
Journal of Logic, Language and Information (2005) 14: 133–148 C© Springer 2005

Kolmogorov Complexity for Possibly Infinite
Computations

VERÓNICA BECHER and SANTIAGO FIGUEIRA
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos
Aires, Argentina
E-mail: vbecher@dc.uba.ar, sfigueir@dc.uba.ar

(Received 5 August 2003; in final form 8 June 2004)

Abstract. In this paper we study the Kolmogorov complexity for non-effective computations, that is,
either halting or non-halting computations on Turing machines. This complexity function is defined as
the length of the shortest input that produce a desired output via a possibly non-halting computation.
Clearly this function gives a lower bound of the classical Kolmogorov complexity. In particular, if the
machine is allowed to overwrite its output, this complexity coincides with the classical Kolmogorov
complexity for halting computations relative to the first jump of the halting problem. However, on
machines that cannot erase their output –called monotone machines–, we prove that our complexity for
non effective computations and the classical Kolmogorov complexity separate as much as we want.
We also consider the prefix-free complexity for possibly infinite computations. We study several
properties of the graph of these complexity functions and specially their oscillations with respect to
the complexities for effective computations.

Key words: infinite computations, Kolmogorov complexity, monotone machines, non-effective
computations, program-size complexity, Turing machines

1. Introduction

The Kolmogorov or program-size complexity (Kolmogorov, 1965) classifies strings
with respect to a static measure for the difficulty of computing them: the length
of the shortest program that computes the string. A low complexity string has a
short algorithmic description from which one can reconstruct the string and write
it down. Conversely, a string has maximal complexity if it has no algorithmic
description shorter than its full length. Due to an easy but consequential theorem of
invariance, program-size complexity is independent of the universal Turing machine
(or programming language) being considered, up to an additive constant. Thus,
program-size complexity counts as an absolute measure of complexity (see (Li and
Vitányi, 1997) for a thorough exposition of the subject).

The prefix-free version of program-size complexity, independently introduced
by Chaitin (Chaitin, 1975) and Levin (Levin, 1974), also serves as a measure of
quantity of information, being formally identical to Shanon’s information theory
(Chaitin, 1975).

134 V. BECHER AND S. FIGUEIRA

In this paper we study the Kolmogorov complexity for non-effective com-
putations, that is, either halting or non-halting computations on Turing ma-
chines. This complexity function, notated with K ∞, is defined as the length
of the shortest inputs that produce a desired output via a possibly non-halting
computation. The ideas behind K ∞ (more precisely its prefix-free variant H∞)
have been treated by Chaitin (1976a) and Solovay in (1977), and later in
(Becher et al., 2001). In a recent paper (Ferbus-Zanda and Grigorieff, 2004)
Grigorieff and Ferbus-Zanda give a machine-free mathematical formalization of
K ∞. They show that K ∞ coincides with the Kolmogorov complexity of MAXRec,
the class of functions obtained as the maximum of a sequence of total recursive
functions {0, 1}∗ → N.

Clearly this function K ∞ gives a lower bound of the classical Kolmogorov com-
plexity. In particular, if the machine is allowed to overwrite its output, K ∞ coincides
with the classical Kolmogorov complexity for halting computations relative to the
first jump of the halting problem. However, on machines that cannot erase their out-
put –called monotone machines–, we prove that K ∞ and the classical Kolmogorov
complexity separate as much as we want.

We also consider the prefix-free complexity for possibly infinite computations,
notated H∞. This complexity function was defined in (Becher et al., 2001) without
a detailed study of its properties.

We study several properties of the graph of K ∞ and H∞, specially their oscil-
lations with respect to the respective complexities for effective computations. We
also consider the behaviour of the complexity function along the prefix ordering on
{0, 1}∗ in the same vein as in (Katseff and Sipser, 1981).

2. Definitions

N is the set of natural numbers, and we work with the binary alphabet {0, 1}. As
usual, a string is a finite sequence of elements of {0, 1}, λ is the empty string and
{0, 1}∗ is the set of all strings. {0, 1}ω is the set of all infinite sequences of {0, 1},
i.e., the Cantor space. {0, 1}≤ω{0, 1}∗ ∪ {0, 1}ω is the set of all finite or infinite
sequences of {0, 1}. For any n ∈ N, {0, 1}n is the set of all strings of length n.

