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Abstract

A biased Newton direction is introduced for minimizing quasiconvex functions with bounded

level sets. It is a generalization of the usual Newton's direction for strictly convex quadratic

functions. This new direction can be derived from the intersection of approximating hyper-

planes to the epigraph at points on the boundary of the same level set. Based on that direc-

tion, an unconstrained minimization algorithm is presented. It is proved to have global and

local-quadratic convergence under standard hypotheses. These theoretical results may lead to

di�erent methods based on computing search directions using only �rst order information at

points on the level sets. Most of all if the computational cost can be reduced by relaxing some

of the conditions according for instance to the results presented in the Appendix. Some tests

are presented to show the qualitative behavior of the new direction and with the purpose to

stimulate further research on these kind of algorithms.

Keywords: quasiconvex functions, level sets, discretization methods.

1 Introduction

We propose a new descent direction for solving the problem minx2
f(x), f 2 C
2(
),

where 
 � <n is an open set, and f is such that its level sets are convex and

bounded. The aim of this paper is to derive a descent direction by gathering non
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local geometric information of the function at suitable chosen points on the boundary

of the same level set. The gradients at those points lead to a �nite di�erence system

of equations whose solution gives a search direction which is Newton's when f

is a convex quadratic function. Such direction comes from a linear interpolation

of gradients at those points. Since the discretization steps are distances between

points on the level set corresponding to the current iteration, this method is unlikely

trapped by poor local models. Geometrically speaking, at the current iteration such

a direction is obtained by computing the intersection of the hyperplane tangent to

the epigraph of the function with approximating hyperplanes at the points chosen

on the level set. In Gaudioso and Monaco [11](1994) the authors show that, for

strictly convex quadratic functions, the Newton's direction may be obtained via an

appropiate de�nition of a set of shifted supporting hyperplanes to the epigraph of the

function. Analogously we presented similar results and geometrical interpretations

in [7](1993) and [8] (1994) which led to the current paper.

We present a minimization algorithm based on this new descent direction and

prove that the generated sequence is globally convergent. If in addition we assume

Lipschitz continuity of the second derivatives, then we also prove that the algorithm

is locally quadratically convergent.

With the purpose of studying the behavior of an algorithm based on this new

direction we implemented it using a routine for determining points su�ciently close

to the level sets instead of exact ones as used for deriving the theoretical results. The

e�ects of this special relaxation, which aims at reducing the computational cost, is

studied in the Appendix showing that it is possible to preserve the main theoretical

properties of the algorithm.

The paper is organized as follows: in Section 2 the algorithm de�ning the descent

direction is described. In Section 3 the minimization algorithm is de�ned and global

convergence is proved. In Section 4 we prove that our method is locally quadratically

convergent to stationary points where the Hessian is positive de�nite. In Section 5

special results for pseudo-convex functions are given. In Section 6 some numerical

experiences are described with the purpose of showing the qualitative behavior of

the new direction.

In order to improve readability some auxiliary results needed are proved in the

Appendix. We also present there a practical implementation of the algorithm in-

troduced in Section 2, which determines approximate points on the level sets while

keeping essential properties of Algorithm 3.1.

2 The search direction

In this section we shall obtain the descent direction at the current point xc, using

the gradients of f(x) calculated at specially chosen points on the level surface.
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We assume f 2 C
2(
), where 
 is a convex set in <n. Further f is quasiconvex in


 and its level sets are compact. For the sake of completeness we include the following

de�nition:

De�nition 2.1: The function f is said to be quasiconvex if, for each x1 and x2 2 
,

the following is true:

f(�x1 + (1� �)x2) � maximunff(x1); f(x2)g for each � 2 (0; 1)

It is known that a quasiconvex function can be characterized by the convexity of

its level sets ([1]).

We denote by L(xc) = fx : f(x) � f(xc)g the level set at xc, and the corresponding

level surface C(xc) = fx : f(x) = f(xc)g

The l2 norm will be used throughout this paper.

The de�nition of the descent direction will take into account a property shared

by convex and quasiconvex functions, that is the convexity of their level sets.

It is known that the minimizer of a convex quadratic function can be obtained as

the solution of a system of linear equations involving only the �rst derivatives. In

Friedlander, Martinez and Scolnik [10](1979) this result was extended to the rank de-

�cient case and more recently is presented in the paper by Gaudioso and Monaco [11].

Given f(x) = 1
2
x
T
Hx + b

T
x + c, H = H

T positive de�nite, we have

Theorem 2.1: Given y
0 2 <n arbitrary and p

0
; : : : ; p

n�1 linearly independent direc-

tions in <n, and 

i = Hp

i, i = 0; : : : ; n� 1, then x
� = argminf(x) is obtained from

the solution of the system

fh

i
; x� y

0
i = �hp

i
;rf(y0)i; i = 0; : : : ; n� 1g: (2.1)

Proof.(see [11], Proposition 1.1) 2

When considering points y
0
; y

1
; : : : ; y

n determining linearly independent direc-

tions pi�1 = y
i � y

0, for i=1,. . . , n, since

Hp
i�1 = H(yi � y

0) = rf(yi) �rf(y0), the system (2.1) can be written as

f(rf(yi) �rf(y0))T (x� y
0) = �rf(y0)T (yi � y

0); i = 1; : : : ; ng: (2.2)

In particular, if the points de�ning the directions belong to

C(y0) = fy : f(y) = f(y0)g, from the fact that f is quadratic, the following equalities

hold :

rf(yi)T (yi � y
0) = rf(y0)T (y0 � y

i); i = 1; : : : ; n (2.3)

rf(yi)T (x� � y
i) = rf(y0)T (x� � y

0); i = 1; : : : ; n; (2.4)

where x� = argminf(x).

In this case, we obtain

c
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Lemma 2.1: If x� = argminf(x), yi 2 C(y0), i=1,. . . ,n and the directions p
i�1 =

y
i � y

0 are linearly independent, then x
� is the solution of the system

frf(yi)T (x� y
i) = rf(y0)T (x� y

0); i = 1; : : : ; ng (2.5)

Moreover, the systems (2.2) and (2.5) are equivalent.

Proof. That x� is solution of (2.5) follows straightforwardly from (2.4). Using (2.3)

a simple calculation shows that both systems are equivalent.

The above results have an interesting geometrical interpretation ([7],[11]). That

is, x� coincides with the abscissa of the intersection of the supporting hyperplanes to

the epigraph of f at the points (yi; f(y0)), which arising from the points chosen on

C(y0). This result agrees with the geometric observation that, due to the symmetry,

the supporting hyperplanes at points on the same level surface of a strictly convex

quadratic function meet at the minimizer.

It is worthwhile to analyze the solution of the system (2.2) and (2.5) when the

points y1; : : : ; yj with j � n on C(y0) are sequentially obtained from y
0, so that

y
i = y

i�1 + hi�1p
i�1 (2.6)

where p0; : : : ; pj�1 are H conjugate directions.

From the very well-known properties of the conjugate directions ([9], [13]), it

follows easily that:

hrf(yj) �rf(yi); yi � y
0
i = 0 for 1 � i < j; (2.7)

hy
j
� y

i
;rf(yi) �rf(y0)i = 0 for 1 � i < j: (2.8)

Further, using (2.8) and (2.3), we have

hrf(yi)�rf(y0); yj � y
0
i = 2h�rf(y0); yi � y

0
i (2.9)

for 1 � i � j.

Then it is easy to prove that x+ = (y0 + y
j)=2 is a solution of the system

fhrf(yi); x� y
i
i = hrf(y0); x� y

0
i; i = 1; : : : ; jg (2.10)

using (2.9) and the substitution x
+ � y

0 = (yj � y
0)=2 in the equivalent expression

fhrf(yi) �rf(y0); x� y
0
i = h�rf(y0); yi � y

0
i; i = 1; : : : ; jg (2.11)

Now, let us denote by [y1 � y
0
; : : : ; y

j � y
0] the subspace spanned by the vectors

fy1 � y
0
; : : : ; y

j � y
0g and by V (y0; y1 � y

0
; y

2 � y
0
; : : : ; y

j � y
0) the a�ne subspace

which contains y0.

c
 Investigaci�on Operativa 2000



Investigacion Operativa � Volume 9, Numbers 1,2 and 3, March{July 2000 139

Lemma 2.2: Assuming the conjugacy of the directions and the de�nition of the points

given by (2.6), the solution x
+ = (y0 + y

j)=2 of the system (2.10) is the minimizer of

the given quadratic function over V (y0; y1 � y
0
; : : : ; y

j � y
0).

Moreover, when rf(y0) belongs to [y1�y0; : : : ; yj�y0] and the subspace [rf(y1)�

rf(y0); : : : ;rf(yj) �rf(y0)] coincides with [y1 � y
0
; : : : ; y

j � y
0], then x

+ is equal

to x
�.

