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Abstract In this work, we present a new real-time image-

based monocular path detection method. It does not require

camera calibration and works on semi-structured outdoor

paths. The core of the method is based on segmenting

images and classifying each super-pixel to infer a contour

of navigable space. This method allows a mobile robot

equipped with a monocular camera to follow different

naturally delimited paths. The contour shape can be used to

calculate the forward and steering speed of the robot. To

achieve real-time computation necessary for on-board

execution in mobile robots, the image segmentation is

implemented on a low-power embedded GPU. The validity

of our approach has been verified with an image dataset of

various outdoor paths as well as with a real mobile robot.

1 Introduction

One of the current challenges of mobile robotics is to

achieve complete autonomy, i.e. to develop a robot that can

carry out its tasks without the need of a human operator.

The ability to safely move in one’s environment is funda-

mental for an autonomous mobile robotic system. To

navigate in the real world, a mobile robot needs not only to

avoid collisions, but also to detect those portions of the

world that are forbidden, dangerous or impossible to tra-

verse. For a large class of terrestrial reactive navigation

problems, the world in front of the robot can be modeled as

a flat plane, and any detected point that deviates from the

planar model can be considered to be an obstacle. Many

obstacle avoidance algorithms use active sensors such as

sonars [4], laser range finders [33], radars [15] and 3D

cameras based on time of flight [21] and structured light

[14]. These sensors are inherently suited for the task of

obstacle detection and can be used easily because they

directly measure the distances from obstacles to the robot.

However, ultrasonic sensors suffer from specular

reflections and poor angular resolution. Standard laser

range finders are precise, but they only provide measure-

ments in one plane. Three-dimensional laser rangefinders,

as well as most radars, are not suitable for small robot

applications because of size, weight and energy con-

sumption. Most 3D cameras illuminate the perceived scene

by infrared light and do not work outdoors due to the

presence of sunlight. Since All active sensors transmit

signals, these might interfere with each other if multiple

sensors or multiple robots are present in the same envi-

ronment. Moreover, the distance measurements provided

by these sensors are not suitable to distinguish between

different types of ground surfaces or recognize the shape of

a road without the presence of bounding structures such as
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surrounding walls. For all these reasons, active range

sensors are not sufficient by itself for solving the problem

of outdoor road navigation.

On the other hand, visual sensors are affordable, small

and can provide higher resolution data and virtually

unlimited measurement ranges. They are passive and,

therefore, do not interfere with each other. Most impor-

tantly, visual sensors can not only detect obstacles, but also

identify forbidden areas or navigate mobile robots with

respect to human-defined rules (i.e. keep off the grass).

Such forbidden areas are not obstacles, since they are in the

same plane as the path, but should be considered as non-

traversable.

There are several issues in using vision for path fol-

lowing. For one, road appearance varies from place to

place, which makes difficult to define what a road is.

Consequently, many approaches rely on the teach-and-

replay paradigm [6, 18, 30] to navigate through previously

visited areas. These systems require the robot to traverse a

specific environment during a human-guided training step

so it learns the environment before it can navigate it

autonomously. Typically, the robot extracts visual features

such as SIFT [20] or SURF [1] and stores them in a map.

During the replay or test stage, the robot compares the

stored visual features with what the ones currently seen to

estimate its position and determine its control variables.

The teach-and-replay paradigm has some drawbacks.

First the robot workspace is limited only to the regions

visited during the training step. In addition, several training

steps have to be performed to deal with variable environ-

ment appearance caused by varying illumination or sea-

sonal changes. The training process requires human

intervention every time a robot moves to a new workspace,

which can become tedious for large outdoors environ-

ments. Moreover, systems based on the teach-and-replay

paradigm assume that the environment does not change

over time. All these mentioned drawbacks limit the appli-

cability of the teach-and-replay approach. Therefore, to

achieve a completely autonomous navigation system, it is

desirable to remove any human intervention and cope with

unknown environments, without any a priori information

[3, 9].

The aim of this paper is to facilitate a mobile robot

equipped only with a monocular camera to autonomously

drive through semi-structured outdoors paths, avoiding

obstacles should they appear. The proposed method is

based on segmenting the images captured with the camera

and classifying each region to infer a contour of traversable

space. The robot performs all processing on-board, given

real-time constraints imposed by the robot motion. At this

point, the use of specific hardware to achieve real-time

image processing becomes critical. In this paper, we

present an embedded solution based on a low-power

Graphics Processing Unit (GPU) that it is mounted on-

board the robot. A depiction of the path detection system

running on-board the mobile robot can be seen on Fig. 1.

GPUs have lately gained considerable popularity as

cheap, powerful and programmable general purpose pro-

cessors outside their original application domain. Recent

models are able to sustain over hundreds of GFLOPs and

due to their highly parallel architecture, GPUs are attrac-

tive platforms for intensive data-parallel algorithms. This

kind of hardware is, therefore, very well suited for on-

board mobile robot with visual-based perception. Although

general-purpose computing on graphics processing units

(GPGPU) has been an active area of research for decades,

the introduction of Compute Unified Device Architecture

(CUDA) and CTM has finally brought it within reach of a

broader community, giving programmers access to dedi-

cated application programming interfaces (APIs), software

development kits (SDKs) and GPU-enabled C program-

ming language variants.