For a ∈ {0, 1}∗, |a| denotes the length of a. If a ∈ {0, 1}∗ and A ∈ {0, 1}ω we
denote with a� n the prefix of a of length min(n, |a|) and with A� n the prefix of the
infinite sequence A of length n. For a, b ∈ {0, 1}∗, we write a � b if a is a prefix
of b. In this case, we also say that b is an extension of a.

A set X ⊆ {0, 1}∗ is prefix-free if no a ∈ X has a proper prefix in X . X ⊆ {0, 1}∗
is closed under extensions when for every a ∈ X , all its extensions are also in X .

We assume the recursive bijection str : N → {0, 1}∗ such that str(i) is the i-th
string in the length-lexicographic order over {0, 1}∗. We also assume the one to one
recursive function · : {0, 1}∗ → {0, 1}∗ which for every string s = b1b2 . . . bn−1bn ,
s = 0b10b2 . . . 0bn−11bn . This function will be useful to code inputs to Turing
machines which require more than one argument.

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 135

If f is any partial function then, as usual, we write f (p)↓ when it is defined,
and f (p)↑ otherwise.

2.1. POSSIBLY INFINITE COMPUTATIONS ON MONOTONE MACHINES

We work with Turing machines with a one-way read-only input tape, some work
tapes, and an output tape. The input tape contains a first dummy cell (representing
the empty input) followed by 0’s and 1’s representing the input, and then a special
end-marker indicating the end of the input. Notice that the end-marker allows the
machine to know exactly where the input ends.

We shall refer to two architectures of Turing machines, regarding the input and
output tapes. A monotone Turing machine has a one-way write-only output tape. A
prefix machine is a Turing machine with a one-way input tape containing no blanks
(just zeroes and ones). Since there is no external delimitation of the input tape,
the machine may eventually read the entire input tape. A prefix monotone machine
contains no blank end-marker in the input tape and it has a one-way write-only
output tape.

A computation on a machine starts with the input head scanning the leftmost
dummy cell. The output tape is written one symbol at a time. In a (prefix) monotone
machine, the output grows monotonically with respect to the prefix ordering in
{0, 1}∗ as the computational time increases. A possibly infinite computation is
either a halting or a non halting computation. If the machine halts, the output of
the computation is the finite string written on the output tape. Else, the output
is either a finite string or an infinite sequence written on the output tape as a
result of a never ending process. This leads to consider {0, 1}≤ω as the output
space.

We introduce the following maps for the behaviour of machines at a given stage
of the computation.

DEFINITION 2.1. Let M be a Turing machine. M(p)[t] is the current output of
M on input p at stage t . Notice that M(p)[t] does not require that the computation
on input p halts.

DEFINITION 2.2. LetM be a prefix machine. M(p)[t] is the current output ofM
on input p at stage t if it has not read beyond the end of p. Otherwise, M(p)[t] ↑.
Again, notice that M(p)[t] does not require that the computation on input p
halts.

Observe that depending on whether M is a prefix machine or not M(p)[t] refers
to Definition 2.1 or 2.2. In both cases M(p)[t] is a partial recursive function with
recursive domain.

136 V. BECHER AND S. FIGUEIRA

REMARK 2.4. If M is monotone then M(p)[t] � M(p)[t + 1], in case M(p)
[t + 1] ↓.
If M is a prefix machine then:

1. If M(p)[t] ↑ then M(q)[u] ↑ for all q � p and u ≥ t .
2. If M(p)[t] ↓ then M(q)[u] ↓ for any q
 p and u ≤ t . Also, if at stage t , M

reaches a halting state, then M(p)[u]↓ = M(p)[t] for all u ≥ t .

We introduce maps for the possibly infinite computations on a monotone machine
(resp. prefix monotone machine). In this work we restrict ourselves to possibly
infinite computations which read just finitely many symbols from the input tape.