Proof. The �rst part follows from x
+ = y

0 + (yj � y
0)=2 and the fact that

rf(x+) = (rf(y0) + rf(yj))=2 is orthogonal to [y1 � y
0
; : : : ; y

j � y
0]. This can be

deduced from the fact that for every i = 1; : : : ; j hrf(yj) + rf(y0); yi � y
0i = 0,

using (2.7) and (2.3).

The second part follows from the relation �rf(y0) =
P

i=1

j
�i(rf(yi)�rf(y0)),

since by hypothesis the subspaces [y1 � y
0
; : : : ; y

j � y
0] and [rf(y1) �

rf(y0); : : : ;rf(yj) � rf(y0)] are equal. Then, from x
� � y

0 = H
�1(�rf(y0)), it

follows x� � y
0 =

P
i=1

j
�i(y

i � y
0). Hence, x� 2 V (y0; y1 � y

0
; : : : ; y

j � y
0) which

implies that is equal to x
+.

From the previous results, it follows that if rf(y0) 2 [y1 � y
0
; : : : ; y

j � y
0]

and the procedure de�ned by (2.6) leads to a point y
j for which the gradients

frf(y0); : : : ;rf(yj)g are linearly dependent, then rf(yj) = �rf(y0). Thus, in

this case x�, is the intersection of the supporting hyperplanes to the epigraph at the

points (yi; f(y0)), coincides with the midpoint x+ = (yj + y
0)=2. Moreover, since a

convex combination of the gradients frf(yi)g
j

i=0 exists equal to zero, x� satis�es

x
� = argmin(maxfrf(yi)T (x� y

i) ; i = 0; 1; : : : ; jg).

The geometrical interpretation and the conclusions given for quadratic functions

above were the basis for extending the procedure described in (2.6) to quasiconvex

functions with bounded level sets. Like in the previous particular case we shall

choose suitable points on the level set of each iterate and the descent direction will

be obtained by solving a linear system. When that systems is underdetermined we

adopt the closest solution to the current iterate.

Denoting y
0 = xc, let us de�ne from it points y1; : : : ; yj j � n on C(xc). We shall

prove, in this more general framework, that the mid-point (yj + y
0)=2 is a solution of

the system

f(gi)
T

(x� y
i) = rf(y0)T (x� y

0); i = 1; : : : ; jg; (2.12)

where y
i, and g

i = �irf(yi) for a suitable scalar �i are formally de�ned below in

Algorithm 2.1.

For each point yi determined by the procedure in L(xc), we consider a quadratic

approximating function Qi(x) which interpolates the values of f at the points y0 and

y
i. We de�ne the gradient g0 in y

0 coincident with rf(y0), and the gradient gi in y
i

c
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as the scaled �irf(yi). The scalar �i allows to satisfy the requirement for quadratic

functions (gi)T (yi � y
0) = (g0)T (y0 � y

i), when Qi(y
0) = Qi(y

i)

The ith equation of (2.12) comes from considering the intersection of the support-

ing hyperplanes of Qi in (y0; f(y0)) and (yi; f(y0)) respectivelly. Such intersection

contains the minimizer of Qi. Thus, the solution (y0 + y
j)=2 to the proposed system

(2.12) is in the intersection of the approximating hyperplanes de�ned before.

2.1 A strategy for determining the points on the level surface

In order to validate the algorithm for obtaining the points yi 2 C(xc),

i = 1; : : : ; j, the following lemmas are required.

Lemma 2.3: Given y 2 C(xc), z 2 L(xc), such that y 6= z, then the following inequal-

ities hold:

rf(y)T (z � y) � 0 (2.13)

(rf(z) �rf(y))T (z � y) � 0; if z 2 C(xc) (2.14)

Proof. (2.13) and (2.14) follow from the properties of f(x) (Crouzeix and Ferland

[5], Greenberg and Pierskalla [14]).

In particular, if the segment joining y and z contains a point ! such that f(!) <

f(xc), the following result holds (Rockafellar [18]):

Lemma 2.4: Given y; z 2 C(xc) , y 6= z, with rf(y) 6= 0, if

! = �y + (1 � �)z, 0 < � < 1, exists such that f(!) < f(xc), then

rf(y)T (z � y) < 0.

Proof. By Lemma 2.3, we know that rf(y)T (z � y) � 0. Suppose now that

rf(y)T (z � y) = 0. From hypotheses about ! and f , it follows that there exists

� > 0 such that, for all !0 with k! � !
0k < �, where !

0 = ! + �rf(y), � > 0, they

satisfy f(!0) < f(xc).

Clearly, the assumption rf(y)T (z � y) = 0 and the de�nition of !
0 implies

rf(y)T (!0 � y) > 0, which contradicts Lemma 2.3.

Now we can de�ne the algorithm for determining the points on C(xc) which will

de�ne the search direction as the solution of a �nite di�erence system of equations

similar to (2.2).

Let us de�ne y0 = xc, g
0 = rf(xc). The de�nition of the points yi; i � 1 will be

done sequentially by means of linearly independent directions p0; : : : ; pi�1 in such a

way that yi = y
i�1 + hi�1p

i�1, satisfying f(yi) = f(yi�1) for 1 � i � n.

We shall take p
0 = �g0 as the �rst direction. The directions pi at the following

points y
i used for determining y

i+1 will be taken orthogonal to the di�erences

g
1 � g

0
; : : : ; g

i � g
0 a condition identical to (2.8). Therefore, we shall write

c
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p
i = P

i(�g0) where P
i is the orthogonal projector onto the orthogonal subspace to

[g1 � g
0
; : : : ; g

i � g
0]. From this de�nition when for some j � n is pj = 0, it follows

that g
0 2 [g1 � g

0
; : : : ; g

j � g
0]. Furthermore, as we shall justify later, in such a

case the point x+ = y
0 + (yj � xc)=2 is the solution of the �nite di�erence system of

equations and corresponds to the intersection of the supporting hyperplanes at the

points yi.

In order to formalize the algorithm for computing the points on C(xc), the

following notation will be used:

Ai the matrix whose rows are f(gj � g
0)T , j = 1; : : : ; ig,

R(Ai
T ) the subspace spanned by the columns of Ai

T ,

P
0 = In, In n� n identity matrix.

P
i is formally updated by([2], [9])

P
i = P

i�1
� P

i�1(gi � g
0)(gi � g

0)TP i�1
=(gi � g

0)TP i�1(gi � g
0) (2.15)

In the numerical implementation, the standard orthogonalization procedure is

used ([3]).

From the de�nition of pi, as a consequence of P i(gi � g
0) = 0, we can use either

p
i = P

i(�g0) or P i(�gi).

Algorithm 2.1 :

Given xc, rf(xc) 6= 0,

Step 1:

De�ne y0 = xc, g
0 = rf(xc), i = 0:

Step2:

If P i(�gi) = 0, de�ne j = i. Stop.

Else,

Step 3:

Take pi = P
i(�gi); yi+1 = y

i + hip
i, such that f(yi+1) = f(yi).

If rf(yi+1) 6= 0 de�ne gi+1 = �i+1rf(yi+1) satisfying

�i+1rf(yi+1)T (yi+1 � y
0) = rf(y0)T (y0 � y

i+1) .

Else, gi+1 = 0.

Update P i+1.

i=i+1; go to Step 2. �

The Algorithm 2.1 stops after having computed points y1; : : : ; yj , j � n on C(xc).

The index j is the �rst index for which P
j(�gj) = 0, meaning that g

j 2 R(Aj
T ).

In the Appendix an implementation of the Step 3 is described, which computes

approximate points on the level set while keeping the essential properties of the

c
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resulting descent direction.

The aim of proving the following results is twofold: �rst, to show the directions

p
i are well de�ned, and second, to derive some suitable properties arising from the

way in which the auxiliary points are de�ned.

Lemma 2.5: If P i(�gi) 6= 0 and if y
i+1 is de�ned as in Step 3 of Algorithm 2.1, then

a) (g0)T (yi+1 � y
0) < 0

b) rf(yi+1)T (yi+1 � y
0) > 0, if rf(yi+1) 6= 0.

Proof. Since yi+1 � y
0 =
Pi

l=0 hlp
l =
Pi

l=0 hlP
l(�gl), then (g0)T (yi+1 � y

0) < 0

considering that P l(�gl) = P
l(�g0).

From a), rf(yi+1) 6= 0 and Lemma 2.4, it follows b).

Remark 2.1: The coe�cients �i in Step 3 of Algorithm 2.1 are well de�ned as a

consequence of Lemma 2.5 b).

Theorem 2.2: If the Algorithm 2.1 does not terminate at yi (i.e. pi 6= 0) then

a) fg0; g1; : : : ; gig are linearly independent.

b) [g0; g1; : : : ; gi] = [p0; p1; : : : ; pi]:

Moreover, if yi+1; gi+1 are de�ned as in Algorithm 2.1, then

c)fgi+1 � g
0
; g

i � g
0
; : : : ; g

1 � g
0g are linearly independent.

Proof. We prove a), b) and c) simultaneously by induction. Clearly, a) and b)

hold for i = 0.