This paper will consider the optimization of an existing

GPU segmentation algorithm using CUDA. This segmen-

tation results in a numbers of super-pixels or segments that

can be classified as traversable or non-traversable space

given an example of what the traversable space looks like

(using a sub-region of the image corresponding to the area

directly in front of the robot). The implementation of the

Fig. 1 ExaBot robot performing autonomous navigation in an

unknown outdoor environment. The horizon line (red) is detected

as well as contour of navigable space (blue). Middle points of the road

are computed (yellow) to guide the robot. To achieve real-time

constraints imposed by robot motion, the image segmentation is

implemented on a low-power embedded GPU (on top of the robot)
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optimized segmentation algorithm is compared to the ori-

ginal GPU version and with another commonly used

algorithm running on a recent CPU.

After individual classification, the resulting positively

classified group of super-pixels nearest to the example area

is assumed to correspond to the most likely navigable path.

Finally, by computing the contour of this area, a motion

line can be extracted and used for guiding the robot through

the path. A control law is defined that restricts the robot to

remain inside this detected navigable area. From these steps,

the most computationally demanding step corresponds to the

image segmentation. Therefore, we focus on optimizing this

portion of the method to allow real-time execution.

The outline of the paper is as follows: in Sect. 2, the

related works are mentioned. Section 3 gives a brief

overview of the proposed method. In Sect. 4, the horizon

detection algorithm is described. Section 5 discusses dif-

ferent approaches for image segmentation, justifies the

choice of Quick shift and presents an implementation

optimized for GPU. Section 6 deals with the problem of the

classification of each super-pixel in traversable and non-

traversable. Section 7 explains how to extract the road

contour from the classified image. Section 8 proposes a

control law to maintain the robot in the middle of the road.

Section 9 shows experimental results with an image dataset

of various outdoor paths as well as with a real mobile

robot. Finally, Sect. 10 concludes the paper.

2 Related work

There are several previous works that propose autonomous

vision-based path following methods targeted towards

outdoor environments using monocular cameras as their

main sensor and without requiring a training step. Most of

these try to recognize the road’s appearance as well as its

boundaries without any a priori information. Some basic

methods rely on recognizing road edges that separate the

road from its surroundings by identifying the lines in the

image (for example, using the Hough transform) [37]. But

this approach is not valid for semi-structured outdoor roads

where the edges are not easily distinguishable. In some

cases, the road is simply estimated as a geometrical shape

as in [28] where an histogram is utilized for differentiating

between the road region defined as a triangle and its two

flanking areas. In addition, there is also a group of tech-

niques that try to recognize the road using the road’s

vanishing point [16, 22, 24, 27]. In general, these tech-

niques rely on detecting converging edge directions to vote

for the most likely vanishing point. The biggest problem of

this type of approach appears when the road is not straight

but curved or its edges are not well structured. Others

systems detect the road by performing color and texture

segmentation [2, 19]. Again the downside of these methods

is that they usually involve computationally expensive

algorithms that could not be implemented on a mobile

robot with limited computational equipment. Finally, there

are some works that merge both image segmentation and

vanishing point detection. In [5], better results are reached

and computation is performed on-board in a mobile robot,

but the robustness of the system depends on the correct

computation of the vanishing point.

Other group of works performs visual path following

using pixel classification. By assuming that the robot is

operating on a flat surface, the problem can be reduced to

classifying pixels into two classes: traversable or non-tra-

versable. This approach that is suitable for robots that

operate on benign flat terrains has been used in a variety of

works for indoor navigation. In [34], classification is done

at the pixel level. First, the image is preprocessed with a

Gaussian filter. Second, the RGB values are transformed

into the HSV (hue, saturation, and value) color space. In

the third step, an area in front of the mobile robot is used

for reference and valid hue and intensity values inside this

area are histogrammed. In the fourth step, all pixels of the

input image are compared to the hue and intensity histo-

grams. A pixel is classified as an obstacle if its hue or

intensity histogram bin values are below some threshold.

Otherwise the pixel is classified as belonging to the ground.

This method is fast, as no complex computation is

involved. The main drawback of this method is its low

robustness to variable illumination and noise.

Due to this inconveniences, the idea of segmenting the

image into a number of super-pixels (i.e. contiguous

regions with fairly uniform color and texture) arises. In

[29], a graph-based image segmentation algorithm [11] is

used for indoor navigation in structured environments.

Initially, an image is represented simply by an undirected

graph, where each image pixel has a corresponding vertex.

The edge is constructed by connecting pairs of neighboring

pixels. Each edge has a corresponding weight, which is a

non-negative measure of the dissimilarity between neigh-

boring pixels. Beginning from single-pixel regions, this

method merges two regions if the minimum intensity dif-

ference across the boundary is greater than the maximum

difference within the regions. Once the image is over-

segmented in super-pixels, each one is labeled as belonging

to the ground or non-ground region using the HSV histo-

gram approach. While this method is more stable and

robust, it is quite computationally expensive, so the

exploration algorithm that uses this method has to stop

the robot periodically to capture and process images of the

workspace. Using the same image segmentation algorithm,

in [36] super-pixels that are likely to be classified equally

are grouped into constellations. Constellations can then be

labeled as floor or non-floor with an estimator of
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confidence depending on whether all super-pixels in the

constellation have the same label. This is a more robust

method, but computationally expensive. Again, the robot

must be stopped periodically to perform computations.

