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Video and image classification based on Instance-to-Class (I2C) distance attracted many recent studies,
due to the good generalization capabilities it provides for non-parametric classifiers. In this work we pro-
pose a method for action recognition. Our approach needs no intensive learning stage, and its classifica-
tion performance is comparable to the state-of-the-art. A smart organization of training data allows the
classifier to achieve reasonable computation times when working with large training databases. An effi-
cient method for organizing training data in such a way is proposed. We perform thorough experiments
on two popular action recognition datasets: the KTH dataset and the IXMAS dataset, and we study the
influence of one of the key parameters of the method on classification performance.
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1. Introduction

Action recognition is a growing topic in computer vision re-
search. Given a list of possible actions (e.g. running, sitting, clap-
ping hands, etc.) and a video showing an actor performing any
one of them, the goal is to produce an algorithm for the recognition
of the action being performed. Automatic identification of actions
in videos is a key aspect in many applications such as video sum-
marization, video indexing, vigilance based on the analysis of secu-
rity cam-captured videos, interaction with computers via
movement, etc. The problem poses several challenges. On the
one hand, the appearance of an action can vary considerably in dif-
ferent videos. This may be due to changes in lighting conditions,
viewpoint, actor’s clothing, etc. On the other hand, different actions
can look very similar to each other. Occlusion and bad lighting con-
ditions can add further difficulty to the problem.

Among recent works, those inspired on the bag-of-features
approach became popular because of their simplicity and good
performance. These studies base classification on measuring the
distance between the query instance and each of the training
instances – Instance-to-Instance (I2I) distance- and require
quantizing instance features into a fixed-length vector for repre-
sentation. Recently, Boiman et al. (2008) suggested that the use
of I2I distance and feature quantization can severely hurt perfor-
mance and proposed a method to overcome these issues. Their ap-
proach deals directly with unquantized features and computes
Instance-to-Class (I2C) distances (instead of Instance-to-Instance)
for classification. Apart from dealing with these problems,
the method (referred to as Naive–Bayes Nearest-Neighbor or NBNN)
presents several attractive features. First, it is a non-parametric
classifier, which means that it needs no intensive learning phase.
This is extremely useful when working with large training dat-
abases that are subject to frequent updates. Second, it achieves a
performance comparable to that of the top learning-based methods.
Learning based methods require an intensive parameter learning
phase, and can usually achieve a better classification performance
than non-parametric methods. As an extra advantage, the idea be-
hind the method is fairly simple.

Despite its good qualities, the NBNN method is not well-suited
for most real-world problems (Wang et al., 2009). The number of
training features required at those scenarios to achieve a state-
of-the-art performance is usually very large. This makes I2C com-
putation expensive and results in prohibitive classification times.
In Ubalde and Goussies (2012) we proposed an alternative method
to NBNN (named NBNNTree), by which we aimed at lowering the
amount of time consumed for classification. Broadly, the strategy
followed to achieve such improvement was that of organizing
the training features in a particular fashion.

Our approach successfully reduced the time complexity of
NBNN while achieving a similar classification accuracy. However,
the training stage suggested in Ubalde and Goussies (2012) had a
few loose ends, that limited its use to databases with a low number
of actions. In Section 4, after a short introduction to our original
method, we present a strategy to overcome these problems.

As far as we are aware, only (Wang et al., 2009; Yuan et al.,
2011) have used NBNN for action recognition. In Section 5 we
thoroughly test our improved version of the NBNNTree method
on two very popular action recognition datasets: the KTH dataset
and IXMAS multiview dataset. We compare its performance and
computation times with those achieved by NBNN, and we investi-
gate the influence of one of its main parameters on classification
performance.
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2. Previous work

Automatic analysis of actions and behaviors in video has been
extensively analyzed in previous works. Existing approaches to ad-
dress the problem are varied.

An entire body of work is based on a global representation of
the video. Using tracking or background subtraction the actor is
localized in the video, and movement information is encoded as
a whole. The approach presented in Davis and Bobick (1997) is
based on the so-called temporal templates. They extract silhouettes
from several frames, and aggregate differences among them yield-
ing two images that encode action information: motion history im-
age (MHI) and motion energy image (MEI). Hu moments are used
to compare two templates. Euclidean distance is used by Weinland
et al. (2007) to match two silhouettes. More examples based on sil-
houettes can be found in Zhu et al. (2009), Souvenir and Babbs
(2008) and Wang and Suter (2006). Several works use spatio-
temporal volumes to represent an action. A spatio-temporal volume
is formed by stacking frames over a given sequence. Examples of this
approach can be found in Yilmaz and Shah (2008), Yan et al. (2008),
Grundmann et al. (2008) and Zelnik-manor and Irani (2001).

