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Abstract. Let b ≥ 2 be an integer. We show that the set of real numbers that are Poisson
generic in base b is Π0

3-complete in the Borel hierarchy of subsets of the real line. Further-
more, the set of real numbers that are Borel normal in base b and not Poisson generic in
base b is complete for the class given by the differences between Π0

3 sets. We also show that
the effective versions of these results hold in the effective Borel hierarchy.

Keywords: Poisson generic numbers; normal numbers; descriptive set theory;

MSC Classification: 03E15; 11U99; 11K16.

1. Introduction and statement of results

Years ago Zeev Rudnick introduced Poisson generic real numbers: a real number x is Poisson
generic in an integer base b ≥ 2, if the counts of number of occurrences of words of length k
over the alphabet {0, 1, . . . , b− 1} appearing in the initial segments of the base b expansion of
x tends to the Poisson distribution with parameter λ as k →∞ for every λ > 0. That is, we
look at the fraction of k words appearing a given number of times among the first digits tends
in distribution to the Poisson distribution with parameter λ as k →∞. Peres and Weiss [12]
proved that Lebesgue almost all real numbers are Poisson generic. Their proof is presented
in [3, Theorem 1]. Poisson genericity implies (Borel) normality.

For the rest of the paper, given an integer b ≥ 2, we identify real numbers in the unit
interval [0, 1) with their base b expansions, that is, we identify each x ∈ [0, 1) with a sequence
x1x2x3 . . . with values in {0, 1, . . . , b− 1} such that

x =
∞∑
j=1

xj
bj

and xj 6= 0 for infinitely many j ≥ 1. All real numbers in [0, 1) have at least one, and for all,
but countably many real numbers the base b expansion is unique.

In the sequel we consider an integer b ≥ 2 that we take as the given base. For a real number
x and an interval A = [q, r] of real numbers (respectively A = [q, r)), where 1 ≤ q < r we write
x � A to denote the segment of the base-b expansion of x corresponding to positive integers in
the interval A. Many times instead of writing x � [1, r] for some r > 1 we write we write x � r
to denote the initial segment of the base b expansion of x up to position brc.

Since Poisson genericity in base b is a property that depends only of the tail of the base b
representation of that real number, the integer part of the number is irrelevant. Thus, we
present our results just for the real numbers in the unit interval, but they also hold when the
unit interval is replaced by the real line.
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Definition (Poisson generic number). Let λ be positive real number. A real number x ∈ [0, 1)
is λ-Poisson generic in base b if for every non-negative integer j we have

lim
k→∞

Zλj,k(x) = e−λ
λj

j!
,

where
Zλj,k(x) =

1

bk
|{w ∈ {0, . . . (b− 1)}k : w occurs j times in x � λbk + k}|.

A real number x is Poisson generic in base b if it is λ-Poisson generic in base b for every
positive real λ.

Let Pb be the set of real numbers that are Poisson generic in base b. It is easy to see that Pb
is a Borel set. Our goal is to give the descriptive complexity of Pb. In other words, we would
like to locate the exact position of Pb in the Borel hierarchy (both, lightface and boldface).

Recall that the Borel hierarchy for subsets of the real numbers is the stratification of the
σ-algebra generated by the open sets with the usual topology. For references see Kechris’s
textbook [10].

A set A is Σ0
1 if and only if A is open and A is Π0

1 if and only if A is closed. A is Σ0
n+1 if

and only if it is a countable union of Π0
n sets, and A is Π0

n+1 if and only if it is a countable
intersection of Σ0

n sets.
A set A is hard for a Borel class if and only if every set in the class is reducible to A by a

continuous map. A set A is complete in a class if it is hard for this class and belongs to the
class. By Wadge’s celebrated theorem, in spaces like the real numbers with the usual interval
topology, a Σ0

n set is Σ0
n-complete if and only if it is not Π0

n.
When we restrict to intervals with rational endpoints and computable countable unions

and intersections, we obtain the effective or lightface Borel hierarchy. One way to present
the finite levels of the effective Borel hierarchy is by means of the arithmetical hierarchy of
formulas in the language of second-order arithmetic. Atomic formulas in this language assert
algebraic identities between integers or membership of real numbers in intervals with rational
endpoints. A formula in the arithmetic hierarchy involves only quantification over integers.
A formula is Π0

0 and Σ0
0 if all its quantifiers are bounded. It is Σ0

n+1 if it has the form ∃x θ
where θ is Π0

n, and it is Π0
n+1 if it has the form ∀x θ where θ is Σ0

n.
A set A of real numbers is Σ0

n (respectively Π0
n) in the effective Borel hierarchy if and only

if membership in that set is definable by a formula which is Σ0
n (respectively Π0

n). Notice that
every Σ0

n set is Σ0
n and every Π0

n set is Π0
n. In fact, for every set A in Σ0

n there is a Σ0
n formula

and real parameter such that membership in A is defined by that Σ0
n formula relative to that

real parameter.
A set A is hard for an effective Borel class if and only if every set in the class is reducible

to A by a computable map. As before, A is complete in an effective class if it is hard for this
class and belongs to the class. Since computable maps are continuous, proofs of hardness in
the effective hierarchy often yield proofs of hardness in general by relativization.