Finally, there is another group of systems that perform

visual path following using a probabilistic approach. In [8],

a visual model of the nearby road is learnt using an area in

front of the system as a reference. A model is built which is

subsequently used to score pixels outside of the reference

area. The basic model of the road appearance is a mixture

of Gaussians (MOG)-model in RGB space. This approach

was used by the navigation system, which won the DARPA

Grand Challenge in 2005.

In this paper, some ideas from previous works men-

tioned above are used to develop a new method for real-

time image-based autonomous robot navigation for semi-

structured outdoor roads. In outdoor semi-structured envi-

ronments, the traversable area is often cluttered by small

objects with a color of the forbidden area, e.g. grass, tree

leaves, water or snow in the middle of the road. In this

case, most classification methods working at a pixel level

would perform worse than methods which first segment the

image to several areas with similar texture or color. Since

such image segmentation is computationally expensive, we

propose to use a GPU-based embedded solution to achieve

the real-time constraints imposed by the robot motion. To

achieve a robust classification of the superpixels, a prob-

abilistic approach similar to [8] is used. The main differ-

ence of the proposed method is that it works in HSV color

space instead of RGB.

3 Method overview

The proposed method processes an input image to obtain a

robot control command as its final output (Fig. 2). Each

step of the pipeline is briefly described here and in detail in

the following sections:

3.1 Horizon detection

The input image (Fig. 2a) is analyzed to find the horizon

(Fig. 3) and then cropped such that only the region below it

is fed to the rest of the pipeline.

3.2 Color space conversion and smoothing

Along the RGB cropped image, an HSV version is also

obtained. In the following steps, the HSV version is almost

always used, unless specified. A median-blur filter is applied

(a) Input (b) Cropped & blured (c) Segment Map (d) Per-pixel Hue

(e) Per-segment Mean Hue (f) Per-pixel Value (g) Per-segment Mean
Value

(h) Per-pixel Saturation (i) Per-segment Mean Satu-
ration

(j) Ground example-classes with
coverage in %

(k) Classified segments
mask

(l) Processed binary mask (m) Contour and control
law

Fig. 2 Pipeline description of the complete road-detection method: a
input image as acquired from the camera, b cropped image below

automatically detected horizon, c segment map. For each segment,

mean and covariance are computed: e, i, g per-segment hue,

saturation and value means (per-pixel hue, saturation and value on

d, h and f, for reference). Binary mask (k) obtained from classifi-

cation using ground models from ROI (j) is processed (l) and used for

extracting road-contour and control values (m)
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to the RGB image (Fig. 2b), to reduce noise, without

smoothing edges. A blurred HSV version is also obtained.

3.3 Segmentation

The RGB version of the blurred image is segmented. This

step produces a segment map (Fig. 2c), which consists of

an image of labeled pixels. Segment processing. The map

of segments is processed to build a list of segments or

super-pixels, which describes groups of pixels with the

same label. While building this list, mean and covariance

(both in RGB and HSV color spaces) are computed for

each segment (Fig. 2d–i).

3.4 Classification

A rectangular region of interest (ROI) corresponding to the

area directly in front of the robot gives the system an example

of the road appearance (Fig. 2j). The RGB/HSV information

of this region is modeled by a mixture of gaussians (MOG).

By comparing each super-pixel in the image to this MOG

model, a classification criteria are applied to decide whether a

super-pixel belongs to the road or non-road classes. The

result of this classification is a binary mask (Fig. 2k).

3.5 Contour extraction

From all closed regions classified as road, the most likely

one is selected and a morphological opening filter is

applied to ‘‘close’’ small gaps (Fig. 2l). The contour of this

final region is extracted.

3.6 Control law

From the previous road contour, middle points are com-

puted (Fig. 2m). These points are then used to compute the

linear and angular speeds of the robot.

4 Horizon detection

A fast horizon detection algorithm is used to find the area

of the image where the horizon line is located. This horizon

line implies that the portion of the image above does not

need to be processed and, therefore, can be ignored for the

rest of the computation, considerably reducing execution

time. While it is possible to fix this value in advance,

automatic horizon detection allows the robot to face uphill

or downhill paths without either disrupting road detection

or negatively affecting performance. While on outdoor

roads side motion may also be present, this is case is not

considered on this work and was not found during

experiments.

In [8], authors propose an image-based horizon detec-

tion algorithm which rests on two basic assumptions: (1)

the horizon line will appear approximately as a straight line

in the image; and (2) the horizon line will separate the

image into two regions that have different appearance, i.e.

sky pixels will look more like other sky pixels and less like

ground pixels, and vice versa [10]. The same assumptions

are used in other image-based horizon detection algorithms

[23] and are valid for the case of autonomous vehicles that

cross open areas or for unmanned aerial vehicles. However,

the second hypothesis may not be true for semi-structured

outdoor roads, where it is common that pixels above the

horizon line correspond to objects, such as plants, trees,

cars, buildings or even people rather than only sky, and

cannot be represented with the same model.

