of

Pseudo-Iterates.

Furthermore, a heuristic formula was developed for the a priori numerical

estimation of the number of an iterate, at which Approximating Splitting Iteration

sequences would reach a good trade-o� between numerical accuracy and stability.

This formula was discussed as a parameter estimator of the Number of Pseudo-

Iterates for the new method.

By estimating that way the Number of Pseudo-Iterates, the general formula of

a conditionedness-free regularizing method was derived for approximating solutions

of linear least squares problems from the general Approximating Splitting Pseudo-

Iteration formula Number of Pseudo-Iterates.

The results of several numerical simulation experiments with the conditionedness-

free version of the Approximating Splitting Pseudo-Iteration method with distinct

well-conditioned enough matrices V demonstrated that well-conditioned problem

matrices provide large Numbers of Pseudo-Iterates, while ill-conditioned problem

matrices provide small ones. For that reason, the new method numerically behaves

similar to both "orthodox" and regularization methods while approximating solutions

respectively of well- and ill-conditioned linear least squares problems.

At the end of the paper, the formula of the conditionedness-free Pseudo-Iterated

Tikhonov's Regularization method in standard form was derived as an important

particular case of conditionedness-free Approximating Splitting Pseudo-Iterations.
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Fig. 1: This �gure shows the results of the numerical simulations with the

conditionedness-free Pseudo-Iterated Tikhonov's Regularization (PITR), in

standard form, the Pseudo-Inverse method (PINV) and the Tikhonov's Reg-

ularization method (TR) in standard form in approximating solutions of a

well-conditioned discretized heat equation inverse problem (cond =2.5387).

Dashed lines correspond to the exact solution plot. The two �rst row plots

correspond to PITR, the two second ones, to PINV and the two third ones,

to TR. Furthermore, the three left column plots correspond to cases without

noise, while the three right ones, to cases with noise (uncorrelated, unbiased

gaussian noise with 0.0049 variance). The average Number of Pseudo-Iterates

resulted in 27.
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Fig. 2: This �gure shows the results of the numerical simulations with the

conditionedness-free Pseudo-Iterated Tikhonov's Regularization method

(PITR) in standard form, the Pseudo-Inverse method (PINV) and the

Tikhonov's Regularization method in standard form in approximating solu-

tions of an ill-conditioned discretized heat equation inverse problem (cond

=7.3793e+23). Dashed lines correspond to the exact solution plot. The two

�rst row plots correspond to PITR, the two second ones, to PINV and the

two third ones, to TR. Furthermore, the three left column plots correspond to

cases without noise, while thr three right ones, to cases with noise (uncorre-

lated, unbiased gaussian noise with 0.0015 variance). The average Number of

Pseudo-Iterates resulted 2 in the case without noise and 3.6667, with it.
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