DEFINITION 2.4

1. Let M be a Turing machine (resp. prefix machine). The input/output behaviour
ofM for halting computations is the partial recursive map M : {0, 1}∗ → {0, 1}∗
given by the usual computation of M, i.e. M(p) ↓ iff M enters into a halting
state on input p (resp. iff M enters into a halting state on input p without
reading beyond p). If M(p) ↓ then M(p) = M(p)[t] for some stage t at which
M entered a halting state.

2. Let M be a monotone machine (resp. prefix monotone machine). The in-
put/output behaviour of M for possibly infinite computations is the map
M∞ : {0, 1}∗ → {0, 1}≤ω given by M∞(p) = limt→∞ M(p)[t], where M(p)[t]
is as in Definition 2.1 (resp. Definition 2.3). In case M∞(p) ∈ {0, 1}∗ we say
M∞(p)↓ and otherwise M∞(p)↑.

Observe that M∞ extends M , because if the machine M halts on input p, then
M∞(p) = limt→∞ M(p)[t] = M(p).

REMARK 2.5.

1. If U is any universal Turing machine with the ability of overwriting the out-
put then by Shoenfield’s Limit Lemma (Shoenfield, 1959) it follows that U∞

computes all ∅′-recursive functions.
2. Although Shoenfield’s Limit Lemma insures that for any monotone machine

M, M∞ : {0, 1}∗ → {0, 1}∗ is recursive in ∅′, not every ∅′-recursive function
can be computed in the limit by a monotone machine. One counterexample is
the characteristic function of the halting problem.

3. An example of a non-recursive function that is obtainable via an infinite com-
putation on a monotone machine is the Busy Beaver function in unary notation
bb : N → 1∗, where bb(n) is the maximum number of 1’s produced by any
Turing machine with n states which halts with no input. bb is ∅′-recursive and

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 137

bb(n) is the output of a non halting computation which on input n, it simulates
every Turing machine with n states and for each one that halts it updates, if
necessary, the output with more 1’s.

PROPOSITION 2.6 Let M be a prefix monotone machine.

1. domain(M) is closed under extensions and its syntactical complexity is �0
1 .

2. domain(M∞) is closed under extensions and its syntactical complexity is �0
1.

Proof. Item 1 is trivial. For item 2, observe that M∞(p) ↓ ⇔ ∀t M on input
p does not read p0 and does not read p1 at stage t . Clearly, domain(M∞) is closed
under extensions since if M∞(p)↓ then M∞(q) ↓= M∞(p) for every q
 p.

REMARK 2.7. LetMbe a prefix monotone machine. An alternative and equivalent
definition of M and M∞ would be to consider them with prefix-free domains
(instead of closed under extensions).

– M(p)↓ iff at some stage t M enters a halting state having read exactly p. If
M∞(p)↓ then its value is limt→∞ M(p)[t].

– M∞(p)↓ iff ∃t at which M has read exactly p and for every t ′ > t , M does not
read p0 nor p1. If M∞(p)↓ then its value is limt→∞ M(p)[t].

All properties of the complexity functions we study in this paper hold for this
alternative definition.

We fix an effective enumeration of all tables of instructions. This gives an effective
(Mi)i∈N. We fix the usual (prefix) monotone universal machine U , which defines
the functions U (0i 1p) = Mi (p) and U∞(0i 1p) = M∞

i (p) for halting and possibly
infinite computations respectively. Recall that U∞ is an extension of U . We also
fix U∅′

a monotone universal machine with an oracle for ∅′.

2.2. PROGRAM-SIZE COMPLEXITIES

Let us consider inputs as programs. The Kolmogorov or program-size complexity
(Kolmogorov, 1965) relative to a Turing machineM is the function KM : {0, 1}∗ →
N which maps a string s to the length of the shortest programs that output s. That
is,

KM(s) =
{

min{|p| : M(p) = s} if s is in the range of M

∞ otherwise

Since the subscriptM can be any machine, even one equipped with an oracle, this is
a definition of program-size complexity for both effective or relative computability.

138 V. BECHER AND S. FIGUEIRA

In case M is a prefix machine we denote it HM rather than KM and we call it prefix
complexity. In general, these program-size complexities are not recursive.

The invariance theorem (Kolmogorov, 1965) states that the universal Turing
machine U is asymptotically optimal for program-size complexity, i.e.,

∀ Turing machine M ∃c ∀s KU (s) ≤ KM(s) + c.