To prove c), we consider kg1 � g
0k2 = kg1k2 + kg0k2 + 2(g1)T (�g0) � kg0k2, as a

consequence of (2.13). Since g0 6= 0, then g
1 � g

0 6= 0.

Now, assuming a), b) and c) are valid for i, we will prove they also hold for i+1.

We have, pi+1 = P
i+1(�gi+1) 6= 0, then the subspace

[gi+1 � g
0
; g

i � g
0
; : : : ; g

1 � g
0
; g

i+1] = [gi+1 � g
0
; g

i � g
0
; : : : ; g

1 � g
0
; p

i+1]

has rank i+2. Since [gi+1 � g
0
; g

i � g
0
; : : : ; g

1 � g
0
; g

i+1] is included in

c
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[gi+1; gi; : : : ; g1; g0], we obtain a).

From the de�nition, pi+1 2 [gi+1 � g
0
; : : : ; g

1 � g
0
; g

i+1] = [gi+1; gi; : : : ; g1; g0].

Furthermore, p
i+1 62 [g0; : : : ; gi] = [p0; : : : ; pi], since otherwise kpi+1k = kpik

which contradicts that P
i(gi+1 � g

0) 6= 0 (the inductive hypothesis on c) guar-

antees that g
i+1 � g

0 is linearly independent of fgi � g
0
; : : : ; g

1 � g
0g). Thus

[g0; g1; : : : ; gi+1] = [p0; p1; : : : ; pi+1].

To prove c), since p
i+1 = P

i+1(�g0) 6= 0, by Lemma 2.4 we get

(gi+2� g
0)T pi+1 > 0. Thus, we conclude that fgl� g

0g
i+2
l=1 are linearly independent.

Remark 2.2: As a consequence of the proof of Theorem 2.2, if P i(�gi) 6= 0 for i � 1,

the subspace [gi � g
0
; : : : ; g

1 � g
0
; p

i] is coincident with the subspace [gi; : : : ; g1; g0],

and has rank i + 1.

Corollary 2.1: If j; 1 � j � n, is the �rst index for which P
j(�gj) = 0 then [g1 �

g
0
; : : : ; g

j � g
0] = [p0; : : : ; pj�1].

Proof. Since gj 2 [g1 � g
0
; : : : ; g

j � g
0], then g

0
; g

1
; : : : ; g

j�1 are in that subspace.

Therefore, by Theorem 2.2 we conclude the proof.

2.2 De�ning the search direction

We can now de�ne the search direction from xc and prove its properties.

Lemma 2.6: When Algorithm 2.1 stops, yj � xc is a descent direction.

Proof. It follows from Lemma 2.5 a) for i = j � 1.

Let us call Sj ; j � n, the matrix whose rows are (y1 � y
0)T ; : : : ; (yj � y

0)T .

Lemma 2.7: When the Algorithm 2.1 stops at a point yj such that rf(yj) 6= 0, then

~x = (yj + xc)=2 is a solution of the system

Aj(x� xc) = Sj(�rf(xc)):

Furthermore, dc = ~x� xc is the minimum norm solution to the system

Ajd = Sj(�rf(xc)) .

Proof. The point ~x is a solution because dc = ~x � xc = (yj � xc)=2 sat-

is�es each one of the equations since y
j � xc = (yj � y

i) + (yi � xc) and

(gi � g
0)T (yj � xc)=2 = (gi � g

0)T (yi � xc)=2 = �g0
T

(yi � xc) as a consequence of

the de�nitions of pi and g
i.

Since dc = ~x � xc = (yj � xc)=2, dc 2 R(Sj
T ) and also dc 2 R(Aj

T ) because

of Corollary 2.1, then it is the minimum norm solution to the system. Therefore

c
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dc = Aj
y
Sj(�rf(xc)).

We choose the descent direction dc = ~x � xc = (yj � xc)=2. As a consequence of

Lemma 2.7 such direction is the solution of the system (2.12). Moreover, when f is a

convex quadratic function dc is the Newton's direction according to Lemma 2.2.

3 The general algorithm and global convergence

Now we are able to de�ne a general minimization algorithm for quasiconvex functions

under the stated hypotheses in Section 2, using the descent direction previously

introduced, and to prove that it is globally convergent.

Algorithm 3.1

Given the starting point x0, f(x0), rf(x0) and the parameters m1, m2 such that

0 < m1 < 1=2; m1 < m2 < 1. Set k := 0

Step 1. If \convergence" stop. Else,

Step 2. De�ne y
0
; : : : ; y

j 2 C(xk), 1 � j � n using Algorithm 2.1.

Step 3. De�ne dk = (yj �xk)=2 and perform a line search along it, starting with

�k = 1, until �nding a value of �k > 0 such that

f(xk + �kdk) � f(xk) + m1�krf(xk)
T
dk (3.1)

rf(xk + �kdk)T dk � m2�krf(xk)
T
dk (3.2)

De�ne xk+1 = xk + �kdk, and compute rf(xk+1),

k := k + 1 and go to Step 1. �

Remark 3.1: Under the hypotheses stated for f some �k > 0 satisfying both (3.1)

and (3.2) always exist due to the fact that f(yj) = f(xk)([9]).

We shall give in the following some results required for proving the global conver-

gence of Algorithm 3.1.

Lemma 3.1: At any iteration k of Algorithm 3.1, there exists a constant c > 0 such

that for yi, i � j, obtained in Step 2 the following relations hold:

�rf(xk)
T

(yi � xk) � (1=2) c kyi � xkk
2

(3.3)

ky
i
� xkk � (2=c) krf(xk)k (3.4)
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Proof. Taking into account that f(yi) = f(xk) and Taylor's expansion, we

have f(yi) = f(xk) + rf(xk)
T

(yi � xk) + 1=2(yi � xk)T �H(yi � xk), where
�H denotes the Hessian matrix at an intermediate point between y

i and xk .

Thus, �rf(xk)T (yi � xk) = (1=2)(yi � xk)T �H(yi � xk), from which we get

�rf(xk)
T

(yi � xk) � (1=2)ckyi � xkk
2

considering that f 2 C
2(L(x0)) and the

compactness of L(x0). This proves (3.3).

By (3.3) and the de�nition of p0, ky1 � xkk � (2=c)krf(xk)k.

Furthermore, for 1 < i � j, we have that kyi � xkk > ky1 � xkk due to

kyi � xkk
2

= kyi � y
1k

2
+ ky1 � xkk

2
+ 2(yi � y

1)T (y1 � xk) and the fact that

(yi � y
1)T (y1 � xk) > 0. Therefore, (3.4) follows.

Theorem 3.1: Under the hypotheses stated for f , the sequence fxkg given by Algo-

rithm 3.1 is well de�ned and limk�!1 krf(xk)k = 0

Proof. From Lemma 2.6 we know that dk is a descent direction. As a consequence

of the hypotheses some �k exist satisfying (3.1) and (3.2).

Moreover, since the gradient is Lipschitz continuous in L(x0) we get that

limk�!1(rf(xk)T dk)=kdkk = 0 (Wolfe [19], [20], Zoutendijk [21]).

From the de�nition of dk in Algorithm 3.1, we know that dk = (yj �xk)=2, where

f(yj) = f(xk). Since rf(xk)T (yj�xk) � rf(xk)T (y1�xk) = �krf(xk)kky1�xkk,

using (3.4) and the compactness of L(xk), we get rf(xk)T dk=kdkk � �
krf(xk)k
2

with 
 = 1=(cM) and kdkk �M . From that, it follows that limk�!1 krf(xk)k = 0.

Since Algorithm 3.1 de�nes a descent method and L(x0) is a compact set, it

turns out that the sequence fxkg has limit points which are stationary ones of f(x).

Therefore, we obtain

Theorem 3.2: Under the hypotheses stated for f , the sequence fxkg given by Algo-

rithm 3.1 has at least a limit point, and every limit point is a stationary one.

4 Local quadratic convergence

We have proved Algorithm 3.1 is globally convergent in the sense that every limit

point of the sequence fxkg must satisfy the �rst order stationary condition.

We shall prove here that under the hypotheses stated in Section 3, the sequence

fxkg generated using Algorithm 3.1 is locally convergent to stationary points x� at

which the Hessian matrix is positive de�nite.
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If we also assume the Hessian is Lipschitz continuous over 
, that is a constant

L > 0 exists such that for all x; y 2 


kr
2
f(x) �r

2
f(y)k � L kx� yk; (4.1)

then we will prove an index k1 exists such that fxkg satis�es the Wolfe conditions

(3.1) and (3.2) with �k = 1 for k > k1, and moreover the sequence is quadratically

convergent. This key result will be proved in Theorem 4.2.

For that purpose we shall state in the following some results for the sequence xk

given by Algorithm 3.1.

Lemma 4.1: If limk�!1 xk = x
� where H(x�) > 0, then an index k0 exists such that

for every k > k0

a) f is uniformly convex on L(xk).

b) kdkk � (1=m)krf(xk)k.