The difference hierarchy over a pointclass is generated by taking differences of sets. In the
sequel we are just interested in the class D2-Π0

3 which consists of all the sets that are difference
between two sets in Π0

3. The class D2-Π0
3 is the effective counterpart.

Although the definition of Poisson genericity in a given base b asks for λ-Poisson genericity
in base b for every positive real λ, it suffices to consider λ-Poisson genericity in base b for
every positive rational λ. This is proved in Lemma 3. Then, by the form of its definition, the
set Pb is a Π0

3 property, hence Pb is a Borel set appearing as Π0
3 set in the Borel hierarchy.
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We shall prove completeness. We first prove the boldface case, and then we add the needed
subtleties to prove the lightface case. We start with the following result.

Theorem 1. Pb is Π0
3-complete.

Definition (Borel normal number). Let an integer b ≥ 2. A real number x is Borel normal
in base b if for every block w of digits in {0, . . . (b− 1)},

lim
n→∞

the number of occurrences of w in x � n
n

= b−|w|.

The set Pb of real numbers that are Borel normal in base b is Π0
3-complete [6, 11]. Every

real Poisson generic in base b is Borel normal in base b, see [12] or [5, Theorem 2]. We study
the descriptive complexity of the difference set. Let Nb be the set of real numbers that Borel
normal in base b.

Theorem 2. Nb \ Pb is D2-Π0
3-complete.

The next two results are the lightface improvements of Theorems 1 and 2.

Theorem 3. Pb is Π0
3-complete.

Theorem 4. Nb \ Pb is D2-Π0
3-complete.

Similarly to previous consequences of differences sets of normal numbers for Cantor series
expansions being D2-Π0

3-complete [2], Theorem 2 imposes limitations on the relationship
between Nb and Pb. An immediate consequence of Theorem 2 is that the set Nn \ Pb is
uncountable. Also, since Nb \ Pb is D2-Π0

3-complete, there cannot be a Σ0
3 set A such that

A ∩ Nb = Pb (as otherwise, we would have Nb \ Pb = Nb \ A ∈ Π3
0, a contradiction). Thus,

no Σ0
3 condition can be added to normality to give Poisson genericity. Equivalently, any time

a Σ0
3 set contains Pb, it must contain elements of Nb \ Pb. As an application, consider the

following definition of weakly Poisson generic:

Definition (Weakly-Poisson generic number). Say x ∈ [0, 1) with base b expansion (xj) is
weakly Poisson generic in base b if for every ε > 0, every rational λ, and non-negative integer j,
we have that for infinitely many k that |Zλj,k(x)− e−λ λjj! | < ε.

Note that being Poisson generic in base b implies being weakly-Poisson generic. However,
being weakly-Poisson generic is a Π0

2 condition. So, from Theorem 2 we get the following:

Corollary 1. For every base b there is a base-b normal number which is weakly Poisson
generic but not Poisson generic.

As another application, consider the following version of discrepency. Suppose f is a
function assigning to each word w ∈ b<ω and each positive integer n a positive real num-
ber f(w, n). Given x ∈ [0, 1) with base b expansion (bj), say the (w, n)-discrepancy is
D(x,w, n) = | n

b|w|
−W (x � n,w)|, where W (u,w) is the number of occurrences of w in u.

We say a real number x has base b f -large discrepancy if for all w and all n we have that
D(x,w, n) > f(w, n). The set of x with f -large discrepancy, for any fixed f , is easily a Π0

1

set. The set of numbers that are Borel normal to base b are exactly those for which the
discrepancy of their initial segments of their expansion in base b goes to zero. We conjecture
that the Poisson generic numbers in base b can not have very low discrepancy of their initial
segments (for instance, the infinite de Bruijn sequences exist in bases b ≥ 3, they satisfy that
Z1
1,k = 1 for every k, hence they do not correspond to Poisson generic numbers, and they have
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low discrepancy.) However, we have the following, which states that the Poisson generic reals
cannot be characterized as the set of normal numbers satisfying a large discrepancy condition.

Corollary 2. For every function f , the set of base-b Poisson generic reals is not equal to the
set of normal numbers with f -large discrepancy.

There are also many other naturally occurring sets of real numbers are defined by conditions
which make them Σ0

3. Examples include countable sets, co-countable sets, the class BA of
badly approximable numbers (which is aΣ0

2 set), the Liouville numbers (which is aΠ0
2 set), and

the set of x ∈ [0, 1] where a particular continuous function f : [0, 1]→ R is not differentiable.
In all these cases, the theorem implies that either the set omits some Poisson generic number,
or else contains a number which is normal but not Poisson generic. Of course, many of these
statements are easy to see directly, but the point is that they all follow immediately from the
general complexity result, Theorem 2.