More related to our work are those approaches based on local
descriptors. Such approaches are derived from techniques used in
image classification. The basic idea is to characterize a video using
descriptors of spatio-temporal patches extracted from certain
interest points. In the work of Laptev (2005), the Harris detector
(Harris and Stephens, 1988) is extended to the space–time domain.
Interest points are located using the extended detector. The result-
ing points can be thought of as spatiotemporal corners. Patches
around them are expected to correspond to video objects whose
movement is changing direction. Dollar et al. (2005) detect interest
points using a Gaussian filter to the spatial dimension and a Gabor
filter to the temporal dimension. Chomat et al. (2000) use
the responses after applying spatio-temporal receptive fields.
Rapantzikos et al. (2007) apply discrete wavelet transforms in each
of the three directions of a video volume.

Patches around interest points are usually represented using
descriptors. Descriptors are intended to provide distinctive infor-
mation about the patch, while being invariant to appearance,
occlusion, rotation and scale. In Laptev (2005) histograms of ori-
ented flow and gradients are used as descriptors. Dollar et al.
(2005) use image gradients and PCA to reduce descriptor dimen-
sionality (Willems et al., 2008) use an extension of SURF features
(Bay et al., 2006) to 3D.

Many works use descriptor quantization in order to work with
low-dimensional data. In Dollar et al. (2005), Laptev et al. (2008),
Sivic and Zisserman (2003), Niebles et al. (2006), Schuldt et al.
(2004) and Liu and Shah (2008), descriptors are clustered and clus-
ter centers are selected as codewords. Videos are therefore repre-
sented as histograms of codewords. This approach is commonly
known as bag-of-features. A classifier is trained using the set of his-
tograms from the training videos. Nearest neighbor (NN) and sup-
port vector machines (SVM) are among the most used classifiers.
While the first ones are easier to train, the last ones often achieve
a better performance.

In Yuan et al. (2009) and Wang et al. (2009), descriptors are not
clustered. Instead, they are used directly for classifying the video.
This is based on the idea of Boiman et al. (2008) and presents
several advantages over the bag-of-features approach, as discussed
later in this paper.
3. The NBNN method

While in the work of Boiman et al. NBNN is used for image clas-
sification, this paper deals with action recognition. Because of that,
Please cite this article in press as: Ubalde, S., et al. Efficient descriptor tree gr
dx.doi.org/10.1016/j.patrec.2013.05.007
we use a slightly different terminology here, to reflect the fact that
we are working with videos and actions instead of images and
classes.

Let V be a query video, and let d1; d2; . . . ; dn be its local descrip-
tors. The NBNN method chooses the action bA performed in V
according to the following equation:

bA ¼ argmin
A

Xn

i¼1

kdi � NNAðdiÞk2
; ð1Þ

where NNAðdiÞ is the nearest neighbor of di within the descriptors of
action A. Descriptors of action A are gathered from every training
video labeled with A. As Boiman et al. show the summation in
(1) approximates a Video-to-Action (V2A) KL-distance (Boiman
et al., 2008). In other words, NBNN computes an approximated dis-
tance from V to every possible action, and chooses the action with
the minimum distance.
3.1. NBNN drawbacks

As shown in Wang et al. (2009), NBNN requires a large number
of local descriptors in the training set to achieve state of the art
performance. This makes the computation of NNAðdiÞ in (1) very
expensive for real-world sets (which are usually built extracting
more than 10,000 descriptors per training instance). This is the
main computational bottleneck, even when approximate searches
(using KD-trees as in Boiman et al. (2008)) are performed.

Based on the previous observation, it seems reasonable to ex-
pect that a reduction in the number of NN searches would lead
to a more time efficient method. A first step in this direction is to
notice the sequential nature of the NBNN method. Only after com-
puting the V2A distance for every action, the method chooses the
closest action. This may seem like a fair strategy, but it does not
take advantage of a very common phenomena in action recognition
problems. In most of them, actions can be easily arranged in sets of
look-alike actions, each set containing actions similar to each other
but not similar to actions in other sets.