For any pair of asymptotically optimal machines M and N there is a constant c
such that |KM(s) − KN (s)| ≤ c for every string s. Thus, program-size complexity
on asymptotically optimal machines counts as an absolute measure of complexity,
up to an additive constant. The same holds for prefix machines (Chaitin, 1975;
Levi, 1974).

We shall write K (resp. H) for KU (resp. HU) where U is some universal Turing
(resp. universal prefix) machine. The complexity for a universal machine (resp.
prefix machine) with oracle A is notated as K A (resp. H A).

As expected, the help of oracles leads to shorter programs up to an additive
constant (cf. Propositions 2.10 and 2.11) .

2.3. PROGRAM-SIZE COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS

Let M be a monotone machine, and M , M∞ the respective maps for input/output
behaviour of M for halting computations and possibly infinite computations (see
Definition 2.4).

DEFINITION 2.8. K ∞
M : {0, 1}≤ω → N is the program-size complexity for

functions M∞:

K ∞
M(x) =

{
min{|p| : M∞(p) = x} if x is in the range of M∞

∞ otherwise

For the universal U we drop subindexes and we simply write K ∞ (resp. H∞).
Because the set of all tables of instructions is r.e., the Invariance Theorem holds

for K ∞: for every monotone machine M there is a c such that

∀s ∈ {0, 1}≤ω K ∞(s) ≤ K ∞
M(s) + c.

The Invariance Theorem also holds for H∞.

REMARK 2.9. From Remark 2.5 it is immediate that if U is a Turing machine with
the ability of overwriting the output, that is, U is not monotone, K ∞ coincides with
K ∅′

, up to an additive constant.

We mention some known results that will be used in the next sections.

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 139

PROPOSITION 2.10.

1. ∃c ∀s ∈ {0, 1}∗ K (s) ≤ |s| + c.
2. ∃c ∀s ∈ {0, 1}∗ K ∅′

(s) − c < K ∞(s) < K (s) + c.
3. ∀n ∃s ∈ {0, 1}∗ of length n such that K (s) ≥ n. The same holds for K ∅′

and
K ∞.

Proof. Item 1 follows directly from definition and the Invariance Theorem
for K .

For the first inequality of item 2, observe that any unending computation that out-
puts just finitely many symbols can be simulated on a universal machine equipped
with oracle ∅′, by increasing number of steps. At each step, the simulation polls the
oracle to determine whether the computation would output more symbols or not.
The simulation halts when there is no more output left.

Item 3 holds because there are 2n strings of length n, but 2n − 1 programs of
length less than n.

PROPOSITION 2.11.

1. (Chaitin, 1975) ∃c ∀s ∈ {0, 1}∗ H (s) ≤ H (|s|) + |s| + c. In particular, ∃c ∀s ∈
{0, 1}∗ H (s) ≤ |s| + c = 2|s| + c.

2. Items 2 and 3 of Proposition 2.10 are still valid considering H, H∞ and H∅′

(see Becher et al., 2001).

3. Oscillations of K ∞

In this section we study some properties of the complexity function K ∞ and
compare them with K and K ∅′

. We know K ∅′ ≤ K ∞ ≤ K up to addi-
tive constants. The following results show that K ∞ is really in between K ∅′

and K .

There are strings that separate the three complexity functions K , K ∅′
and K ∞

arbitrarily:

THEOREM 3.1. For every c there is a string s ∈ {0, 1}∗ such that

K ∅′
(s) + c < K ∞(s) < K (s) − c.

Proof. We know that for every n there is a string s of length n such that
K (s) ≥ n. Let dn be the first string of length n in the lexicographic order satisfying
this inequality, i.e. dn = min{s ∈ {0, 1}n : K (s) ≥ n}. Let f : N → {0, 1}∗ be any
recursive function with infinite range, and consider a machine C which on input i
does the following:

140 V. BECHER AND S. FIGUEIRA

j := 0
Repeat

Write f (j)
Find a program p, |p| ≤ 2i , such that U (p) = f (j)
j := j + 1

The machine C on input i outputs (in the limit) ci = f (0) f (1) . . . f (ji) where
K (f (ji)) > 2i and ∀z, 0 ≤ z < ji : K (f (z)) ≤ 2i . For each i , we define ei = di ci .