The set of real numbers whose expansion in every integer base is Poisson generic is of
course Π0

3, but we do not know yet how to prove that this set is Π0
3-complete. The set of

real numbers whose expansion in one base is λ′-Poisson generic but not λ′-Poisson generic, for
different positive real numbers λ and λ′, is D2-Π0

3 but we do not know if it is complete.
The result in the present note contribute to the corpus of work on the descriptive complexity

of properties of real numbers that started with the questions of Kechris on the descriptive
complexity of the set of Borel normal numbers. He conjectured that set of absolutely normal
numbers (normal to all integer bases) is Π0

3(R)-complete. Ki and Linton [11] gave the first
result towards solving the conjecture by showing that the set of numbers that are normal to
base 2 is Π0

3-complete. Then V. Becher, P. A. Heiber, and T. A. Slaman [4] settled Kechris’
conjecture. Furthermore, V. Becher and T. A. Slaman [8] proved that the set of numbers
normal in at least one base is Σ0

4(R)-complete. In another direction, D. Airey, S. Jackson,
D. Kwietniak, and B. Mance [1] and, more generally K. Deka, S. Jackson, D. Kwietniak, and
B. Mance in [9] showed that for any dynamical system with a weak form of the specification
property, the set of generic points for the system is Π0

3-complete. This result generalizes the
Ki-Linton result to many numeration systems other than the standard base b one. In general,
the Cantor series expansions are not covered in this generality, so D. Airey, S. Jackson, and B.
Mance [2] determined the descriptive complexity of various sets of normal numbers in these
numeration systems.

2. Boldface

We write µ for the Lebesgue measure on the real numbers. From Peres and Weiss metric
theorem [12, 3] asserting that µ-almost all real numbers in the unit interval are Poisson generic
in each integer base b, we have the following.

For µ almost all real numbers x in the unit interval the following holds. Fix an integer base
b ≥ 2 and any α ∈ (0, 1). Then for any non negative integer j, and any ε > 0, for all large
enough k we have that ∣∣∣Z(1−α)

j,k (x)− e−(1−α) (1− α)j

j!

∣∣∣ < ε.

Proof of Theorem 1. Let C = {z ∈ (ω \ {0, 1})ω : limi z(i) = ∞}. So, C is Π0
3-complete. We

define a continuous map f : ωω → (0, 1) which reduces C to Pb, that is, f(z) ∈ Pb if and only if
z ∈ C. Fix z ∈ (ω \ {0, 1})ω. At step i we define f(z) � [bki−1 , bki), where {ki} is a sufficiently
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fast-growing sequence of positive integers. Let

Bi := [bki−1 , bki),

B′i :=

[
bki−1 ,

(
1− 1

z(i)

)
bki
)
.

The set B′i is non-empty as we may assume ki > 2ki−1. We set

f(z) � B′i = x � B′i and f(z) � Bi \B′i = 0.

First suppose z /∈ C, and fix p ∈ ω such that for infinitely many i we have z(i) = p. Consider
step i in the construction of f(z) for such an i. For any ε > 0, if i is large enough then the
number of words w of length ki which occur in x � [1, (1− 1

z(i))b
ki ] is at most

bki(1− e−(1−
1
z(i)

)
+ ε).

So, the number Zi of words w of length ki which occur in f(z) � bki is at most

bki
(
1− e−(1−

1
z(i)

)
+ ε
)

+ bki−1 .

So,
1

bki
Zi ≤

(
1− e−(1−

1
p
)

+ 2ε
)

if i is large enough using the fact that the ki grow sufficiently fast. On the other hand,
the Poisson estimate for the proportion of words of length ki occurring in a Poisson generic
sequence of length bki is 1− 1/e. Since p is fixed, as i gets large we have a contradiction. So,
f(z) is not 1-Poisson generic.

Next suppose that z ∈ C. We show that f(z) is Poisson generic in base b. Fix λ > 0 and
` ∈ ω. Fix also ε > 0. Consider k ∈ ω, and let i be such that ki−1 ≤ k < ki. We show that
for k (and hence i) sufficiently large that |Zλ`,k(f(z))− e−λ λ``! | < ε. Assume i is large enough
so that 1

z(j) < ε for all j ≥ i− 1. First consider the case λ ≤ 1. Note that, as z(i) ≥ 2,

bk ≤ 1

b
bki ≤ bki

(
1− 1

z(i)

)
.

We have that

| 1
bk
Zλ`,k(f(z))− 1

bk
Zλ`,k(x)| ≤ 1

bk

(
bki−1

1

z(i− 1)
+ 6k + bki−2

)
≤ 1

z(i− 1)
+ ε

≤ 2ε.

(1)

for i large enough. We have used here the fact that

|Zλ`,k(f(z))− Zλ`,k(x)|

is at most the number of words of length k which appear in one of f(z) � bk, x � bk at a
position which overlaps the block [bki−1(1− 1

z(i−1)), b
ki−1), or else overlaps the block [1, bki−2 ],

which gives the above estimate.
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Consider now the case λ > 1. If λbk < bki(1 − 1
z(i)), then the same estimate above works.