For example, in the KTH dataset (Laptev, 2005) two sets are dis-
tinguishable at first glance: the one consisting of actions boxing,
hand waving and hand clapping and the one consisting of actions
running, jogging and walking. It would take a very bad classifier
to classify a running video as belonging to any action in the first
set, or a boxing video as belonging to any action in the second
set. Taking this into account, it seems inefficient to compute the
V2A distance for every action. It would be much more efficient to
quickly discard the wrong set, concentrating the efforts in choosing
an action within the right set. This is precisely the idea behind our
proposed method.
4. The NBNNTree method

Our method is based on a particular organization of the descrip-
tors in the training dataset. Instead of grouping descriptors accord-
ing to their action (as in NBNN), we group them according to their
action-set. An action-set is just a set of actions (e.g. the set {boxing,
hand waving, hand clapping}).

The method requires a training step in which all actions are or-
ganized in an action-set tree. An action-set tree is a binary tree in
which every subtree is labeled at its root with an action-set. For
the purposes of our method, we are interested only in those
action-set trees which are valid. A valid action-set tree t can be
described as follows. If t is a leaf, then it should be labeled with
an action-set consisting of a single action. If t is not a leaf, then
the following conditions should be met:
owing for fast action recognition. Pattern Recognition Lett. (2013), http://
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1. Let s be the action-set label of t. Let sl and sr be the action-set
labels of t’s left and right subtree respectively. Then, fsl; srg
should be a partition of s, with jslj ¼ bjsj2c and jsrj ¼ djsj2e where
j:j denotes cardinality, and b:c and d:e are the floor and ceiling
functions respectively.

2. The left subtree of s should be a valid action-set tree.
3. The right subtree of s should be a valid action-set tree.

Note that a valid action-set tree will always be balanced. Fig. 1
shows two examples of action-set trees. Every action-set in the
picture is tagged with a letter for future reference. Fig. 1(b) shows
an invalid tree. The tree is invalid for several reasons. First, fB;Cg is
not a partition of A because they have an action in common
(boxing). Also, jCj– djAj=2e. Second, C has an action (boxing) that
cannot be found neither in D or E. Therefore, fD; Eg is not a partition
of C. And third, B is at a leaf, but it contains more than one action.

Based on the action-set tree, a descriptor tree is built. A descrip-
tor tree is just an action-set tree in which every subtree stores at its
root descriptors of the actions in its associated action-set. Descrip-
tors are selected randomly from the training descriptor dataset. For
example, for the tree of Fig. 1(a), the node labeled with B stores at
its root descriptors selected randomly from the training dataset of
actions boxing and running. Likewise, the node labeled with C
stores at its root descriptors selected randomly from the training
dataset of boxing. The exact number q of descriptors to be selected
is chosen based on the confusion matrix obtained from our NBNN
tests. Let s; sl and sr be defined as before, let z be the number of
descriptors per action in the training dataset, and m the confusion
matrix for NBNN. The degree of confusion between actions in sl and
actions in sr is given by dðsl; sr ;mÞ ¼

P
ða;bÞ2ðsl�srÞmða; bÞ þmðb; aÞ. To

compute q, we first normalize dðsl; sr ;mÞ, dividing it by 2jsljjsr ja,
where a is just a reasonable confusion value between actions
(we used 1% for all our experiments). Let y be the normalized value
obtained as a result of this division. We then set q ¼ yz. Whenever
q is larger than z (i.e. whenever y > 1), we simply discard it and use
z instead.

Algorithm 1. NBNNTree algorithm

NBNNTreeðd1; . . . ; dn; tÞ
Returns an action for a given set of descriptors d1; . . . ; dn and
a descriptor tree t Steps:
1. If t is a leaf, return the only action in action� setðtÞ.
2. Let L ¼ descriptorsðleftðtÞÞ and R ¼ descriptorsðrightðtÞÞ.
3. 8di compute the nearest neighbor of di in L : NNLðdiÞ.
4. Compute DL ¼

Pn
i¼1kdi � NNLðdiÞk2.

5. 8di compute the nearest neighbor of di in R : NNRðdiÞ.
6. Compute DR ¼

Pn
i¼1kdi � NNRðdiÞk2.