Proof. Since H(x�) > 0, let us denote by 2m > 0 its least eigenvalue. Then � > 0

exists such that for all x with kx� x
�k � �, the least eigenvalue of H(x) is greater or

equal than m. Hence, in such domain

mkyk
2
� y

T
H(x)y � ckyk

2
; for y 2 <

n
: (4.2)

Taking into account that x
0 = argmin(f) in kx � x

�k = �, then an �
0 exists,

0 < �
0 � �, such that for all x, kx � x

�k � �
0, f(x) � f(x0) hold. This follows from

the hypotheses and considering that

f(x) � f(x�) = (1=2)(x� x
�)T Ĥ(x� x

�) � (1=2)ckx� x
�
k
2
� f(x0)� f(x�);

where Ĥ is the Hessian at the corresponding intermediate point, and de�ning

�
0 = minf�; (2(f(x0) � f(x))=c)

1=2
g.

Since limk�!1 xk = x
�, k0 exists such that for all k > k0, kxk � x

�k � �
0; then

f(xk) � f(x0). Hence, for all k > k0, L(xk) is included in

fx : kx� x
�k � �g where f is uniformly convex.

b) By de�nition given in Step 3 of the Algorithm 3.1 dk = (yj�xk)=2, yj being the

point in L(xk) with f(yj) = f(xk) given by Algorithm 2.1. Then using the Taylor's

expansion of f(yj) at xk we get

�rf(xk)T (yj � xk) = 1=2(yj � xk)T Ĥ(yj � xk);

where Ĥ is the Hessian at the corresponding intermediate point.
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Using a), for all k > k0 is

�rf(xk)T (yj � xk)=2 � mk(yj � xk)=2k
2
: (4.3)

Thus, for k > k0 it follows that kdkk � (1=m)krf(xk)k.

Lemma 4.2: If limk�!1 xk = x
� and H(x�) > 0 and xk+1 = xk + �kdk as de�ned by

Algorithm 3.1 , �k satisfying (3.1) and (3.2), then there is an index k1 � k0 such that

for every k > k1, �k = 1 is admissible.

Proof. From Lemma 4.1, for all k > k0, kdkk � (1=m) krf(xk)k and

rf(xk)T dk � �mkdkk
2

(4.4)

The choice dk = (yj � xk)=2 with f(yj) = f(xk), implies that d
T

k
rf(xk) +

d
T

k
Hkdk = o(kdkk

2
). Using the Lipschitz continuity of the Hessian, and kdkk �

1=mkrf(xk)k there is an index k
0 � k0 such that kdT

k
(rf(xk) + Hkdk)k �

�kdkk
2

and krf(xk + dk) � rf(xk) � Hkdkk � �kdkk for all k > k
0, where

� = m min(1=2 � m1;m2=2): Furthermore, there is an index k1 � k
0 such that

for all k > k1, kdkk � �=L. Then for k > k1, we get that f(xk + dk) � f(xk) =

rf(xk)T dk + 1=2dk
T
Hkdk + 1=2dk

T (Ĥ �Hk)dk � 1=2rf(xk)T dk + �kdkk
2
. There-

fore,

f(xk + dk)� f(xk) �m1rf(xk)T dk � (1=2�m1)rf(xk)T dk + �kdkk
2

from which, using (4.4) for k > k1 we get that �k = 1 satis�es (3.1).

Analogously, and using the same arguments, we deduce that for k > k1

rf(xk + dk)T dk = (rf(xk + dk) �rf(xk)�Hkdk)T dk + (rf(xk) + Hkdk)T dk

� ��kdkk
2
� �kdkk

2

Hence, using (4.4) it follows that for k > k1

rf(xk + dk)T dk �m2rf(xk)T dk � (mm2 � 2�)kdkk
2
� 0:

Therefore �k = 1 satis�es (3.2).

It is known that for quasiconvex functions every strict local minimizer is the

unique global minimizer, a fact we shall use in the following theorem.

Theorem 4.1: Under the hypotheses stated in Section 3, if x� 2 
 is a stationary point

where H(x�) > 0, then � > 0 exists such that for all x0 satisfying kx0 � x
�k � � the

sequence fxkg generated by Algorithm 3.1 converges to x
�.
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Proof. As a consequence of the hypotheses on x
�, and using the same arguments

given in the proof of Lemma 4.1, there is an � > 0 such that for all x0, kx0�x
�k � �,

f is strictly convex on the level set L(x0). The result follows straightforwardly from

the compactness of L(x0), the uniqueness of x� in L(x0), and the fact that dk is a

descent direction.

The purpose of the following results is to prove the local quadratic convergence of

the sequence de�ned by Algorithm 3.1, under the hypotheses stated at the beginning

of this Section when xk tends to x
� with H(x�) > 0.

Lemma 4.3: If limk�!1 xk = x
� and H(x�) > 0, then k1 exists such that for all

k > k1, xk+1 = xk + dk and krf(xk+1)k = O(krf(xk)k
2
):

Proof. It follows from Lemma 4.1, 4.2 and Lemma B.6.

Theorem 4.2: If limk�!1 xk = x
� and H(x�) > 0, then under the hypotheses stated

above, the rate of convergence is quadratic.

Proof. From Lemma 4.3 , there exists an index k1 such that for all k > k1,

krf(xk+1)k = O(krf(xk)k
2
).

Since kxk+1 � x
�k = O(krf(xk+1)k), then kxk+1 � x

�k = O(kxk � x
�k

2
) and

thus quadratic convergence follows.

5 Quadratic global convergence for pseudo-convex functions

The local quadratic convergence of the sequence given by Algorithm 3.1 to stationary

points x� at which the Hessian matrices are nonsingular has been proved in Section

4 under some restrictive hypotheses.

Let us consider now a particular subclass of the quasiconvex functions, the pseu-

doconvex functions, under the same hypotheses of Section 4.

De�nition 5.1: f is said to be pseudoconvex if for each x1; x2 2 
 such that f(x2) <

f(x1) then rf(x1)
T (x2 � x1) < 0.

This function is characterized by the fact that every stationary point is a global

minimizer ([1]). Using the same hypotheses of Section 4 we shall be able to prove

the global quadratic convergence of the sequence given by Algorithm 3.1 in the next

theorem.

Theorem 5.1: Under the stated hypotheses, and if x� 2 
 is a stationary point where

H(x�) > 0, then the sequence fxkg generated by Algorithm 3.1 converges quadrati-

cally to x
�, the global minimizer of f(x).
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Proof. Since f(x) is a pseudoconvex function and has the stationary point x
�

such that H(x�) > 0, x� must be the unique stationary point of f(x) on L(x0).

Moreover, due to the compactness of L(x0) and the fact x� is the only possible

limit point of fxkg, we have that limk!1 xk = x
�.

On the other hand, using the same arguments of Theorem 4.2 we can prove that

the sequence fxkg generated by Algorithm 3.1 converges

quadratically to x
�.

6 Numerical Experiences

The aim of the following experiences is just to assess the qualitative behavior of

the search direction introduced in this paper. We have performed those experiences

using only three convex functions. Two of them are the Penalty I and the Variably

dimensioned functions ([12],[16]) and the third is an extension of the one presented

in [4] in order to use higher dimensions and for showing the direction's behavior

when the level sets correspond to ill-conditioned problems. We have compared the

number of iterations required to achieve convergence using di�erent Newton type

algorithms, like Newton with trust regions, TRON of Chih-Jen Lin and Jorge J.

Mor�e ([15]), the Truncated Newton TN of Stephen G. Nash ([17]), and the NMTR

of the Minpack-2 Project headed by J.J. Mor�e. The executable versions are TRON

as available in http://www.mcs.anl.gov/�more, TN from NETLIB, and NMTR

is the version run in the NEOS SERVER of Argonne National Laboratory and

Northwestern University (http://www-neos.mcs.anl.gov). We have also tested the

results with our implementation of Newton's method (NW) with line searches based

on LINPACK routines and the subroutine GSRCH developed for M.J.D. Powell,

using the standard stopping condition krf(xk + �kdk)T dkk � grhtolkrf(xk)T dkk

with grhtol = 0:1.

An experimental Fortran 90 program in double precision was written implement-

ing Algorithm 3.1 and which uses in Step 2 the computation of the approximate

points on the level set for Algorithm A.1 as described in the Appendix. The Step

2 is done using an implementation of Algorithm A.1 with parameters �1 = 10�5,

�2 = 10�3, � = 10�4, �1 = 10�4, �2 = 10�4, and � = 3. A point yj is accepted if

kP j(�gj)k � 10�6kg0k (see Algorithm A.2 in the Appendix). Projections were calcu-

lated using the modi�ed Gram-Schmidt algorithm [3]. The line search of Step 3 is also

performed with GSRCH using grhtol = 0:1. The stopping criterion for Algorithm

3.1(QSI) and Newton's(NW) is krf(x)k1 � � with � = 10�5. For TN and NMRT we

used the default values; in TRON the condition krf(x)k2 � gtolkrf(x0)k2, adapts

gtol for obtaining a point with a lower values of the gradient's norm, indicating that

in the Table by TRON(gtol) (gtol=1.d-5, 1.d-10, 1.d-16 or 1.d-20) according to the

starting gradient for each problem.