So, suppose bk ≥ 1
λb
ki(1− 1

z(i)). We may assume that

λbk <
1

2
bki+1 ≤ (1− 1

z(i+ 1)
)bki+1

since λ is fixed and the ki grow sufficiently fast (in particular bki+1

bki
→ ∞). In this case

we also count the number of words w of length k which might overlap the block of 0s in
f(z) � [bki(1− 1

z(i)), b
ki ]. We then get∣∣∣ 1

bk
Zλ`,k(f(z))− 1

bk
Zλ`,k(x)

∣∣∣ ≤ 1

bk

(
bki−1

1

z(i− 1)
+ bki

1

z(i)
+ 10k + bki−2

)
≤ 1

z(i− 1)
+
bki

bk
1

z(i)
+ ε

≤ 1

z(i− 1)
+ λ

1

1− 1
z(i)

1

z(i)
+ ε

≤ 2ε.

if i is sufficiently large, since λ is fixed and z(i)→∞. �

For the proof of Theorem 2 we require the following two lemmas.

Lemma 1. Fix an integer b ≥ 2. Almost all real numbers in (0, 1) have the property that for
any α of the form α = 1

2`
we have

lim
i→∞

1

bki
|Hi| = (1− e−α)(e−(1−α)),

whereHi is the set of words of length ki which occur in the base-b expansion of x with a starting
position [(1− α)bki , bki), but do not occur with a starting position in [bki−1 , (1− α)bki ].
In fact, this claim holds for any x which is Poisson generic in base b.

Proof. Let x ∈ (0, 1) be Poisson generic in base b and fix α a negative power of 2. Let
• Ai be the set of words of length ki occurring in [bki−1 , bki).
• Ci be the set of words of length ki occurring in [bki−1 , (1− α)bki)).

Clearly Ci ⊆ Ai. The words which occur in [(1 − α)bki , bki) but not in [bki−1 , (1 − α)bki))
are exactly the words which occur in Ai but not Ci.

Let
• A′i be the set of words that occur in [1, bki)
• C ′i be the set of words that occur in [1, (1− α)bki).

Then
||Ai \ Ci| − |A′i \ C ′i|| ≤ bki−1 .

Since x is Poisson generic in base b, for any ε > 0 we have that for all large enough i that∣∣∣ 1

bki
|A′i| − (1− 1

e
)
∣∣∣ < ε.

Similarly, as x is Poisson generic in base b, and using λ = 1− α, we have that∣∣∣ 1

bki
|C ′i| − (1− e−(1−α))

∣∣∣ < ε.
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So,

1

bki
|Ai \ Ci| ≤

1

bki
|A′i \ C ′i|+

bki−1

bki

≤ (1− 1

e
)− (1− e−(1−α)) +

bki−1

bki
+ 2ε

≤ e−(1−α)(1− e−α) + 3ε. �

Assume x lies in the measure one set of Lemma 1 and that the ki grow fast enough, then∣∣∣ 1

bki
|Hi| − (1− e−α)(e−(1−α))

∣∣∣ < 1

2i
.

A standard probability computation shows the following.

Lemma 2. There is a function g : ω → ω such that the following holds. Suppose k0 < k1 < · · ·
are such that bki − bki−1 > g(i− 1) for all i. Then µ-almost all x ∈ (0, 1) satisfy the following:
for any j ∈ ω, any w ∈ bj and any ε > 0, for all large enough i, and any n > g(i− 1)∣∣∣ 1

n
W (x � [bki−1 , bki−1 + n), w)− 1

bj

∣∣∣ < ε

where W (s, w) is the number of occurrences of the word w in s.

Proof. We can take g(n) = n. Fix j and w ∈ bj , and fix ε > 0. It suffices to show that for
almost all x that for all large enough i and any n > g(i− 1) = i− 1 that∣∣∣∣ 1nW (x � [bki−1 , bki−1 + n), w)− 1

bj

∣∣∣∣ < ε.

There are constants α, β > 0 such that for all n, the probability that a string s ∈ bn violates
the inequality | 1nW (s, w) − 1

bj
| < ε is less than αe−βn. So, the probability that an x ∈ (0, 1)

violates | 1nW (x � [bki−1 , bki−1 + n), w)− 1
bj
| < ε for some i ≥ i0 and n ≥ i is at most∑

i≥i0

∑
n≥i

αe−βn ≤
∑
i≥i0

α
e−βi

1− e−β
=

αe−βi0

(1− e−β)2
.

Since this tends to 0 with i0, the result follows. �

We can now give the proof of the D2-Π0
3 completeness of the difference set Nb \ Pb.

Proof of Theorem 2. We fix a sufficiently fast growing sequence k0 < k1 < · · · as in Lemma 2,
and then fix x ∈ (0, 1) to be Poisson generic in base b (so that Lemma 1 holds) and also to be
in the measure one set where Lemma 2 holds for this sequence (ki)i≥0.