7. If DL < DR; tnext ¼ leftðtÞ, else tnext ¼ rightðtÞ.
8. Recursively call NBNNTreeðd1; . . . ; dn; tnextÞ.
Given a query video, both its local descriptors and the descrip-
tor tree are used by the NBNNTree method for classification. The
algorithm for the NBNNTree classifier is detailed in Algorithm 1.
For a given descriptor tree t, we use leftðtÞ and rightðtÞ to designate
the left and right subtrees of t respectively, action� setðtÞ to desig-
nate the label at the root of t and descriptorsðtÞ to designate the set
of descriptors stored at the root of t.

The algorithm starts from the root of the tree and descends one
level at a time. At each level, the distance DL between the video and
the action-set in the left subtree is compared to the distance DR be-
tween the video and the action-set in the right subtree. The algo-
rithm descends to the subtree with smaller distance and the
process is repeated. When a leaf is reached, its action-set (consist-
ing of a single action) is returned.
Please cite this article in press as: Ubalde, S., et al. Efficient descriptor tree gr
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4.1. Building the action-set tree

Our method avoids the sequential strategy of the NBNN meth-
od. This was motivated by the observation that actions can be ar-
ranged into increasingly smaller sets of look-alike actions,
yielding an action-set tree. But the question remains of how to
build that tree. In Ubalde and Goussies (2012) we used a method
based on the confusion matrix from our NBNN tests. At each step,
the algorithm evaluated every possible partition of a set of actions
s into a pair of sets sl and sr . The sets sl and sr were chosen in such a
way that actions belonging to the same set were often confused
with each other by the NBNN classifier.

The brute force nature of the method presented in Ubalde and
Goussies (2012) make it a reasonable option for databases with a
low number of actions. When working with a larger number of ac-
tions, however, a better strategy is required. As another disadvan-
tage, the method relies heavily on the results of another method
(NBNN). In order to avoid these problems, we present an heuristic
to efficiently estimate the similarity of two given actions based
solely on the descriptors computed for each of them.

Given two actions A and B, we define the dissimilarity hðA;BÞ
between them as:

hðA;BÞ ¼
X
d2Aþ
kd� NNBðdÞk2 þ

X
d2Bþ
kd� NNAðdÞk2

; ð2Þ

where Aþ is the set of all descriptors extracted from videos of action
A; Bþ is the set of all descriptors extracted from videos of action
B; NNAðdÞ is the nearest neighbor of d within the descriptors of ac-
tion A and NNBðdÞ is the nearest neighbor of d within the descriptors
of action B.

While this approach works well for databases with a low num-
ber of descriptors per action, it is computationally too expensive
for real world problems (where the amount of descriptors required
per action is usually very large).

In order to speed this up, we take into account only a small sub-
set of Aþ and Bþ to compute hðA;BÞ. The criteria used to select this
subset is not trivial. We found that randomly choosing descriptors
does not work well enough. This is probably due to the large num-
ber of non-informative descriptors present in typical databases. As
shown in Boiman et al. (2008), the most frequent descriptors are
the ones that provide low class discriminativity.

We propose using a smarter criteria to build the subset. Follow-
ing Yuan et al. (2009), we choose descriptors based on its purity.
Denote by A� the set of all descriptors extracted from videos of
an action different from A. For a given descriptor d, denote its �-
nearest neighbors in A as NNA

� ðdÞ ¼ fdj 2 Aþ : kd� djk 6 �g. The
set of all d �-nearest neighbors is denoted as: NN�ðdÞ ¼
fdj 2 Aþ [ A� : kd� djk 6 �g. For a given d 2 Aþ, the �-purity of d

is defined by w�ðdÞ ¼ jNNA
� ðdÞj

jNN�ðdÞj, where j:j denotes cardinality. Note

that, since NNA
� ðdÞ# NN�ðdÞ, we have 0 < w�ðdÞ 6 1. Basically,

w�ðdÞ describes the purity of d as a descriptor of its class. The larger
w�ðdÞ, the purer d is. When computing the dissimilarity between
two actions A and B, we consider only the p purest descriptors of
Aþ and Bþ, with p� jAþj ¼ jBþj. In other words, we define the
approximate dissimilarity between two actions A and B as:

hpðA;BÞ ¼
X
d2Aþp

kd� NNBðdÞk2 þ
X
d2Bþp

kd� NNAðdÞk2
; ð3Þ

where Aþp and Bþp are the sets containing the p purest descriptors of
Aþ and Bþ respectively.