Let us fix k and see that there is an i1 such that ∀i ≥ i1 : K ∞(ei) − K ∅′
(ei) > k.

On the one hand, we can compute di from i and a minimal program p such that
U∞(p) = ei by simulating U (p) until it outputs i bits. If we code the input as ip
we obtain

i ≤ K (di) ≤ K ∞(ei) + 2|i | + O(1). (1)

On the other hand, with the help of the ∅′ oracle, we can compute ei from i . Hence

K ∅′
(ei) ≤ |i | + O(1). (2)

From (1) and (2) we have K ∞(ei) − K ∅′
(ei) + O(1) ≥ i − 3|i | and then, there is

i1 such that for all i ≥ i1, K ∞(ei) − K ∅′
(ei) > k.

Let us see now that there is i2 such that ∀i ≥ i2 : K (ei) − K ∞(ei) > k. Given i
and a shortest program p such that U (p) = ei we construct a machine that computes
f (ji). Indeed, if we code the input as ip, the following machine does the work:

Obtain i
Compute e := U (p)
s := e� i
j := 0
Repeat

s := s f (j)
If s = e then write f (j) and halt
j := j + 1

Hence, for all i

2i < K (f (ji)) ≤ K (ei) + 2|i | + O(1). (3)

Using the machine C we can construct a machine which, via an infinite computation,
computes ei from a minimal program p such that U (p) = di . Then, for every i

K ∞(ei) ≤ K (di) + O(1) ≤ i + O(1). (4)

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 141

From (3) and (4) we have K (ei) − K ∞(ei) + O(1) > i − 2|i | so the difference
between K (ei) and K ∞(ei) can grow arbitrarily as we increase i . Let i2 be such
that for all i ≥ i2, K (ei) − K ∞(ei) > k .

Taking i0 = max{i1, i2}, we obtain ∀i ≥ i0 : K ∅′
(ei) + k < K ∞(ei) < K

(ei) − k.

The three complexity functions K , K ∅′
and K ∞ get close infinitely many times.

THEOREM 3.2. There is a constant c such that for every n:

∃s ∈ {0, 1}n : |K ∅′
(s) − K ∞(s)| ≤ c ∧ |K ∞(s) − K (s)| ≤ c.

Proof. Let sn be of length n such that K ∅′
(sn) ≥ n. From Proposition 2.10,

there exist c1, c2 and c3 such that

n ≤ K ∅′
(sn) ≤ K ∞(sn) + c1 ≤ K (sn) + c1 + c2 ≤ n + c1 + c2 + c3.

Take c = c1 + c2 + c3.

For infinitely many strings, K and K ∞ get close but they separate from K ∅′
as

much as we want.

THEOREM 3.3. There is a constant c such that for all m

∃s ∈ {0, 1}∗ : K (s) − K ∅′
(s) > m ∧ |K ∞(s) − K (s)| < c.

Proof. We know that #{s ∈ {0, 1}n+2|n| : K (s) < n} < 2n and then

#{s ∈ {0, 1}n+2|n| : K (s) ≥ n} > 2n+2|n| − 2n.

Let Sn = {|w|w : w ∈ {0, 1}n}. Notice that, if s ∈ Sn , |s| = n + 2|n|. Clearly,
#Sn = 2n . Assume by contradiction that there is n such that Sn ∩ {s ∈ {0, 1}n+2|n| :
K (s) ≥ n} = ∅. Then 2n+2|n| ≥ #Sn + #{s ∈ {0, 1}n+2|n| : K (s) ≥ n} > 2n+2|n|

which is impossible. For every n, let us define sn

sn = min{s ∈ Sn : K (s) ≥ n}. (5)

Given a minimal program p such that U∞(p) = sn , we can compute sn in an
effective way. The idea is to take advantage of the structure of sn to know when
U∞ stops writing in its output tape: we simulate U∞(p) until we detect n̄ and we
continue the simulation of U∞ until we see it writes exactly n more bits. Then for
each n, K (sn) ≤ K ∞(sn) + O(1) and from Proposition 2.10 we have that for all n
the difference |K (sn) − K ∞(sn)| is bounded by a constant.