We let C = {z ∈ ωω : z(2n) → ∞}, and D = {z ∈ ωω : z(2n + 1) → ∞}. We define a
continuous map f : ωω → (0, 1) which reduces C \D to Nb \ Pb. The idea to define f so that
for z ∈ ωω, the even digits z(2i) will control whether f(z) ∈ Nb and the odd digits z(2i + 1)
will control whether f(z) ∈ Pb. When we wish to violate Poisson genericity, we will do so for
λ = 1 and j = 0. We may assume without loss of generality that all z(i) and all ki are positive
powers of 2.

As before, at step i we define f(z) � Bi, where Bi = [bki−1 , bki). Let
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B1
i := [bki−1 , (1− 1

z(2i)
− 1

z(2i+ 1)
)bki)

B2
i := [(1− 1

z(2i)
− 1

z(2i+ 1)
)bki , (1− 1

z(2i+ 1)
)bki)

B3
i := [(1− 1

z(2i+ 1)
)bki , bki)

So,

|B2
i | =

1

z(2i)
bki ,

|B3
i | =

1

z(2i+ 1)
bki .

We let

f(z) � B1
i := x � B1

i ,

f(z) � B2
i := 0,

f(z) � B3
i := x � [bki−1 , bki−1 + |B3

i |) = x �
[
bki−1 , bki−1 +

1

z(2i+ 1)
bki
)
.

We show that f is a reduction from C \D to Nb \ Pb.
First assume z /∈ C, that is z(2i) does not tend to∞. Fix ` such that z(2i) = ` for infinitely

many i. We easily have that f(z) /∈ Nb. For example, if the digit 0 occurs with approximately
the right frequency 1

b in

f(z) � [1, bki−1 + |B1
i |) =

[
0, bki

(
1− 1

z(2i)
− 1

z(2i+ 1)

))
,

then 0 will occur with too large a frequency in

f(z) � [1, bki−1 + |B1
i |+ |B2

i |) =
[
0, bki−1 + |B1

i |+
1

`
bki
)
.

This is because f(z) � Bi
2 = 0 and |Bi

2| = 1
` b
ki for such i.

So we may henceforth assume that z ∈ C, so 1
bki
|B2

i | = 1
z(2i) → 0. We observe that this

implies that f(z) ∈ Nb. This follows from Lemma 2 and that we may assume limi
g(i−1)
bki−1

= 0.
Now assume that z ∈ D, so z /∈ C \D. We show f(z) ∈ Pb, and so f(z) /∈ Nb \ Pb. Since

we are assuming z ∈ C also, we have limi→∞ z(i) = ∞. So, limi→∞
1
bki

(|B2
i | + |B3

i |) = 0. It
then follows exactly as in Equation 1 in the proof of Theorem 1 that f(z) ∈ Pb.

Assume next that z /∈ D (but z ∈ C still). We show that f(z) /∈ Pb, which shows f(z) ∈
Nb \ Pb. Fix m so that for infinitely many i we have z(2i + 1) = m, and we may assume m
is of the form m = 2`. Recall 1

bki
|B3

i | = 1
z(2i+1) = 1

2`
for such i. We restrict our attention to

this set of i in the following argument. If f(z) were Poisson generic, then from Lemma 1 we
would have that for large enough i in our set that

1

bki
|Hi| ≈ (1− e−α)(e−(1−α)),

where Hi is the set of words of length ki which occur in f(z) with a starting position in
[(1−α)bki , bki), but do not occur in f(z) with a starting position in [bki−1 , (1−α)bki). However,
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by the construction of f(z) we have that every word which occurs in [(1−α)bki , bki) also occurs
in [bki−1 , (1− α)bki), and so |Hi| = 0. �

3. Lightface refinements

The existence of computable Poisson generic real number was proved in [3, Theorem 2]. We
start showing how to compute an instance of a Poisson generic real number in base b.

Definition (Values Nn and sets En). For each n ≥ 1 define

Nn :=b2n

En :=(0, 1) \
⋃

Nn≤k<Nn+1

Badk

where

Badk :=
⋃
j∈Jk

⋃
λ∈Lk

Bad(λ, k, j, 1/k))

Jk :={0, . . . , bk − 1}.
Lk :={p/q : q ∈ {1, . . . , k}, p/q < k}

Bad(λ, k, j, ε) :=

{
x ∈ (0, 1) : |Zλj,k(x)− e−λλj

j!
| > ε

}
Observe that each set Badk is a finite union of intervals with rational endpoints. Also each

set En is a finite union of intervals with rational endpoints.

Fact 1. There is n0 such that for every n greater than n0, µ(En) > 1− 1
N2
n
.

Proof. By [3, Proof of Theorem 2] there is k0 such that for every k ≥ k0, for every j ≥ 0,

µ(Bad(λ, k, j, 1/k)) < 2e−
bk

2λk4

and
µ(Badk) = µ

( ⋃
j∈Jk

⋃
λ∈Lk

Bad(λ, k, j, 1/k)
)
< 2bkk3e−b

k/(2k5).