Algorithm 2 shows how we obtain a partition of a given
action� set s into a pair of action� sets sl and sr . The method greed-
ily chooses an action and moves it from sr to sl. The action is chosen
owing for fast action recognition. Pattern Recognition Lett. (2013), http://
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Fig. 1. Examples of action-set trees. (a) A valid tree. (b) An invalid tree.
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based only on its similarity with the actions in sl. This procedure is
repeated until sl and sr have the same number of elements.

Algorithm 2. Splitting an action-set

SplitAction� SetðsÞ
Split s into two action-sets sl and sr .
Steps:
1. Randomly choose an action A in s and set sl ¼ fAg and
sr ¼ s� fAg.
2. Repeat while jslj < jsr j
2.1 Find the action B in sr such that

P
A2sl

hpðA;BÞ is minimal.
2.2 Let sl ¼ sl [ fBg and sr ¼ sr � fBg.
Finally, the steps to build the action-set tree are shown in Algo-
rithm 3. The method partitionates the given action-set s into a pair
of action-sets sl and sr , using Algorithm 2, and recursively builds
trees from sl and sr .

Algorithm 3. Building the action-set tree

BuildTreeðsÞ
Builds an action-set tree t from a given set of actions s.
Steps:
1. action� setðtÞ ¼ s.
2. If jsj ¼ 1 return.
3. Split s into two subsets sl and sr , using the method
explained in Algorithm 2.
4. leftðtÞ ¼ BuildTreeðsl;mÞ; rightðtÞ ¼ BuildTreeðsr ;mÞ.
4.2. Time complexity of the NBNNTree method

As shown in the previous section, NBNNTree performs several
steps at each level of the tree (numbered from 1 to 8 in Algorithm
1). Of these steps, 1, 2, 7 and 8 are clearly Oð1Þ. Step 3 computes
NNLðdiÞ for each of the n descriptors of the query video. Following
Boiman et al. (2008), we use an approximate nearest neighbor
algorithm (Muja and Lowe, 2009) for the computation of NNLðdiÞ.
The expected time for this nearest neighbor search is logarithmic
in jLj. Thus, step 3 is Oðn logðjLjÞÞ. Step 4 is clearly OðnÞ, because
it involves only Oð1Þ computations over n values. Step 3 to 4 to-
gether are therefore Oðn logðjLjÞÞ. Likewise, steps 5 to 6 are
Oðn logðjRjÞÞ. In our experiments, every node in the descriptor tree
stores at most z descriptors, where z is the number of training
descriptors for a single action. Replacing jLj and jRj for z in the pre-
vious expressions yields a time complexity of Oðn logðzÞÞ for the
steps 1–8 performed at each level of the tree. Since t is built from
a valid action-set tree, its height is logarithmic in the total number
of actions k. Thus, the time complexity of the NBNNTree classifier is
Please cite this article in press as: Ubalde, S., et al. Efficient descriptor tree gr
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OðlogðkÞn logðzÞÞ. This is a substantial speed-up over the NBNN
method, which has a time complexity of Oðkn logðzÞÞ.
5. Experiments

In this section we evaluate the NNBNN and NBNNTree methods
on two well-known action recognition datasets: the KTH dataset
(Laptev, 2005) and the IXMAS dataset (Zelnik Manor et al., 2006).

Following the procedure in Dollar et al. (2005), we carry out a
training stage to build a descriptor dataset per action. Specifically,
given an action A we perform the following steps for every training
video V labeled with A:

1. Detect n interest points in V.
2. Compute n descriptors d1; d2; . . . ; dn for the detected interest

points.
3. Store d1; d2; . . . ; dn in the dataset for action A.

Steps 1 and 2 are implemented as suggested in Dollar et al.
(2005). We detect interest points using a Gaussian filter over the
spatial dimension and a Gabor filter over the temporal dimension.
Patches around interest points are represented with image gradi-
ents. PCA is used to reduce descriptor dimensionality.

When classifying a video V, we first extract n descriptors from V
as in the training stage. Then, based on the extracted descriptors
and the descriptor datasets from the training stage, an action is
chosen using NBNN or NBNNTree. Parameters for the approximate
nearest neighbor search were set as proposed in Dollar et al.
(2005).