Thus, instead of using the second hypothesis, in this

work we assume that the horizon line will be more or less

parallel to the bottom of the image, which is valid for

robots that operate on flat or small slope terrains. Based on

this assumption we define the horizon as the area of the

image where the greatest change in pixel intensity over the

Y axis direction is detected. We use the Sobel filter as a

discrete differentiation operator to compute an approxi-

mation of the gradient of the image intensity in Y axis

direction. Then, we apply the Otsu thresholding method

(OTM) to the image derivative to segment the image into

two classes and, therefore, obtain a binary image. OTM

finds the best threshold which maximizes interclass vari-

ance and minimizes intraclass variance. This is very proper

(a) Y-image derivative (b) Otsu threshonding

(c) Erode (d) Horizon detection

Fig. 3 Pipeline description of the horizon detection algorithm: a
Sobel operator is first applied to the input image to obtain Y-image

derivative, b Otsu thresholding is used to transform Y-image

derivative to binary, c an erosion filter is applied to reduce noise

and remove thin lines, d a histogram is computed to find the sub-

image where the horizon line is located

J Real-Time Image Proc

123



for road detection, because OTM overcomes the negative

impacts caused by environmental variation, without user

assistance. Moreover, its low computational complexity

makes it suitable for real-time applications and it still

remains one of the most referenced thresholding methods

[31]. There are some previous works that use OTM for

horizon detection [23], but in this paper we apply it to the

image derivative.

Once we have a binary image, we apply an erosion filter

to reduce noise and remove thin lines. Afterwards, we

divide the image in a number of sub-images of equal

heights and compute how many pixels are above the Otsu

threshold for each sub-image, which can be thought of as a

histogram of pixels that belong to the horizon, following

the idea of [23]. For our tests, we use ten sub-images. The

sub-image with the highest amount of foreground pixels is

where the horizon is expected to be. In this work, we

introduced an improvement which consists in performing

two passes: in the second iteration, we start to divide the

image at an offset corresponding to half the height of the

sub-images to overlap the first iteration. This is very useful

for cases where the horizon is in between two sub-images.

With the second pass, in this case, we can find a better sub-

image candidate containing the horizon. To choose

between the two sub-images detected during each pass, the

candidate sub-image with the highest ammount of fore-

ground pixels is chosen as the winner. To optimize com-

putation, we only process the upper half of the image

because we know that the horizon is never below. Inside

the sub-image containing the horizon, the middle hori-

zontal line is assumed to be the most likely horizon in the

image. Figure 3 resumes the horizon finding algorithm.

5 Segmentation methods

As it will be shown, segmentation is the most time-con-

suming step from the complete road detection method. To

satisfy real-time and on-board execution constraints, sev-

eral segmentation methods were considered and tested. In

particular, the Quick shift resulted to be the most adequate

for the computing platform utilized, which consists of an

embedded GPU processor on-board a mobile robot.

5.1 Graph-based

In [11], an efficient graph-based segmentation method is

presented. In general terms, the algorithm first constructs a

fully connected graph where each node corresponds to a

pixel in the image. Pixel intensities between neighbors are

analyzed and edges are broken whenever a threshold is

exceeded. The resulting unconnected sub-graphs define the

segments.

The method works as follows. An undirected graph

G = (V, E) is defined, where V is the set of vertices (pix-

els) and E the set of edges. Each edge ei;j 2 E has an

associated weight wij, which indicates the dissimilarity

between vertices vi and vj. In image segmentation, this

weight is obtained by a difference in pixel intensity, color,

location, etc. The segmentation S can be defined as a par-

tition of V into connected components C 2 S of a graph

G0 = (V, E0), where E0 � E: The end result of the seg-

mentation is such that edges between two vertices in the

same component have relatively low weights, and edges

between vertices in different components have higher

weights.

The main steps of the algorithm are

1. Sort E into p ¼ ðe1; . . .; emÞ; by non-decreasing edge

weight

2. Define initial segmentation S0, such that Ci = vi

3. Repeat for q ¼ 1; . . .;m:

(a) Define vi, vj as the vertices connected by edge eq.

(b) Construct Sq as follows: if vi and vj are in disjoint

components of Sq-1 and w(eq) is small compared

to the internal difference of both those compo-

nents, then merge the two components.

As demonstrated by the authors, the proposed algorithm

is found to have O(m log(m)) complexity for the case of

non-integer weights.

5.2 Quick shift

Quick shift [35] is an example of a non-parametric mode-

seeking algorithm, which aims to estimate an unknown

probability density function. Density estimation is per-

formed by associating data points to modes of the under-

lying probability density function.

One commonly used approach for the estimation is to

use a Parzen-window for the density estimation [25]. For-

mally, given N data points x1; . . .; xN 2 v ¼ R
d; the Parzen-

window approach estimates the probability as:

pðxÞ ¼ 1

N

X

i¼1

N

dðx� xiÞ; ð1Þ

where dðxÞ is commonly referred to as the kernel, which is

generally written as a Gaussian. The mode-seeking algo-

rithm evolves data points xi towards a mode of p(xi), by

means of gradient ascent over the kernel. All points asso-

ciated with the same mode form a cluster.

There are several mode-seeking methods that differ in

the strategy used to evolve that data points towards a mode.

Quick shift is actually an improvement over Medoid shift
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[32] which, in turn, is an improvement over the original

Mean shift [7] method. Medoid shift simplifies this evo-

lution of the data points by restricting the point trajectories

to only move over the data points xi themselves. The

downside of this approach is mainly its slow speed in

practice [35]. Finally, Quick shift simplifies trajectories

even further by not analyzing the gradient and simply

moving data points to their nearest neighbor for which

there is an increment in the density p(x).

In [35], Quick shift is applied to the problem of image

segmentation and it is shown that their proposed method is

considerably faster than Mean shift, and marginally faster

than Medoid shift.