The de�nition of the Extended Convex function ([4]) with variable para-meter �
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is as follows: Given x 2 <n, A and D 2 <n�n

f(x) = 1
2
x
T
Dx + �( 1

2
x
T
Ax)2 where A =

�
A1 0

0 I

�
; A1 =

�
5 1

1 3

�
; and

D was de�ned as : (a) D = diag(1; : : : ; 1), or (b) D = diag(1; : : : ; i2; : : : ; n2). The

starting point is x0 = (�1; 1; : : : ;�1; 1).

The Penalty I function ([12]) was run from two di�erent starting points: (a)x0 = i,

and (b) x0 = (�1)i+1 for i = 1; : : : ; n.

First, we will compare for n = 100 the function reduction obtained in each iteration
with the codes QSI, NW(Newton) and TRON(the last two use second derivatives),
together with the comparison with the approximation to the optimal solution of each
problem. Those results are given for each problem in the following tables where it
is possible to see that in all cases the direction used in QSI leads to a fast descent
and approximation to the solution although we were using just an approximation
to the real direction de�ned in Section 3. The same tendency is observed in higher
dimensions. In each of the following tables fk�f� gives the decrease obtained in each
iteration and the approximation to the solution is given by kxk � x

�k2, for the least
number of iterations needed for achieving convergence,

QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 2.70d+05 1.00d+01 2.70d+05 1.00d+01 2.70d+05 1.00d+01

1 3.86d-08 2.78d-04 1.12d+04 4.52d+00 5.34d+04 6.67d+00

2 1.68d-18 1.83d-09 4.64d+02 2.04d+00 5.14d+03 3.64d+00

Extended Convex function (a), � = 100.

QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 3.20d+02 1.00d+01 3.20d+02 1.00d+01 3.20d+02 1.00d+01

1 7.01d-07 1.18d-03 1.58d+01 4.06d+00 6.82d+01 6.45d+00

2 1.28d-18 1.60d-09 0.49d+00 0.96d+00 1.50d+01 3.99d+00

Extended Convex function (a), � = 0:1.

QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 1.69d+05 1.00d=01 1.69d+05 1.00d+01 1.69d+05 1.00d+01

1 8.17d-02 3.90d-02 4.29d+01 2.66d+00 4.66d+01 2.64d+00

2 1.21d-13 3.85d-07 1.82d=00 1.13d=00 2.79d+00 1.35d+00

Extended Convex function (b), � = 0:1.
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QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 4.39d+05. 1.00d+01 4.3d+05 1.00d+00 4.39d+05 1.00d+00

1 8.58d-02 1.31d-02 1.64d+04 4.02d+00 8.56d+04 6.20d+00

2 1.18d-06 3.96d-04 8.72d+02 1.84d+00 5.36d+03 2.76d+00

3 2.91d-08 1.79d-05 6.07d+01 0.86d+00 1.51d+03 2.02d+00

4 1.09d-09 1.02d-06 4.76d=00 0.41d=00 4.92d+02 1.50d+00

5 2.27d-13 1.59d-08 0.36d+00 0.18d+00 6.58d+01 0.85d=00

6 1.92d-16 4.30d-10 2.63d-02 8.08d-02 6.20d+00 0.49d+00

Extended Convex function (b), � = 100

QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 1.31d+14 5.82d=00 1.31d+14 5.82d+00 1.31d+14 5.82d+00

1 2.31d-02 2.58d-04 5.43d+12 2.62d+00 5.66d+09 0.47d+00

2 4.55d-16 3.67d-11 2.25d+11 1.18d+00 7.24d+08 0.28d+00

Variably Dimensioned.

QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 1.15d+08 5.74d+02 1.15d+08 5.74d+02 1.15d+08 5.74d+02

1 9.23d+01 8.68d+00 4.78d+06 2.54d+02 9.23d+01 8.68d+00

2 2.69d-03 0.430d-01 2.01d+05 1.10d+02 2.59d+00 1.31

3 1.51d-09 0.25d-04 8.71d+03 4.38d+01 1.82d-01 0.36d+00

4 5.80d-10 1.06d-09 3.09d+02 1.30d+01 1.25d-02 0.9d-01

Penalty I (a)

QSI NW TRON

iter fk � f� kxk � x�k fk � f� kxk � x�k fk � f� kxk � x�k

0 2.03d+02 1.33d+01 2.03d+02 1.33d+01 2.03d+02 1.33d+01

1 3.06d+00 1.48d+00 3.59d+00 1.63d+00 1.81d-01 0.35d+00

2 0.92d-03 0.25d-01 0.22d-03 0.13d-01 0.59d-03 0.02d+00

3 5.99D-10 0.36d-05 5.82d-10 0.13d-05 0.40d-04 0.01d+00

4 5.800d-10 0.43d-09 5.800d-10 0.10d-06 0.278d-5 0.138d-02

Penalty I (b)

In the last Table it is possible to observe fastest initial descents for NW and

TRON with regard to QSI; which di�ers from what happened in the previous

problems. The reason seems to be the use of approximate points in the vicinity of

the solution.

For higher dimensions the tables 1-4 use the following notation: in the �rst

column the name of the problem is given. In the next columns under Method the

name of the program ; iter the number of iterations; nfu the number of function

evaluations; ngr the number of gradient evaluations; gnor is the l2 norm of the

gradient at the �nal point, and fmin is the best function value. In particular for the

methods TN and TRON under iter we write between parenthesis the number of CG

iterations used. In Table 1 the �rst row gives the results of Algorithm 3.1(QSI), the

second with Newton (NW), the third with TN, the fourth with TRON, and the �fth
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with NMTR.

Problem Method iter nfu ngr gnor fmin

Extend. QSI 2 818 407 0.3d-05 0.4d-14

Convex NW 6 37 37 0.5d-04 0.2 d-11

(b) TN 23(63) 24 24 0.1d-05 0.5d-16

� = 0:1 TRON(-10) 9(8) 9 9 0.1d-10 0.6d-22

NMTR 8 10 9 0.0d+00 0.0d+00

Extend. QSI 6 2267 1125 0.2d-4 0.3d-14

Convex NW 12 73 73 0.1d-04 0.3 d-14

(b) TN 28(126) 40 40 0.1d-06 0.4d-17

� = 100 TRON(-10) 19(18) 19 19 0.5d-04 0.1d-08

NMTR 17 19 18 0.0d+00 0.0d+00

Table 1: n = 250

Those results show that for de�ning the direction, the method QSI computed

almost n points close to the level set and their gradients, something which is

computationally expensive. On the other hand they also show that only a few major

iterations are needed in spite of approximate points were used. The same situation

occurred with ill-conditioned problems using di�erent dimensions. An example is the

results of Table 2 absolutely similar to those of Table 1, except for NMTR because

its use in NEOS is restricted to n � 250.

Problem method iter nfu ngr gnor fmin

Extend. QSI 4 6334 3166 0.1d-04 0.1d-15

Convex NW 7 43 43 0.5d-08 0.3d-20

(b) TN 31(143) 32 32 0.5d-06 0.6d-17

� = 0:1 TRON(-10) 9(8) 9 9 0.1d-05 0.5d-12

Extend. QSI 5 6493 3239 0.2d-04 0.3d-15

Convex NW 14 85 85 0.5d-09 0.5d-24

(b) TN 38(251) 43 43 0.1d-05 0.1d-16

� = 100 TRON(-10) 27(26) 27 27 0.2d-03 0.3d-07

Table 2: n = 1000 The output of TRON code also shows the number of Matrix-Vector

products, which in this case takes a considerable amount of time because the Hessians are

dense.

Contrariwise to what it was observed in the previous tests in regard to the number

of inner iterations required for obtaining the search direction, it can be observed that

when the ill-conditioned case was excluded, only a few points close to the level set were

enough. In those cases, except for the problem Penalty I (b), the number of major

iterations needed for achieving convergence is less than for the other algorithms.