The action-set and descriptor tree used by NBNNTree were built
as shown in Section 4.1. A key aspect of the method followed to
build the descriptor tree is the criteria chosen to select the number
of descriptors per node. In Section 5.1 we explain the experiments
performed to validate this criteria.
5.1. Choosing the right number of descriptors per node

As explained in Section 4, every subtree in a descriptor tree
stores at its root descriptors of the actions in its associated ac-
tion-set. The exact number q of descriptors to select from the train-
ing dataset is chosen based on the confusion matrix from the
NBNN method. Given tl and tr the left and right subtrees of any gi-
ven subtree, the number of descriptors to store at their roots is
determined by the degree of confusion between the action-set
associated with tl and the action-set associated with tr . The bigger
the degree of confusion, the larger the number of descriptors. This
was inspired by the intuition that action-sets that are harder to
distinguish require more descriptors for correctly classifying a
new video.
owing for fast action recognition. Pattern Recognition Lett. (2013), http://
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Fig. 3. Example frames from the KTH dataset: walking (3a), jogging (3b), running (3c), boxing (3d), hand waving (3e) and hand clapping (3f).
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In order to verify this intuition, we carry out a series of experi-
ments that study the influence of the number of descriptors on the
classification accuracy. For a given node, we gradually change
the number of descriptors stored at its subtree roots, computing
the average accuracy for that node over all the training videos.
Beginning at 1% of the total number of descriptors, we compute
the average accuracy for different percentages of the descriptor
dataset. Results for three representative nodes are shown in Fig. 2.

As expected, accuracy variation is higher for those action-sets
that are often confused with each other by NBNN. For example, ac-
tion-sets fjoggingg and frunningg are among the most confusing
ones. For those action-sets, accuracy ranges from 67% when using
1% of the original descriptors to 85% when using the whole
descriptor dataset. In contrast, accuracy variation is low for
action-sets that are easily distinguishable from each other. For
example, videos associated with {boxing, hand clapping, hand
waving} are usually very different than videos associated with
frunning; jogging;walkingg. This is reflected in a variation of less
than 2% in accuracy (from 98.75% when using 1% of the descriptors,
to 99.5%, when using 100% of the dataset).
Please cite this article in press as: Ubalde, S., et al. Efficient descriptor tree gr
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These results support our idea of using a low number of descrip-
tors for those action-sets that NBNN finds hard to distinguish from
each other. Since using a high percentage of the dataset will not
imply a significant improvement on classification accuracy, it
seems reasonable to use just a small part of it and achieve better
computation times.

5.2. KTH dataset

The KTH dataset contains 6 actions, performed several times by
25 actors in four different scenarios of appearance, illumination
and scale. Both camera location and orientation of actors remain
constant for most videos. In total, the dataset consists of 2391 vid-
eos. Fig. 3 shows some example frames.

We used leave-one-out cross-validation (LOOCV) on the actors.
That is, videos were divided into 25 sets, each including exactly the
videos of one actor. In each of 25 experiments, the classifier was
trained using the videos from 24 sets and tested on the videos from
the remaining set. We report average precision (both global and by
action) over the 25 experiments.
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Fig. 4. Confusion matrices for the KTH dataset using NBNN (a) and NBNNTree (b).

Table 1
Average precision (in %) of different methods
on the KTH dataset.

Method Precision

Dollar et al. (2005) 80.66
Liu and Shah (2008) 94.16
Laptev et al. (2008) 91.8
Nowozin et al. (2007) 84.72
NBNN 91.73
NBNNTree 90.58
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Fig. 4(a) shows the confusion matrix for the NBNN method.
Average precision is 91.73%. Fig. 4(b) shows the confusion matrix
for the NBNNTree method. Our method obtains similar results to
those of NBNN for all the actions, and achieves 90.58% average
precision.

Table 1 compares our results on the KTH dataset with those of
existing approaches. Despite its simple training stage, NBNN
Fig. 5. Example frames for the dataset IXMAS: walk (a), w
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achieves a state-of-the-art performance. NBNNTree shows similar
results, outperforming most of the previous approaches.

The average running time for classification is reduced by 10%
when using NBNNTree, compared to NBNN. This improvement
came almost entirely from the strategy used to select the number
of stored descriptors at each node, detailed in Section 4. For some
of the nodes, only 8% of the total number of descriptors for that
node action-set were enough to achieve the results reported in
Fig. 4(b), which is impressive. Because of the small number of ac-
tions of the KTH dataset, the main improvement in time complex-
ity provided by NBNNTree is not fully exploited.
5.3. IXMAS

The IXMAS dataset contains 13 actions, performed 3 times by
12 actors. Each action execution was recorded by fixed cameras
at 5 different positions. We use the videos of the 4 cameras usually
considered in literature. Actors arbitrarily chose position and
ave (b), punch (c), kick (d), point (e) and pick up (f).
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Table 2
Average precision (in %) of different methods on the IXMAS dataset.