142 V. BECHER AND S. FIGUEIRA

Using the ∅′ oracle, we can compute sn from n. Hence K ∅′
(sn) ≤ |n| + O(1).

From (5) we conclude K (sn) − K ∅′
(sn) + O(1) ≥ n − |n|. Thus, the difference

between K (sn) and K ∅′
(sn) can be made arbitrarily large.

Infinitely many times K ∞ and K ∅′
get close but they separate from K arbitrarily.

THEOREM 3.4. There is a constant c such that for each m

∃s ∈ {0, 1}∗ : K (s) − K ∞(s) > m ∧ |K ∞(s) − K ∅′
(s)| < c.

Proof. As in the proof of Theorem 3.1, consider a recursive f with infinite
range, let cn = n f (0) f (1) . . . f (jn), and slightly modify the machine C such that
on input i , it first writes i and then it continues writing f (j) until it finds a ji such
that K (f (ji)) > 2i and ∀z, 0 ≤ z < ji : K (f (z)) ≤ 2i . Thus, given str(n), we can
compute n and then cn in the limit. Hence for every n

K ∞(cn) ≤ |str(n)| + O(1). (6)

Given an ∅′ oracle minimal program for cn , we can compute str(n) in an oracle
machine. Then for every n

K ∅′
(str(n)) ≤ K ∅′

(cn) + O(1). (7)

We define mn = min{s ∈ {0, 1}n : K ∅′
(s) ≥ n} and sn = cstr−1(mn). From (7) we

know

n ≤ K ∅′
(mn) ≤ K ∅′

(sn) + O(1) (8)

and from (6) we have

K ∞(sn) ≤ |mn| + O(1). (9)

From (8) and (9) we obtain K ∞(sn) − K ∅′
(sn) ≤ O(1) and by Proposition 2.10

we conclude that for all n, |K ∞(sn) − K ∅′
(sn)| ≤ O(1). In the same way as we

did in Theorem 3.1, we construct an effective machine that outputs f (jn) from
a shortest program such that U (p) = cn , but in this case the machine gets n
from the input itself (we do not need to pass it as a distinct parameter). Hence
for all n, 2n < K (f (jn)) ≤ K (cn) + O(1) and in particular for n = str−1(mn)
we have 2str−1(mn) < K (sn) + O(1). Since for each string s, |s| ≤ str−1(s) we
have 2|mn| < K (sn) + O(1). From (9) and recalling that |mn| = n, we have
K (sn) − K ∞(sn) + O(1) > n. Thus, the difference between K (sn) and K ∞(sn)
grows as n increases.

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 143

It is known that the complexity function K is smooth in the length and lexico-
graphic order on {0, 1}∗, i.e. |K (str(n)) − K (str(n + 1))| = O(1). The following
result holds for K ∞.

PROPOSITION 3.5. For all n

|K ∞(str(n)) − K ∞(str(n + 1))| ≤ 2K (|str(n)|) + O(1).

Proof. Consider the following monotone machine M with input pq:

Obtain y = U (p)
Simulate z = U∞(q) till it outputs y bits
Write str(str−1(z) + 1)

Let p, q ∈ {0, 1}∗ be such that U (p) = |str(n)| and U∞(q) = str(n). Then,
M∞(pq) = str(n + 1) and K ∞(str(n + 1)) ≤ K ∞(str(n)) + 2K (|str(n)|) + O(1).

Similarly, ifM above instead of writing str(str−1(z)+1), it writes str (str−1(z)−
1), we conclude

K ∞(str(n)) ≤ K ∞(str(n + 1)) + 2K (|str(n + 1)|) + O(1).

Since, |K (str(n)) − K (str(n + 1))| ≤ O(1), we have

|K ∞(str(n)) − K ∞(str(n + 1))| ≤ 2K (|str(n)|) + O(1).