A substantial saving of CPU time was required, because of fewer gradients were

computed in the inner iterations. Table 3 illustrates this situation
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Problem Method iter nfu ngr gnor fmin

QSI 2 22 7 0.3d-06 0.4d-13

Extend. NW 5 32 32 0.9d-10 0.4d-20

Convex TN 5(12) 9 9 0.1d-09 0.7d-20

(a) TRON(-5) 9(8) 9 9 0.8d-06 0.3d-12

� = 0:1 MNTR 8 10 9 0.7d-16 0.3d-32

QSI 2 25 9 0.5d-09 0.1d-18

Extend. NW 9 55 55 0.2d-05 0.2d-11

Convex TN 7(17) 14 14 0.2d-08 0.1d-17

(a) TRON(-10) 19(18) 19 19 0.1d-06 0.6d-14

� = 100 MNTR 16 18 17 0.2d-11 0.2d-23

QSI 5 39 18 0.1d-06 0.35d+02

Penalty NW 9 55 55 0.2d-07 0.35d+02

(a) TN 484(1498) 490 490 0.6d-01 0.4d+02

TRON(-20) 21(21) 22 21 0.5d-2 0.4d+02

MNTR 15 17 16 0.1d-07 0.4d+02

QSI 4 32 14 0.8d-04 0.4d+02

Penalty NW 4 26 26 0.2d-07 0.4d+02

(b) TN 7(19) 10 10 0.3d-04 0.4d+02

TRON(-10) 18(18) 19 18 0.7d-02 0.4d+02

MNTR 4 6 5 0.3d-08 0.4d+02

QSI 2 20 5 0.2d-04 0.1d-16

Variably NW 80 254 254 0.8d-09 0.7d-25

Dimens. TN 9 (16) 26 26 0.1d-05 0.6d-18

TRON(-16) 20(51) 52 20 0.9d-04 0.1d-09

MNTR 3976 4000 (F) 3977 0.4d+08 0.4d+05

Table 3: n = 250

(F ) means that the maximum allowed number of evaluations was reached without getting

convergence.

In the previous Table, QSI sistematically required fewer iterations than the other
methods. This trend kept unchanged when using di�erent dimensions (n=100, n=300,
n=1000). In Table 4 the results for n = 1000 are given.
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Problem Method iter nfu ngr gnor fmin

Extend. QSI 2 25 8 0.3d-11 0.6d-23

Convex NW 6 38 38 0.4d-14 0.7d-29

(a) TN 8(17) 11 11 0.3d-11 0.3d-23

� = 0:1 TRON(-10) 11(10) 11 11 0.1d-10 0.9d-22

Extend. QSI 2 27 9 0.2d-07 0.2d-15

Convex NW 10 61 61 0.2d-07 0.4d-15

(a) TN 15(49) 45 45 0.2d-11 0.1d-22

� = 100 TRON(-10) 19(18) 19 19 0.8d-05 0.3d-10

QSI 5 49 17 0.3d-06 0.3d+03

Penalty NW 13 167 167 0.1d-02 0.3d+03

(a) TN 1294(3276) 2877 2877 0.6d-01 0.3d+03

TRON(-20) 54(56) 57 54 0.8d-01 0.3d+03

QSI 4 34 15 0.3d-04 0.3d+03

Penalty NW 5 119 119 0.1d-01 0.3d+03

(b) TN 11(30) 31 31 0.4d-04 0.3d+03

TRON(-10) 63(62) 62 62 0.7d-01 0.3d+03

QSI 2 30 5 0.9d-07 0.7d-23

Variably NW 981 2131 2131 0.1d-04 0.2d-18

Dimens. TN 12(17) 33 33 0.1d-05 0.1d-19

TRON(-20) 19(52) 53 19 0.7d-05 0.5d-11

Table 4: n = 1000

The reported results are not conclusive for evaluating the e�ciency of Algorithm

3.1 and its implementation QSI using the approximation described in Section A.

As we said at the beginning of this section, these experiences had the purpose of

illustrating the behavior of the new direction when it was derived by means of a

feasible implementation. As shown by the former Tables the new direction led to,

except for the Penalty I (b), a better functional decrease and �nal approximation to

x
�.

7 Conclusions

This paper shows that �rst order information gathered in points close to the level set

at a certain iteration, together with the intersection of the corresponding considered

hyperplanes, allow us to de�ne an e�cient descent direction. Such direction for convex

quadratics functions coincides with Newton's, and for non quadratic functions leads

to sharp functional reductions. Needless to say, the question of how to obtain a good

but cheaper approximation to this new direction keeping its theoretical properties,

remains as a research challenge.
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A Line Search Procedure for obtaining points in step 2 of

Algorithm 3.1

The theoretical characterization of Algorithm 2.1 according to which the direction

dk in Step 3 of Algorithm 3.1 is de�ned, leads naturally to consider its practical

implementation. Then, the points y
0
; y

1
; : : : ; y

j of step 2 of Algorithm 3.1 will be

now obtained by the following approximate procedure.

At the beginning of the k-th iteration we de�ne y
0 = xk. Each point y

i+1 is

obtained from y
i by performing a linear search along the direction p

i, whose de�nition

is the same as the one given in Algorithm 2.1, to determine an approximation to the

root hi > 0 of the equation

'(h) = f(yi + hp
i) � f(yi) = 0

The function '(h) shares the properties of f and satis�es '(0) = 0,

'
0(0) = rf(y0)T pi < 0, recalling that rf(y0)T pi = (gi)T pi due to the de�ni-

tion of pi = P
i(�gi) as given in Section 2.

The Search Algorithm generates a �nite sequence fhlg, l � 0, and stops when

h
l
> 0 exists such that

'(hl) > '(0) + �h
l
'
0(0); 0 < � < 1=2 (A.1)

and at least one of the three following criteria is ful�lled:

(i) If '(hl) � 0, and a ~h exists such that 0 < ~h < h
l where '(~h) < '(hl), making

sure that yi+1 = y
i + h

l
p
i is su�ciently far away from y

i and that it preserves the

property rf(yi+1)T (yi � y
i+1) < 0 as a consequence of Lemma 2.4.

(ii) If '(hl) � 0, k � 1 and

'(hl) � minf�1max(j f(yi) j; 1); (f(xk�1) � f(yi))=2g; 0 < �1 < 1 (A.2)

(iii) or, si hl 2 [hmin; hmax], such that '(hmin) < 0, 0 < '(hmax) < f(xk�1) �

f(yi), and

hmax � (1 + �2) � hmin; 0 < �2 < 1 (A.3)

When (A.1) and (i) hold we accept hi = h
l making sure that that yi+1 = y

i +h
l
p
i

satis�es rf(yi+1)T (yi�y
i+1) < 0. Analogously when (A.1) and the second condition

both hold, we accept hi = h
l, making sure that in y

i+1 = y
i +hip

i, f(yi+1) is close to

f(yi), keeping also rf(yi+1)T (yi � y
i+1) < 0. Moreover, in this case we accept yi+1
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if it satis�es f(yi+1) � f(yi) + (f(xk�1) � f(yi))=2, being f(yi) < f(xk�1) due to

the constraints on y
i for being accepted in the previous internal iteration. Therefore,

we also keep that kyi+1 � y
ik bounded by the radius of the ball containing L(xk�1),

and L(xk�1) contained in L(x0).

If (A.1) and the third alternative are satis�ed, an interval is computed which

contains the seeked hi with the desired precision, and in such a case taking

into account that ~h = hmin+hmax
2

we de�ne hi = ~h if '(~h) > '(hmin) and

'(~h) > '(0) + �~h'0(0), or hi = hmax otherwise. Consequently we are sure that for

y
i+1, the condition rf(yi+1)T (yi � y

i+1) < 0 is satis�ed, and moreover we assure

that kyi+1 � y
ik � (1 + �2)hminkpik, is bounded by the radius of the ball which

contains L(xk�1).

With the purpose of de�ning the scheme of the algorithm for approximate

searches we give the following de�nitions and notations.

From the initial guess h
0 we de�ne hmin = h

0 if '(h0) < 0 or hmax = h
0 and

hmin = 0 otherwise.

When the process declares that a current h
l, l � 0 is not successful, the next

candidate hl+1 is obtained by quadratic interpolation using

('(0); '0(0); '(hl)), or using the values of ' at the best three lower or upper bounds

obtained up to that moment of hi, with the necessary safeguards to guarantee

convergence. More precisely,

Line Search Procedure

Given y
i, pi, gi, '0(0) = (gi)T pi = rf(y0)T pi, 0 < �1 < 1, 0 < �2 < 1,

�1 > 0, �2 > 0, 0 < � < 1=2, � > 1, and the initial guess h0.

Step 0 : Set hmin = 0, l = 0 .

Step 1 : Compute '(hl) = f(yi + h
l
p
i) � f(yi).

If '(hl) � 0 , set hmax = h
l. Else, set hmin = h

l.

If '(hl) � '(0) + �h
l
'
0(0), go to Step 3.

Else,

Step 2 : Stopping criteria

If condition (i) is satis�ed de�ne hi = h
l, go to Step 5.

otherwise,

If (ii) holds, de�ne hi = h
l = hmax go to Step 5.

otherwise,

If hmax > 0 and if hmin 6= 0 and (iii) is satis�ed

set hi = hmax, or hi = (hmin + hmax)=2 according to (iii)

go to Step 5.

Else,

Step 3 : If hmax is still unde�ned, go to Step 4.

Else, set l = l + 1.

Set hl equal to the zero of the quadratic interpolating polynomial,
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and the safeguard

h
l = min[max(hmin + �2(hmax � hmin); hl); hmax � �2(hmax � hmin)],

is imposed.

go to Step 1.

Step 4: Set l = l + 1 and de�ne hl equal to the zero of the quadratic

interpolating polynomial (using for example ('(0); '(hmin); '0(0)),

or the three best values of '(h) already found).