Recall Nn = 1/b2n. Let n0 be the least integer greater than or equal to k0 such that for
every n ≥ n0,

µ(BadNn) <
1

2N2
n

and

µ
( ⋃
Nn≤k<Nn+1

Badk

)
< 2µ(BadNn).

Since En = (0, 1) \
⋃
Nn≤k<Nn+1

Badk, we have

µ(En) ≥ 1− 2µ(BadNn).

Hence we obtain the wanted inequality,

µ(En) > 1− 1

N2
n

.
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�

Fact 1 ensures that the set
⋂
n≥n0

En has positive measure. Let see that
⋂
n≥n0

En consists
entirely of Poisson generic real numbers for base b. Suppose that x is not Poisson generic for
base b. By Lemma 3 x is not λ-Poisson generic in base b for some positive rational λ. Then,
there is a positive ε and a non-negative integer j such that for infinitely many ns,∣∣∣Zλj,n(x)− e−λλj

j!

∣∣∣ > ε.

Let n1 = n1(λ, ε, j) be the smallest such that λ ∈ Ln1 , j ∈ Jn1 , ε ≥ 1/n1. Since sets Jn and Ln
are subset increasing in n, for every n ≥ n1 we have λ ∈ Ln and j ∈ Jn. And since ε > 1/n1
we have ε > 1/n, for every n > n1. Then, for infinitely many values of n greater than or equal
to n1, x ∈ Badn. Hence, for infinitely many values of n, x 6∈ En, and thus x 6∈

⋂
n≥n0

En.
The following algorithm is an adaptation of Turing’s algorithm for computing an absolutely

normal number (see [7]). We modified it to obtain a real that is Poisson generic in base b.

Algorithm. Let n0 be determined by Fact 1. Let In0 := (0, 1).
At each step n > n0, divide In−1 in b equal parts I0n−1, I

1
n−1, . . . , I

b−1
n−1.

Let v be the smallest in {0, .., (b− 1)} such that µ(Ivn−1 ∩ En) >
1

Nn
.

In := Ivn−1.
The n-digit in the base-b expansion of x is the digit v.

Remark. Observe that the number x computed by the algorithm ensures that for each n ≥ n0,
x ∈ In ∩ En. Since the intervals In and rested, we have

x ∈ In ∩
( ⋂
n0≤m≤n

Em

)
,

where En = (0, 1) \
⋃
Nn≤k≤Nn+1

Badk with Nn = b2n. Thus, to define x � n the algorithm
looks at all the possible continuations up to x � bNn+1 .

We prove that the number x produced by the algorithm is indeed Poisson generic for
base b. The algorithm defines a sequence of intervals (In)n≥n0 such that In =

(
a
bn ,

a+1
bn

)
for

some a ∈ {0, . . . , bn − 1}, In+1 ⊆ In and µ(In) = b−n. The number x defined is the unique
element in

⋂
n≥n0

In. We first prove that for every n ≥ n0,

µ
(
In ∩

n⋂
i=n0

Ei

)
> 0.

To show this we prove by induction on n,

µ
(
In ∩

n⋂
i=n0

En

)
>

1

Nn
.

Base case. For n0 it is immediate because In0 = (0, 1), so µ(In0) = 1 and

µ(En0) > 1− 1

N2
n0

>
1

Nn0

.
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Inductive case. Assume the inductive hypothesis

µ
(
In ∩

n⋂
i=n0

Ei

)
>

1

Nn
.

Let’s see it holds for n+ 1. Using the inductive hypothesis and Fact 1, we have

µ
(
In ∩

n+1⋂
i=n0

Ei

)
= µ

((
In ∩

n⋂
i=n0

Ei

)
∩ En+1

)
> µ

(
In ∩

n⋂
i=n0

Ei

)
− µ((0, 1)− En+1)

>
1

Nn
− 1

Nn
2

>
b

Nn+1
.

Then, it is impossible that for each of the b possible vs, v = 0, v = 1, . . . , v = (b− 1),

µ
(
Ivn ∩

n+1⋂
i=1

Ei

)
≤ 1

Nn+1
.

So, there is at least one v ∈ {0, . . . , (b− 1)} such that

µ
(
Ivn ∩

n+1⋂
i=n0

Ei

)
>

1

Nn+1
.

Since the algorithm sets In+1 to be the leftmost Ivn with this property, we have

In+1 ∩
n+1⋂
i=n0

Ei >
1

Nn+1
.

We conclude that x ∈
⋂
n≥n0

En. So x is λ-Poisson generic in base b for all positive rational λ.
Finally, to conclude that x is λ-Poisson generic in base b for every positive real λ, hence
Poisson generic in base b we need the following lemma.

Lemma 3 (adapted from [3]). Let integer b ≥ 2. If x ∈ (0, 1) is λ-Poisson generic in base b
for all positive rational λ then x is Poisson generic in base b.