The first step of the Quick shift algorithm involves the

computation of the density for each pixel, by means of

analyzing a local neighborhood inside which contributions

to the density are the most significative. The second step

links every pixel to its nearest neighbor with higher den-

sity. Pseudo-code is presented in Algorithm 1.

5.3 Quick shift on the GPU

In [12], an implementation of the Quick shift algorithm for

execution on GPUs is presented. Due to the independence

in the computation of the density between different pixels,

the authors exploit the parallel execution capabilities of

GPUs for this computation. Using several features of this

kind of computing platforms, the cost associated with the

type of access pattern associated with a parallel imple-

mentation of Quick shift is greatly reduced. Since for the

computation of the density over a single pixel requires

accessing a local neighborhood of pixel densities, the

redundant access of neighbors is managed using the texture

memory space of the GPU which includes efficient

caching.

Compared to a CPU implementation, the proposed

algorithm implementation is between 10 and 50 times

faster when running on medium-range hardware. For the

case of 256 9 256 pixel resolution images, the GPU

implementation works at 10 Hz:

In this work, the Quick shift algorithm running on a

GPU was chosen due to its speed and simplicity. However,

the hardware utilized for experiments by the authors is still

more powerful than what can be found on low-power

embedded platforms commonly present on mobile robots.

Therefore, in this work several simple optimizations were

included in the originally available source-code [13] which

implements the GPU version of the Quick shift algorithm.

The first optimizations that were introduced consist of

careful tuning of the number of concurrent threads exe-

cuted, the registers required for code compilation (which

affects the efficiency of the thread scheduling and thus the

parallelization level), taking into account the capabilities of

the specific card to be used. The second main optimization

that was introduced involves a simpler handling of out-of-

bound accesses which arise when searching the neighbor-

hood of pixels near the edges of the image. In the original

implementation, these were avoided explicitly, where in

our case, the clamping mode of the texture memory is used.

Here, these accesses simply return the nearest valid pixel in

the image (effectively repeating pixels in the image out-

wards). By introducing this change, the code can be sim-

pler and more efficient. Finally, memory accesses in

general were reduced by delaying them up to the point

where they were for certain to be required.

These optimizations reduce computation to the point of

allowing real-time execution on the chosen embedded

platform.

6 Classification method

To achieve a robust classification of the segments, a

probabilistic approach method is used, based on Dahlkamp

et al. [8] with some differences.

In abstract terms, the classification step aims to deter-

mine if a population sample, modeled by a Gaussian

probability distribution Nðl;RÞ; with mean vector l and

covariance matrix R; represents an instance of a more

general model of the road class or not. This road class, in

turn, is represented by a mixture-of-gaussians (MOG)

model. However, in this work, the gaussian elements of this

mixture model are readily available and, therefore, the

global mixture model is not explicitly computed.
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In the following sections, the classification method is

presented in detail.

6.1 Segment model computation

Given a segment composed of N pixels PRGB
i¼1...N represented

as threedimensional vectors in RGB color-space, mean and

covariance are computed as follows:

lRGB ¼
XN

i

PRGB
i

N

RRGB ¼ ðP
RGB
i � lRGBÞðPRGB

i � lRGBÞT

N � 1

ð2Þ

Since individual segments are to be classified using the

HSV color space, mean and covariance need to be

computed for pixels in this representation. However,

computing the average of Hue values from a sample is,

in principle, ill-posed since this channel is actually a

circular measure (can be interpreted as an angle). The

solution utilized was to compute first the RGB mean, and

then convert this RGB value to HSV. Finally, in order to

compute the HSV covariance matrix, the distance between

a population sample and the mean was restricted to angles

less than 180�.

It should be noted that this approach requires the ori-

ginal RGB representation of the image, along with the

computed HSV version. However, the RGB covariance

matrix is not required.

The reason for using the HSV color space is that, in

contrast to RGB, the chrominance and luminance infor-

mation are maintained in separate channels. This provides

better control when selecting thresholds over each HSV

channel and also provides some degree of invariance

between chrominance and luminance.

6.2 Road class model computation

To compute a model for the road class, a rectangular ROI

corresponding the area directly in front of the robot is used

as an example of the road appearance. From this ROI, a

model is extracted. However, this area may contain very

dissimilar information due to textures (e.g. tiles) or outliers

(e.g. grass on the side of the cement road). Therefore, this

area is represented with a MOG model. Given that the

image was already segmented and each segment is mod-

eled with a Gaussian distribution, the elements of the

mixture model are already computed.

The classification step starts by computing the inter-

section of the segments of the image and the rectangular

ROI. Then, segments in this intersection are re-grouped by

similarity by iteratively joining similar models. This sim-

ilarity is defined in terms of the Mahalanobis distance,

defined in this case for two Gaussian distributions. Two

distributions are said to be similar when:

ðl1 � l2Þ
TðR1 þ R2Þ�1ðl1 � l2Þ� 1 ð3Þ

The process of joining similar segments inside this ROI

works iteratively, by merging two segment’s mean and

covariance matrices into one. On each step, for each

segment inside this region, among all other segments that

satisfy Eq. (3), the nearest neighbor in Mahalanobis space

is chosen for merging. This merging by pairs continues

until no more segments can be merged. To merge two

segments with means l1, l2, covariance matrices R1;R2

and number of pixels N1, N2, a new segment is obtained

by:

Nf ¼ N1 þ N2

lf ¼ ðl1N1 þ l2N2Þ=ðN1 þ N2Þ
Rf ¼ ðR1N1 þ R2N2Þ=ðN1 þ N2Þ

With this minimal set of Gaussian models, each segment

in the image can now be classified as belonging to the road

or non-road classes by comparing them to all elements of

this set. Only elements which cover the ROI by more than a

specified threshold c (coverage) are considered. In this

way, small outliers inside the ROI can be ignored. Again,

the notion of similarity is defined as in Eq. (3).