If hl > hmin de�ne hl = min(max((1 + �1)hmin; h
l); 9hmin). Else,

set hl = �hmin,

Return to Step 1.

Step 5 : De�ne yi+1 = y
i + hip

i.

Stop.�

The safeguards imposed in Steps 3 and 4 guarantee convergence in a �nite number

of iterations.

The Algorithm 2.1 is replaced by the following, using the same notation of Section

2.

Algorithm A.2 :

Given xk, rf(xk) 6= 0,

Step 1: De�ne y0 = xk, g0 = rf(xk), i = 0:

Step 2: If P i(�gi) = 0, de�ne j = i. Stop.

Else,

Step 3: Take pi = P
i(�gi); yi+1 = y

i + hip
i, with hi calculated as

in Algorithm A.1.

If rf(yi+1)T (y0 � y
i+1) < 0 de�ne gi+1 = �i+1rf(yi+1)

satisfying �i+1rf(yi+1)T (yi+1 � y
0) = rf(y0)T (y0 � y

i+1) .

Else, gi+1 = 0.

Update P i+1.

i=i+1; go to Step 2. �

Remark A.1: The imposed condition (A.1), and the alternatives (i), (ii) or (iii) for ac-

cepting each y
i+1 as an approximation to the point on the level set, do not necessarily

lead to rf(yi+1)T (yi+1� y
0) > 0, in spite of the condition rf(yi+1)T (yi+1� y

i) > 0

has been preserved. Hence, in order to guarantee the good de�nition of gi+1 the

modi�cation in the step 3 of algorithm A.2 has been introduced.

The �nal accepted point y
j , and the search direction dk = y

j � xk of Al-

gorithm 3.1, satisfy kyj � xkk �
P

j

i=1 ky
i � y

i�1k � n � M , if M is the bound

of the radius of the ball containing L(x0), which is a rough bound but easy to compute.

Moreover, as a consequence of condition (A.1) each i = 1; : : : ; j satis�es f(yi) >

f(yi�1) + �rf(xk)
T

(yi � y
i�1). Thus

c
 Investigaci�on Operativa 2000



158 Echebest, N., Guardarucci, M. T., Scolnik, H. and Vacchino, M. C. � Cutting Planes ...

f(yi) > f(xk) + �rf(xk)
T

(yi � xk) (A.4)

Remark A.2: i) The direction dk = y
j �xk obtained in Step 3 of Algorithm 3.1 using

the point yj given by the above procedure is a descent direction as a consequence of

the de�nition of pi and the arguments of Lemma 2.5 a).

ii) Furthermore, the condition (A.4) satis�ed for each y
i

i = 1; : : : ; j, together

with the bound on dk = y
j � xk make sure the results of Lemma 3.1 hold, and

therefore also Theorem 3.1 is valid. This follows from the fact that for each y
i

f(yi) � f(xk) = rf(xk)T (yi � xk) + 1=2(yi � xk)T �H(yi � xk), where �H denotes the

Hessian matrix at an intermediate point between y
i and xk.

Since f(yi) � f(xk) > �rf(xk)T (yi � xk), we get rf(xk)T (yi � xk) + 1=2(yi �

xk)T �H(yi � xk) > �rf(xk)T (yi � xk)

Such a condition makes sure that 1=2(yi�xk)T �H(yi�xk) > (��1)rf(xk)T (yi�

xk). Then, we obtain �(1��)rf(xk)
T

(yi�xk) < (1=2)ckyi � xkk
2

considering that

f 2 C
2(L(x0)) and the compactness of L(x0). This proves (3.3) modi�ed by a factor

(1� �).

In particular, for i = 1 we have �(1 � �)rf(xk)
T

(y1 � xk) < c=2ky1 � xkk
2
,

obtaining (1� �)krf(xk)k < (1=2)cky1 � xkk

Since �rf(xk)T (yj � xk) � �rf(xk)T (y1 � xk) = krf(xk)kky1 � xkk, and

using the previous remark which shows that kdkk is bounded , we get

�rf(xk)T dk=kdkk � 
2krf(xk)k
2

with 
2 = 2(1� �)=(c ~M) and kdkk � ~M .

That result is identical to the one used for proving Theorem 3.1. Hence, Theorem

3.2 still holds proving that Algorithm 3.1 is globally convergent when the direction

dk is used, arising from the yj obtained by the inexact search.

B

Let us assume the hypotheses on f(x) stated in Section 4. Let fxkg be the sequence

given by Algorithm 3.1 satisfying that there is an index k0 such that for all k � k0,

f(x) is uniformly convex on L(xk), i.e. a constant m > 0 exists such that for x 2

 L(xk), y 2 <n, we get

mkyk
2
� y

T
r
2
f(x)y � ckyk

2
: (B.1)

Lemma B.1: At the kth iteration of Algorithm 3.1, k � k0, the following relations

hold among the directions, step sizes, and coe�cients de�ned for all i = 1; : : : ; j � n:

a) (1=2)mkyi � y
0k

2
� (�rf(xk))T (yi � y

0) � (1=2)ckyi � y
0k

2
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b) kyi � y
0k � (2=m)krf(xk)k

c) (1=2)�imky
i � y

0k
2
� g

iT (yi � y
0) � (1=2)�icky

i � y
0k

2

d) kgik � (1=2)m�iky
i � y

0k

e) Since �i = rf(xk)T (y0 � y
i)=rf(yi)T (yi � y

0) we get m

c
� �i �

c

m

f) j �i � 1 j� (L=m)kyi � y
0k � (2L=m2)krf(xk)k

g) krf(yi)k � wkrf(xk)k, where w = (2c=m) + 1.

h) From the de�nition of hi, we get 2=c � hi � 2=m, 0 � i � j � 1.

Proof. a) Follows from (B.1) and f(yi) = f(y0).

b) Follows from the �rst inequality of a).

c) From the de�nition of yi, gi, and the uniform convexity on L(xk).

d) From c).

e) From f(yi) = f(xk) and the uniform convexity of f .

f) From the de�nitions of �i and g
i, using the hypotheses and e).

g) From the uniform convexity of f and e).

h) From the de�nition of the points y
i and y

i+1, the Taylor's expansion for

f(yi+1) at yi, and (B.1).

Lemma B.2: Under the above stated hypotheses, � > 0 exists such that

cos�k
i = (gi � g

i�1)T (yi � y
i�1)=(kgi � g

i�1
k ky

i
� y

i�1
k) � �

1 � i � j � n, for k � k0.

Proof. Due to the de�nition of gi; gi�1; yi; yi�1, condition (B.1), Lemma B.1 f),

and the Taylor's expansion at yi�1 and y
i we have that

(gi � g
i�1)T (yi � y

i�1) = (1=2)�i(y
i
� y

i�1)T �H(yi � y
i�1) (B.2)

+(1=2)�i�1(y
i
� y

i�1)T Ĥ(yi � y
i�1) � (1=2)(�i + �i�1)mjj yi � y

i�1
jj
2

� (m2
=c)jj yi � y

i�1
jj
2
;
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where �H and Ĥ are the Hessians at the corresponding intermediate points.

Using the de�nitions of �i and �i�1 we shall bound the denominator of the

expression for cos�k
i.

From

�i = (�i�1rf(yi�1)T (yi�1 � y
0) +rf(y0)T (yi�1 � y

i))=rf(yi)T (yi � y
0)

we get that

�i � �i�1 = �i�1rf(yi)T (yi�1 � y
i)=rf(yi)T (yi � y

0)

+(�i�1(rf(yi�1) �rf(yi))T (yi�1 � y
0) +rf(y0)T (yi�1 � y

i))=rf(yi)T (yi � y
0):

This implies that

j �i � �i�1 j krf(yi)k

� �i�1krf(yi�1) �rf(yi)k kyi�1 � y
0
k krf(yi)k=((1=2)mkyi � y

0
k
2
)

+krf(y0) + �i�1rf(yi)k kyi�1 � y
i
k krf(yi)k=((1=2)mkyi � y

0
k
2
):

Using Lemmas 3.1 and B.1, it is easy to prove a constant � > 0 exists such

that the right hand side of the above expression can be bounded by �kyi � y
i�1k.

Therefore, j �i � �i�1 j krf(yi)k � �kyi � y
i�1k.

Taking into account the de�nition of gi, gi�1, the hypotheses, and the previous

bounds, we have that

kg
i
� g

i�1
k � j �i � �i�1 j krf(yi)k+ j �i�1 j krf(yi�1) �rf(yi)k

� �ky
i
� y

i�1
k+ (c2=m)kyi � y

i�1
k = (� + c

2
=m)kyi � y

i�1
k:

Therefore,

kg
i
� g

i�1
k ky

i
� y

i�1
k � (� + (c2=m))kyi � y

i�1
k
2
: (B.3)

Hence, because of (B.2) and (B.3), � > 0 exists such that cos�k
i
� �.

We shall denote by Pk
i, Ak

i, and Sk
j , the matrices generated within Step 2 of

Algorithm 3.1 by means of Algorithm 2.1.