Proof. For each x ∈ (0, 1) and for each k ∈ N, on the space of words of length k with
uniform measure define the integer-valued random measure Mx

k = Mx
k (v) on the real half-line

R+ = [0,+∞) by setting for all Borel sets S ⊆ R+,

Mx
k (S)(v) :=

∑
p∈N∩bkS

Ip(x, v),

where Ip is the indicator function that v occurs in x at position p and N∩bkS denotes the set of
integer values in {bks : s ∈ S}. Then,Mx

k (·) is a point process on R+. The function Zλj,k(x)can
be formulated in terms of of Mx

k (S) for the sets S = (0, λ], as follows:

Zλj,k(x) =
1

bk
#{v ∈ {0, . . . , (b− 1)}k : Mx

k ((0, λ])(v) = j)}.
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Observe that for every pair of positive reals λ, λ′, with λ < λ′,

Mx
k ((0, λ′])(v)−Mx

k ((0, λ])(v) =
∑

p∈N∩bk[λ,λ′)

Ip(x, v).

The classical total variation distance dTV between two probability measures P and Q on a
σ−algebra F is defined via

dTV (P,Q) := sup
A∈F
|P (A)−Q(A)| .

For a random variableX taking values in R, the distribution ofX is the probability measure µX
on R defined as the push-forward of the probability measure on the sample space of X.
The total variation distance between two random variables X and Y is simply dTV (X,Y ) =
dTV (µX , µY ). Hence, the total distance variation

dTV (Mx
k ((0, λ′]),Mx

k ((0, λ])) ≤ 1

bk
#(N ∩ bk[λ, λ′)) = λ′ − λ+ O(b−k).

Also observe that dTV (Po(λ′), Po(λ)) → 0 as λ → λ′. From these two observations and the
fact that the rational numbers are a dense subset of the real numbers we conclude that being
λ-Poisson generic for every positive rational λ implies Poisson generic. �

The proofs of Theorems 3 and 4 are very similar to those of Theorems 1 and 2. However
we now include what is needed to prove the lightface results. We now start we a computable
Poisson generic number in base b that we obtain with the Algorithm above, and we computably
determine the sequence of values (ki)i≥1 using the input sequence z ∈ ωω.

Proof of Theorem 3. Let C = {z ∈ ωω : limi→∞ z(i) = ∞}. So, C is Π0
3-complete. We define

a computable map f : ωω → (0, 1) which reduces C to Pb. Fix z ∈ ωω. At step i, let ki
be the least integer such that ki > ki−1, and ki > z(i). Fix k0 = 0. For i > 0, we define
f(z) � [bki−1 , bki) as follows. Let

Bi := [bki−1 , bki)

B′i :=
[
bki−1 ,

(
1− 1

z(i)

)
bki
)
.

We set
f(z) � B′i := x � B′i, and f(z) � Bi \B′i := 0.

First suppose z /∈ C, and fix ` ∈ ω such that for infinitely many i we have z(i) = `. Consider
step i in the construction of f(z) for such an i. For any ε > 0, if i is large enough then the
number of words w of length ki which occur in x � [1, (1− 1

z(i))b
ki ] is at most

bki(1− e−(1−
1
z(i)

)
+ ε).

Then, the number Zi of words w of length ki which occur in f(z) � bki is at most

bki(1− e−(1−
1
z(i)

)
+ ε).

So,
1

bki
Zi ≤ (1− e−(1−

1
`
) + 2ε).

On the other hand, the Poisson estimate for the proportion of words of length ki occurring
in an initial segment of length bki is 1 − 1/e. Since ` is fixed, as i gets large we have a
contradiction. So, f(z) is not 1-Poisson generic n base b.
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Next suppose that z ∈ C. We show that f(z) is Poisson generic in base b. Fix a positive
rational λ and ε > 0. Consider any k ∈ ω, large enough so that the following holds:

Let i be such that ki−1 ≤ k < ki,
• if λ = p

q then ki−1 ≥ q,
• ki > 1

ε ,
• for all s ≥ i− 1 we have 1

z(s) < ε.

We show that for any such k, and for every non negative j less than bk,
|Zλj,k(f(z))− e−λ λjj! | < ε. First consider the case λ ≤ 1. Fix j. We have that∣∣∣ 1

bk
Zλj,k(f(z))− 1

bk
Zλj,k(x)

∣∣∣ ≤ 1

bk

(
bki−1

1

z(i− 1)
+ 2k +

∑
m<i−1

bkm
)

≤ 1

z(i− 1)
+ ε

≤ 2ε

for i large enough. We have used here the fact that |Zλj,k(f(z))−Zλj,k(x)| is at most the number
of words of length k which appear in one of f(z) � bk, x � bk but not the other. Such a word
must overlap the block of 0s in f(z) � [bki−1(1− 1

z(i−1)), b
ki−1), or else overlap [1, bki−2 ], which

gives the above estimate.
Consider now the case λ > 1. If λbk < bki(1 − 1

z(i)), then the same estimate above works.
So, suppose bk ≥ 1

λb
ki(1− 1

z(i)). In this case we also count the number of words w of length k
which might overlap the block of 0s in f(z) � [bki(1− 1

z(i)), b
ki ]. We then get∣∣∣ 1

bk
Zλj,k(f(z))− 1

bk
Zλj,k(x)