When both grouping similar road segments inside the

ROI and classifiying segments in the complete image, in

Eq. (3) the sum of the covariance matrices is post-pro-

cessed to include the notion of minimum covariance. These

minimums are added in the computation as a way to

increase the threshold used for this classifier from (3), but

allowing to affect each channel of the HSV color space

differently. For the case of re-grouping similar segments,

this allows to be more permissive by relaxing the notion of

similarity. On the other hand, when classifying segments,

these thresholds account for the variance which exists in

the complete visible road, as opposed to only the ROI. This

issue appears frequently since the color of the road changes

smoothly towards the vanishing point.

To apply these minimums to the sum of the covariance

matrices, an eigen decomposition of this resulting matrix is

first obtained:

Rsum ¼ VDVT; ð4Þ

where V is the matrix of eigenvectors and D the diagonal

matrix of eigenvalues. Then, D is modified as

D0i ¼
Di Di [ Ti

Ti else

�

where T is a diagonal matrix of minimum values. Finally, a

new covariance matrix is recomposed using Eq. (4) using

V and D0. It should be noted that the thresholds used for
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grouping road segments do not generally depend on the

environment and can be preset. On the other hand,

thresholds used for classification may need adjusting when

high color variance exists in the complete road.

7 Road contour extraction

The previous classification step produces a binary mask

which distinguishes road from non-road pixels. The goal of

the following step is to extract a contour of the road within

the captured image. With this contour, a simpler road

representation can be used to apply a control law which

will maintain the robot centered.

The binary mask, however, may contain several

unconnected patches of pixels detected as road, since areas

of similar appearance may exist outside but nearby the

navigable area. Therefore, the first task is to identify the

correct patch. Two possibilities were analized: find the

patch which includes the center point of the rectangular

ROI or extract the contour with the largest perimeter.

Experiments have indicated that the latter approach is more

robust.

Once this contour is extracted, a new binary mask

consisting only of the selected patch is generated. This

second mask is then processed with a morphological

opening operation (an erosion followed by a dilation) with

the main purpose of removing peninsulas from the main

patch, which may appear in naturally demarked roads and

should not be included in the following steps. While the

erosion operation may disconnect these patches, the area of

all road regions will be reduced. Therefore, by dilating the

image afterwards, all road areas are again expanded with-

out reconnecting them.

The final road contour is again extracted from the pro-

cessed binary mask.

8 Control law

From the previously determined contour, a virtual road’s

center lane is estimated to maintain the robot centered and

away from road edges. First, by going row-by-row in the

image, the middle point for the current row is obtained by

subtracting the leftmost and rightmost pixel’s horizontal

positions of the road contour. When finished, the list of

middle points is used to compute angular and linear speeds

with a simple and effective control-law, based on previous

[17].

From the list of n horizontal values xi of the i-th middle

point of the detected road region, angular speed x and

linear speed x are computed as follows:

x ¼ a
Xn

i

xi �
w

2

� �

x ¼ bn� jxj
;

where w is the width of the image. The effects of this

control law are such that the robot will turn in the direction

where there is the highest deviation, in average, from

middle points with respect to the image’s center vertical

line. This line can be assumed to be the position of the

camera, which is mounted centered on the robot. Therefore,

whenever a turn in the road or an obstacle is present, the

robot will turn to remain inside the road and avoid the

obstacle. The linear speed of the robot is inversely pro-

portional to the angular speed determined by the previous

computation. This has the effect of slowing down the robot

whenever it has to take a sharp turn.

9 Experimental results

The proposed method was tested experimentally in several

aspects. In terms of performance, computation time was

measured over two distinct platforms (modern laptop and

embedded hardware on-board robot) for the individual

segmentation step and for an iteration of the complete

method. For qualitative analysis, the road detection capa-

bility of the system was evaluated using offline execution

over previously captured images, as acquired by the robot’s

camera during a human-guided step. Finally, online testing

was performed by executing the proposed algorithm on-

board the robot on real-time to assess the closed-loop

behavior.

The robot used for online experiments (and some offline

dataset acquisition) was the ExaBot [26] (Fig. 1), which

features a differential-drive motion and supports different

sensor configurations depending on the needs. For this

work, the robot was equipped with an AT3IONT Mini-ITX

computer, featuring a dual core Intel Atom 330 processor

with an embedded ION nVidia graphics card. This

embedded GPU is CUDA enabled, allowing it to be used as

a GPGPU platform, with 16 cores running at 1.1 GHz

and with 256 MB of RAM. On the other hand, as a refer-

ence, a modern Laptop with an Intel Core i5 at 2.30 GHz

and 4 GB of RAM was also used for performance

measurements.