Method Cam 0 Cam 1 Cam 2 Cam 3

Weinland et al. (2007) 65.4 70 54.3 66
Yan et al. (2008) 72 53 68 63
Liu and Shah (2008) 76.67 73.29 71.97 72.99
NBNN 79.4 76.15 74.04 74.13
NBNNTree 78.8 75.83 71.07 71.75
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orientation. The high number of actions and the great variety both
in appearance and orientation make IXMAS one of the most
challenging datasets. Fig. 5 shows some example frames.
Fig. 6. Confusion matrices for the IXMAS dat

Fig. 7. Average precision by action for the NBNN metho
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We used 6-fold cross-validation on the actors. Namely, videos
were divided into six sets, each including exactly the videos of
two actors. In each of six experiments, the classifier was trained
using the videos from five sets and tested on the videos from the
remaining set. We report average precision (both global and by ac-
tion) over the six experiments.

We used two testing schemes suggested in Liu and Shah (2008):
(1) learning from four cameras and (2) learning from three
cameras. In both cases we used only one camera for recognition.

In the first scheme, all the videos taken by the four cameras
were used to train the classifier. The trained classifier was then
tested on the videos of one designated camera. Table 2 shows
the average precision values for NBNN and NBNNTree, and
aset, using NBNN (a) and NBNNTree (b).

d, training with 4 cameras on the IXMAS database.
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Table 3
Comparative results on the IXMAS dataset. Average precision (in %) is shown
according to the camera used for recognition. Videos from three cameras were used
for training.

Method Camera 0 Camera 1 Camera 2 Camera 3

Liu and Shah (2008) 72.29 61.22 64.27 70.99
NBNN 74.2 72.58 56.12 64.31
NBNNTree 74 68.5 52.21 66.13
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compares them with the results achieved by other approaches.
Both NBNN and NBNNTree perform better than the rest of the
methods.

The best recognition performance is obtained with cameras 0
and 1. This is probably due to the higher level of self occlusion pre-
sented by cameras 2 and 3. This makes distinction between actions
involving subtle arm movements more difficult (for example, ac-
tions scratch head and wave are often confused with each other).
Motions usually appear more salient in cameras 0 and 1.

Fig. 6(a) shows the confusion matrix for the NBNN method.
Average precision is 82.18%. Fig. 6(b) shows the confusion matrix
for the NBNNTree method. Our method obtains similar results to
those of NBNN for most actions, and achieves 81.34% average pre-
cision. Fig. 7 shows the average precision for each action using
NBNN.

In the second scheme, we train the classifier using the videos
from three cameras, and use the videos from the remaining camera
to test it. This scheme is more challenging than the previous one,
because there are no videos registered with the testing camera
among the training set. Table 3 shows the average precision values
for NBNN, NBNNTree and the approach in Liu and Shah (2008). The
latter outperforms both NBNN and NBNNTree for cameras 2 and 3,
but achieves lower precision for cameras 0 and 1. Our method
shows similar performance to NBNN for all the cameras.

6. Conclusions

The usage of Instance-to-Class distance and unquantized
descriptors greatly improves performance of non-parametric
methods. This make it possible to achieve state-of-the-art results
using simple classifiers like those based on nearest-neighbor. How-
ever, existing methods require a huge number of training features
to obtain reasonable accuracy. This leads to high computation
times, making them not-suitable for real world problems.

We focused on a particular method (NBNN) and proposed an
alternative approach (NBNNTree) that significantly reduces its
time complexity while achieving similar classification accuracy.
Our approach benefits from the good qualities of non-parametric
methods, and handles big training datasets in reasonable times.
On the challenging IXMAS dataset, the average running time is re-
duced by 50% when using our method, compared to NBNN. The
training dataset has to be structured in a specific way in order to
Please cite this article in press as: Ubalde, S., et al. Efficient descriptor tree gr
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be used by NBNNTree. We presented an efficient method to orga-
nize descriptors and explored the influence of an important param-
eter of that method on classification accuracy.
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