∣∣∣ ≤ 1

bk

(
bki−1

1

z(i− 1)
+ bki

1

z(i)
+ 3k +

∑
s<i−1

bks
)

≤ 1

z(i− 1)
+
bki

bk
1

z(i)
+ ε

≤ 1

z(i− 1)
+ λ

1

1− 1
z(i)

1

z(i)
+ ε

≤ 2ε

if i is sufficiently large, since λ is fixed and z(i)→∞. �

We can now prove the D2-Π0
3-completeness of the difference set Nb \ Pb.

Proof of Theorem 4. The proof is exactly as that of Theorem 2 except that we start with a
computable real x and we determine the sequence (ki)i≥1 using the input sequence z ∈ ωω.
Let x be the number obtained by the Algorithm.

Let C := {z ∈ ωω : z(2n)→∞} and D := {z ∈ ωω : z(2n+ 1)→∞}. We assume without
loss of generality that all z(i) are powers of 2. We define a computable map f : ωω → (0, 1)
which reduces C \D to Nb \Pb. Fix z ∈ ωω. At step i, let ki be the least power of 2 such that
ki > ki−1, and ki > z(i). We define f so that for z ∈ ωω, the even digits z(2i) will control
whether f(z) ∈ Nb and the odd digits z(2i+ 1) control whether f(z) ∈ Pb. When we wish to
violate Poisson genericity, we do so for λ = 1 and j = 0.
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As in the proof of Theorem 2, at step i we define f(z) � Bi, where Bi = [bki−1 , bki). Let

f(z) � B1
i := x � B1

i

f(z) � B2
i := 0

f(z) � B3
i := x �

[
bki−1 , bki−1 +

1

z(2i+ 1)
bki
)

where

B1
i :=

[
bki−1 ,

(
1− 1

z(2i)
− 1

z(2i+ 1)

)
bki
)

B2
i :=

[(
1− 1

z(2i)
− 1

z(2i+ 1)

)
bki ,

(
1− 1

z(2i+ 1)
)bki
))

B3
i :=

[
(1− 1

z(2i+ 1)
)bki), bki

)
.

Notice that |B2
i | = 1

z(2i)b
ki , and |B3

i | = 1
z(2i+1)b

ki .
We show that f is a reduction from C \D to Nb \Pb. First assume z /∈ C, that is z(2i) does

not tend to infinity when i goes to infinity. Fix ` such that z(2i) = ` for infinitely many i. We
easily have that f(z) /∈ Nb. For example, if the digit 0 occurs with approximately the right
frequency 1

b in f(z) � [0, bki−1 + |B1
i |) = [0, bki(1− 1

z(2i) −
1

z(2i+1))), then 0 will occur with too
large a frequency in

f(z) �
[
1, bki−1 + |B1

i |+ |B2
i |) = [0, bki−1 + |B1

i |+
1

`
bki
)
.

We use here that 1
bki

∑
k<i bk → 0. This is because f(z) � Bi

2 = 0 and |Bi
2| = 1

` b
ki for such i.

Now assume that z ∈ C, so 1
bki
|B2

i | = 1
z(2i) → 0. Then, we have f(z) ∈ Nb. This follows

from the the definition of f and the fact that by that x is Borel normal to base b, see [5,
Theorem 2].

Assume first that z ∈ D, so z /∈ C \D. We show f(z) ∈ Pb, and so f(z) /∈ Nb \ Pb. Since
we are assuming z ∈ C also, we have limi→∞ z(i) = ∞. So, limi→∞

1
bki

(|B2
i | + |B3

i |) = 0. It
then follows exactly as in the proof of Theorem 3 that f(z) ∈ Pb.

Assume next that z /∈ D (but z ∈ C still). We show that f(z) /∈ Pb, which shows f(z) ∈
Nb \ Pb. Fix m so that for infinitely many i we have z(2i + 1) = m, and m is of the form
m = 2`. Recall 1

bki
|B3

i | = 1
z(2i+1) = 1

2`
for such i. We restrict our attention to this set of i in

the following argument: If f(z) were Poisson generic, then from Lemma 1 we would have that
for large enough i in our set that

1

bki
|Hi| = (1− e−α)(e−(1−α)),

where Hi is the set of words of length ki which occur in f(z) with a starting position in
[(1−α)bki , bki), but do not occur in x with a starting position in [bki−1 , (1−α)bki). However,
by the construction of f(z) we have that every word which occurs in [(1 − α)bki , bki) also
occurs in [bki−1 , (1− α)bki), and so |Hi| = 0. This completes the proof of Theorem 4. �
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