A firewire camera was used for acquiring images (model

21F04, from Imaging Source) with a 3.5–8mm zoom lens,

set at its widest focal length. While the camera is capable

of capturing images at 640 9 480 px images at 15 fps, a

smaller resolution of 320 9 240 px (at 30 fps) was chosen

since it was enough for proper road detection. This smaller

resolution also decreases computation times.
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9.1 Offline testing

To assess the quality of the algorithm in terms of its ability

to perform road detection, the proposed method was exe-

cuted over more than 1,000 images. Images were obtained

from different sources: some of them were acquired with

the camera mounted on the ExaBot robot (altitude from

ground: 40 cm) while others were acquired by a camera

mounted on a Pioneer 3AT robot (altitude from ground:

70 cm). These datasets depict different situations with

varying difficulty in terms of road distinctiveness from

surrounding areas, road shape, texture and color, under

many lighting conditions including shadows and reflections

and during different seasons.

In Fig. 4, a series of example images acquired over

distinct structured and semi-structured outdoor roads are

presented as obtained by the final step of the proposed

method. In some cases (Fig. 4a–j), the road was clearly

demarked from surrounding elements (cement/gravel with

grass). However, some of these include more difficult sit-

uations consisting of tiles of stones (Fig. 4i, j). Included in

these tests, there are several cases of semi-structured outdoor

roads, involving wet areas with reflections (Fig. 4k–m),

leaves at the sides (Fig. 4n–p), stone roads covered with snow

in winter (Fig. 4q, r) and even dirt roads (Fig. 4s).

9.2 Online testing

For the purpose of analyzing the stability of the proposed

control law along the road detection method when executed

online over a stream of images acquired on real-time by the

camera, the robot was placed on outdoor roads and posi-

tioned in different starting configurations, some of which

consisted on extreme cases which would not be reached

without manual displacement. As an example, a series of

successive frames are presented in Fig. 5. The robot is

initially placed at the side of the road (Fig. 5a), pointing

away from it. After enabling robot control, the robot soon

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Fig. 4 Example final images processed offline, as obtained from

several datasets: the green rectangle represents the ROI used for

extracting road appearance samples, the yellow line corresponds to the

automatically detected horizon, the blue contour delimitates the

detected ground region, yellow points correspond to road middle-

points from which control law is computed, small bars in top-left

show the control law output for linear (top bar) and angular speed

(bottom bar), going from 0 to 1 and from -1 to 1, respectively
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turns towards the road (Fig. 5b–d) advances and then turns

again to remain on course (Fig. 5e–f). As can be seen in

Fig. 5, the road edges exceed the image frame. Since the road

edges are not visible it is assumed that the road is wide enough

for safe traversing of the road. The robot will continue forward

until sufficiently close to the edge to steer away.

Since real-world testing is a time costly process, system

behavior has been first tested thoroughly over off-line

datasets and then simply control law testing was performed

to insure stability of robot motion.

9.3 Segmentation methods performance

In this work, several image segmentation methods were

considered to meet the real-time constraints required for

on-board execution on embedded hardware. In this section,

the execution time of these algorithms is presented, mea-

sured on different platforms. While each method utilizes a

different set of parameters, the corresponding values were

chosen in each case by maximizing execution speed. Of

importance for the classification quality and computation

speed of the road detection algorithm as a whole are both

the size and the number of segments (as expected, quan-

tities are inversely proportional). In these terms, the dif-

ferences obtained in the resulting segmentations for the

chosen set of parameter values were negligible.

In Fig. 6, mean execution speeds (over 32 iterations) are

presented corresponding to different segmentation algo-

rithms, executing platforms and relevant parameters. The

algorithms were executed over a test image captured during

outdoor experiments.

In Fig. 6a acceptable timings are presented, whereas in

Fig. 6b the execution speeds presented do not permit real-

time execution and stable control of the robot.

The first set of measurements (Fig. 6a) includes the

execution of the Graph-based segmentation algorithm on

the Laptop’s processor and the optimized Quick shift

algorithm running on the GPU of the Mini-ITX computer.

These combinations of algorithm and executing platform

were found to be the fastest and within real-time con-

straints. For both of these cases, the complete image was

processed (horizon set to 100 %) and only the relevant part

according to the test image (horizon set to 71.6 %).

The optimal tradeoff between total number and indi-

vidual size of segments was found to be around 190 seg-

ments. For the case of the Graph-based algorithm, the

threshold for segment splitting was t = 140. For the Quick

shift algorithm, the thresholds used were r = 2 and s = 8.

For completeness, a second batch of measurements was

performed (Fig. 6b), comparing the previous measure-

ments to the execution of the unmodified Quick shift

algorithm running on the same GPU and the Graph-based

algorithm running on the Mini-ITX dual core CPU. On

these conditions, the computation times of the segmenta-

tion step alone already exceed the tolerance for stable

(a) (b) (c)

(d) (e) (f)

Fig. 5 Example of online testing: series of successive frames where

robot was started from a deviated position and ended with robot

centered in road
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Fig. 6 Computation time for the segmentation step, for different algorithms and executing platforms
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control of the mobile robot, which should be in the order of

4 Hz for the complete algorithm.

Finally, by comparing the execution times (Fig. 6a and

b) between the original and optimized (presented in this

work) versions of the Quick shift segmentation algorithm

running on GPU, it can be seen that with these optimiza-

tions a speedup of approximately 5.69 is achieved.