Lemma B.3: If Pk
i�1(�rf(xk)) 6= 0, and under the hypotheses stated for L(xk), then

a constant � exists such that 0 � � < 1 and kPk
i(�rf(xk))k � �kPk

i�1(�rf(xk))k,

1 � i � j.
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Proof. Using Greville's formula (Ben Israel and Greville [2])

Pk
i(�rf(xk)) = Pk

i�1(�rf(xk)) �

Pk
i�1(gi � g

i�1)(gi � g
i�1)TPk

i�1(�rf(xk))=kPk
i�1(gi � g

i�1)k
2

from which it follows that

kPk
i(�rf(xk))k

2
=

kPk
i�1(�rf(xk))k

2
� ((gi � g

i�1)TPk
i�1(�rf(xk)))

2
)=kPk

i�1(gi � g
i�1)k

2
:

Since cos�k
i
� � > 0 according to Lemma B.2, we get

kPk
i(�rf(xk))k

2
� (1� �

2)kPk
i�1(�rf(xk))k

2
:

De�ning � = (1 � �
2)
1=2

, the proof is complete.

We shall denote by ei the vectors of the canonical basis.

Lemma B.4: Under the stated hypotheses, if y0; y1; :::; yj and g
0
; g

1
; :::; g

j are the vec-

tors generated by the kth iteration of Algorithm 3.1, then the

j�n matrix Tk
j whose ith row is (yi�yi�1)T , 1 � i � j, is such that its pseudoinverse

Tk
jy has columns Tk

jy
ei satisfying

kTk
jy
eik � 1=
kyi � y

i�1
k; with 
 > 0:

Proof. For the non trivial case j � 2 we shall denote by 
i for 2 � i � j, the

angle between the ith row of Tk
j and the subspace spanned by the

i� 1 �rst rows.

Let us denote by Tk
i�1 the matrix composed of the �rst i� 1 rows of Tk

j , and by

PTki�1 the projection matrix onto its null space. Then

sin
i = kPTki�1(yi � y
i�1)k=kyi � y

i�1
k = kPT

k

i�1p
i�1

k=kp
i�1

k:

Since R((Tk
i�1)

T

) = R((Ak
i�2)

T

[ fpi�2g) as a consequence of Remark 2.2, using

Greville's formula we get

PTki�1 = Pk
i�2

� (Pk
i�2

p
i�2)(Pk

i�2
p
i�2)

T

=kPk
i�2

p
i�2

k
2

= Pk
i�2

� p
i�2(pi�2)

T

=kp
i�2

k
2
:
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Thus,

sin
i = kp
i�1

� p
i�2((pi�2)

T

p
i�1

=kp
i�2

k
2
)k=kpi�1k :

Using the fact the numerator is the orthogonal projection of pi�1 onto the orthog-

onal subspace to p
i�2 we have that

sin
i = ((kpi�1k
2
� kp

i�1
k
4
)=kpi�2k

2
)1=2=kpi�1k :

Due to Lemma B.3, a constant � exists such that 0 � � < 1 and

sin
i � (1� �
2)
1=2

.

Hence, if �i is the angle between the ith row of Tk
j and the subspace spanned by

the remaining rows ( Dennis et al. [6]) we obtain

sin�i � (1� �
2)
(j�1)=2

� (1� �
2 )

(n�1)=2
= 
 :

Then, using the same arguments of Dennis et al. [6], we can prove that the

pseudoinverse Tk
jy = (b1; :::; bj) is such that kbik � 1=(
kyi � y

i�1k).

Lemma B.5: Under the stated hypotheses for the kth iteration, k � k0,

(�i � �i�1)rf(yi)T (yi � y
0) = (yi � y

i�1)T vi; for i = 1; :::; j;

where jj vi jj= O(jj rf(xk) jj
2
)

Proof. Taking into account the de�nition of �i and y
i � y

i�1 we can write

(�i � �i�1)rf(yi)T (yi � y
0) = �i�1[(rf(yi�1) +rf(yi))T (yi�1 � y

i)

+(rf(yi�1) �rf(yi))T (yi�1 � y
0)]:

Using the Taylor's expansion at yi and y
i�1 and the equality f(yi) = f(yi�1) in the

�rst term of the right hand side we get

(rf(yi�1) +rf(yi))T (yi�1 � y
i) = (yi � y

i�1)T ( �Hi � ~Hi)(y
i
� y

i�1):

Considering that yi� y
i�1 = hi�1Pk

i�1(�rf(xk)) and using the Taylor's expansion,

the second term of the right hand side can be written as

(rf(yi�1) �rf(yi))T (yi�1 � y
0) = (yi�1 � y

i)T Ĥi(y
i�1

� y
0)

= (yi � y
i�1)T [gi�1 �rf(xk) + (1� �i�1)rf(yi�1) + (Ĥi � �H0)(y

i�1
� y

0)]
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= (yi � y
i�1)T [(1� �i�1)rf(yi�1) + (Ĥi � �H0)(y

i�1
� y

0)]:

Then, from the Lipschitz continuity of the Hessian and the relationships of Lemma

B.1, we obtain

(�i � �i�1)rf(yi)T (yi � y
0) = (yi�1 � y

i)T vi;

with kvik = O(krf(xk)k
2
):

Theorem B.1: Under the stated hypotheses for all k � k0, if j is the �rst index in the

kth iteration such that Pk
j(�rf(xk)) = 0, then

krf(yj) +rf(xk)k = O(krf(xk)k
2
):

Proof. The search direction given by Algorithm 3.1 is the solution of the system

Ak
j
dk = Sk

j(�rf(xk)): (B.4)

Because the matrix Sk
j can be written as Sk

j = EkTk
j , where the j � j matrix

Ek is such that its ith row is
Pi

r=1 er
T , and the matrix Ak

j = EkBk
j where Bk

j is

a j � n matrix such that the ith row is gi � g
i�1, we have that the system (B.4) is

equivalent to

Bk
j
dk = Tk

j(�rf(xk)): (B.5)

Due to the fact that dk = (yj � y
0)=2 and the de�nition of gi and Tk

j , the left

hand side of B.5 can be written as

Bk
j
dk = Bk

j(yj � y
0)=2

=

jX
i=1

ei[(�i � 1)rf(yi)� (�i�1 � 1)rf(yi�1)]T (yj � y
0)=2

+

jX
i=1

ei(rf(yi) �rf(yi�1))T (yj � y
0)=2

=

jX
i=1

ei[(�i � 1)rf(yi)� (�i�1 � 1)rf(yi�1)]T (yj � y
0)=2

+

jX
i=1

ei[( �Hi �Hk)(yi � y
i�1)]T (yj � y

0)=2 + Tk
j
Hk(yj � y

0)=2;

where Hk = r2
f(xk) and �Hi is the Hessian at an intermediate point.
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Multiplying both members of (B.5) by Tk
jy, using the equality

Hk(yj � y
0)=2 = (rf(yj)�rf(y0))=2 + (Hk � �H0)(y

j
� y

0)=2;

rearranging terms, and considering that rf(xk);rf(yj) 2 R((Tk
j)T ) due to Corollary

2.1, we obtain

(rf(yj) +rf(xk))=2 = Tk
jy
Tk

j( �H0 �Hk)(yj � y
0)=2 (B.6)

+Tk
jy

jX
i=1

ei[(1� �i)rf(yi)� (1 � �i�1)rf(yi�1)]T (yj � y
0)=2

+Tk
jy

jX
i=1

ei(y
i
� y

i�1)T (Hk � �Hi)(y
j
� y

0)=2:

Then, because of Lemma B.1 (f), the second term of the right hand side can be written

as

Tk
jy

jX
i=1

ei[(�i�1 � �i)rf(yi)T (yi � y
0)=2

�(1� �i�1)(rf(yi�1) �rf(yi))T (yi � y
0)=2 + !i

T (yj � y
i)=2];

where k!ik = O(krf(xk)k
2
):

Also, using the Lipschitz continuity of the Hessian and Lemmas B.3, B.4 and B.5

it is easy to see that the norm of the right hand side of (B.6) is O(jj rf(xk)jj
2
):

Therefore, it follows that krf(yj) +rf(xk)k = O(krf(xk)k
2
):

Lemma B.6: Under the stated hypotheses, if k � k0 and xk+1 = xk + dk, then

krf(xk+1)k = O(krf(xk)k
2
):

Proof. From Taylor's expansion, the Lipschitz continuity of the Hessian and

Lemma B.1 b),

rf(xk+1) = rf(xk) + Hk(xk+1 � xk) + O(krf(xk)k
2
) (B.7)

rf(xk+1) = rf(yj) + Hk(xk+1 � y
j) + O(krf(xk)k

2
) (B.8)

By adding (B.7) and (B.8) and considering that xk+1 = (xk + y
j)=2, we get

rf(xk+1) = (rf(yj) +rf(xk))=2 + O(krf(xk)k
2
):

Therefore, from Theorem B.1 it follows that krf(xk+1)k = O(krf(xk)k
2
):
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