9.4 Complete algorithm performance

The proposed algorithm, as described in previous sections,

can be decomposed in several steps. In this section, the

time consumed by each step is presented. In Fig. 7 the

computational time of each step relative to the total itera-

tion is presented. In Fig. 8 the absolute computational time

consumed by each step is shown. In both cases, two series

of timings were measured, corresponding to the segmen-

tation algorithm and parameters choice which maximize

execution speed, for the two computing platforms consid-

ered (Laptop and embedded GPU).

These time measurements correspond to the mean value

of N = 66 repetitions over the same input image. Standard

deviation is presented in Fig. 8 for each step. The total

mean time consumed by one iteration of the algorithm was

59.9841 ms (std. dev. 1.2011 ms) as executed on the

Laptop, and 179.1447 ms (std. dev. 1.744 ms) as executed

on the GPU.

10 Conclusion and further work

In this paper, a new real-time image-based monocular path

detection method is presented. It does not require camera

calibration and works on semi-structured outdoor paths.

The core of the method is based on segmenting images and

classifying each segment to infer a contour of navigable

space. This method allows a mobile robot equipped with a

monocular camera to travel through different naturally

delimited paths. The road contour shape can be used to

calculate the forward and steering speed of the robot. To

achieve real-time computation necessary for on-board

execution in mobile robots, the image segmentation is

implemented on a low-power embedded GPU.

When analysing the road detection capability of the

method, it proved to be very robust handling difficult sit-

uations associated with unstructured outdoor roads. Using

an example area from which only a subset of modes with

enough coverage of the rectangular ROI is used, outliers

rgb2hsv
horizon
blur
rgb2hsv2
segment
detect segments
classify
contour
control
other

(a) Computation time of algorithm as executed on the
Core i5 processor present on the Laptop

rgb2hsv
horizon
blur
rgb2hsv2
segment
detect segments
classify
contour
control
other

(b) Computation time of algorithm as executed on the
GPU present on the Mini-ITX embedded computer

Fig. 7 Execution time for each step relative to the whole algorithm

executed on a Laptop (a) and the Mini-ITX GPU (a): rgb2hsv

conversion of original image to HSV color-space, blur median-blur

applied to input image, horizon horizon detection, rgb2hsv2 conver-

sion to HSV of smoothed image, segment image segmentation

algorithm (Graph-based on CPU, Quick shift on GPU), detect

segments construction of map of labeled pixels and computation of

mean and covariance for each segment, classify ground model

construction and individual segment classification, contour binary

mask computation from classified segments and road contour, control

control law extraction from road middle-points
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can be ignored without requiring precise placement of this

region. This also allows the usage of the camera as the sole

sensor, in contrast to using a laser scanner for precise road

example region detection. Finally, using the segmentation

itself and then merging similar segments included in the

ROI, similar results to clustering using k-means (as used in

related works) can be achieved without requiring to

determine the ammount of classes k in advance.

For evaluation of the closed-loop performance of the

algorithm, a simple control law was implemented which

aims to maintain the robot in the middle of the detected

road. By positioning the robot in different initial orienta-

tions with respect to the road, the correct behavior of the

control law and the method as a whole was assessed. The

simplicity of this control law does not require the camera to

be calibrated.

Regarding the segmentation step, several algorithms

were evaluated on different platforms. For the case of a

modern CPU, the Graph-based segmentation method

proved to be the fastest. For the case of an embedded

computer suited for small mobile robots, this method is not

fast enough. An embedded GPU allowed the implementa-

tion of the Quick shift algorithm with execution times

within required constraints and comparable to execution

times of modern CPUs.

As a part of the proposed road detection, we introduced

a horizon detector algorithm, with some differences with

respect to previous works. The proposed horizon detection

method is very robust and can handle difficult scenarios

where there is a high contrast sky and background objects

like trees. The implementation of this step is also quite

simple and fast, which is important to maintain real-time

execution constraints. Furthermore, by detecting the hori-

zon, the rest of the algorithm can process only the image

below, further speeding up image processing.

10.1 Future work

While the proposed method demonstrated to be robust and

stable, there are several aspects that could be improved and

further analyzed.

First, while the HSV color space was used due to the

separation of the chrominance and luminance information

in different channels, there are several other color spaces

which perform this separation. One of these corresponds to

the LAB space, which has the particular benefit of

expressing chrominance in linear (as opposed to the cir-

cular Hue channel) coordinates, therefore, possibly sim-

plifying mean and covariance computations.

Also related to color space is the fact that, for HSV in

particular, when very low Saturation is present, the Hue

channel can contain any value while still producing the

same perceived color. A similar effect occurs for very low

Value. This fact should be taken into account when com-

paring two models, for example, by modifying thresholds

in-place based on mean values of individual channels.

Addressing this issue may increase independence of

thresholds used for classification from environment

appearance.

Regarding the control law used, a very simple method

was proposed in this work. However, it is possible to

implement more sophisticated methods, for example, by

fitting the list of middle road points with a curve. Also, if

camera calibration can be assumed to be always available,

the middle points of the road could be reprojected into

world coordinates and, therefore, use a control law that

precisely takes into account camera position, robot speeds,

etc. Implementing such method could also permit more

rigorous numerical evaluation of control law stability and

performance.

To further improve the algorithm performance when

executing on the embedded GPU, several steps could

possibly improved by also executing those on the GPU.

This corresponds to the case of the detection of segments,

contour extraction and classification. Particularly, this last

step could be performed completely in parallel for each

segment.
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