Loveland and Meyer (1969) have given a necessary and sufficient condition
to characterize recursive sequences, based on the program-size complexity of
their initial segments. They showed that a sequence A ∈ {0, 1}ω is recursive iff
∃c ∀n K (A� n) ≤ K (n) + c. In this sense, the recursive sequences are those
whose initial segments have minimal K complexity. We show that the advan-
tage of K ∞ over K can be seen along the initial segments of every recursive
sequence: if A ∈ {0, 1}ω is recursive then there are infinitely many n’s such that
K (A� n) − K ∞(A� n) > c, for an arbitrary c.

PROPOSITION 3.6. Let A ∈ {0, 1}ω be a recursive sequence. Then

lim sup
n→∞

K (A� n) − K ∞(A� n) = ∞.

Proof. Let f : N → {0, 1} be a total recursive function such that f (n) is the
n-th bit of A. Let us consider the following monotone machine M with input p:

144 V. BECHER AND S. FIGUEIRA

Obtain n := U (p)
Write A� (str−1(0n) − 1)
For s := 0n to 1n in lexicographic order

Write f (str−1(s))
Search for a program p such that |p| < n and U (p) = s

If U (p) = n, then M∞(p) outputs A� kn for some kn such that 2n ≤ kn < 2n+1,
since for all n there is a string of length n with K -complexity greater than or equal
to n. Let us fix n. Then, K ∞(A� kn) ≤ |n|+O(1). However, K (A� kn)+O(1) ≥ n,
because we can compute the first string of length n in the lexicographic order
with K -complexity ≥ n from a program for A� kn . Hence, for each n, K (A� kn) −
K ∞(A� kn) + O(1) ≥ n − |n|.

4. Program-Size Complexity for Possibly Infinite Computations on Prefix
Monotone Machines

We show that Theorems 3.1 and 3.3 are valid for H∞.

THEOREM 4.1. For every c there is a string s such that

H∅′
(s) + c < H∞(s) < H (s) − c.

Proof. The proof is essentially the same as that of Theorem 3.1 but using prefix
monotone machines. Let cn = f (0) f (1) . . . f (jn) and slightly change the instruc-
tions of machine C putting H (f (jn)) > 3n and ∀z, 0 ≤ z < jn : H (f (z)) ≤ 3n. Let
dn = min{s ∈ {0, 1}n : H (s) ≥ n} and en = dncn . Assume p is a shortest program
such that U∞(p) = ei . Consider the effective machine which on input ip does the
following:

Obtain i
Simulate x� i = U∞(p) until it outputs i bits
Print x and halt

Then, we have

i ≤ H (di) ≤ H∞(ei) + 2|i | + O(1). (10)

If we code the input of the oracle computation of the proof of Theorem 3.1 by
duplicating the bits (now we cannot use just |i | bits to code i), inequality (2)
becomes

H∅′
(ei) ≤ 2|i | + O(1). (11)

From (10) and (11) we have H∞(ei) − H∅′
(ei) + O(1) ≥ i − 4|i |, and so we can

make the difference between H∞(ei) and H∅′
(ei) as large as we want. To show that

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 145

the difference between H (ei) and H∞(ei) can also be made arbitrarily large, we
replace (3) by

3i < H (f (ji)) ≤ H (ei) + 2|i | + O(1) (12)

and recalling that for each string s, H (s) ≤ 2|s| + O(1), inequality (4) is replaced
by

H∞(ei) ≤ H (di) + O(1) ≤ 2i + O(1). (13)

From (12) and (13) we get H (ei) − H∞(ei) + O(1) > i − 2|i |.

For infinitely many strings, H and H∞ get close but they separate from H∅′
as

much as we want:

THEOREM 4.2. There is a constant c such that for all m

∃s ∈ {0, 1}∗ : H (s) − H∅′
(s) > m ∧ |H∞(s) − H (s)| ≤ c.

Proof. The idea of the proof is the same as the one in Theorem 3.3. We redefine
sn (see (5)):

sn = min{s ∈ Sn : H (s) ≥ n}. (14)

We consider the same program as in the proof of Theorem 3.3 but using prefix
monotone machines. Identically we obtain H (sn) ≤ H∞(sn) + O(1) and from
Proposition 2.11 we have |H (sn)−H∞(sn)| ≤ O(1). Instead of K ∅′

(sn) ≤ |n|+O(1)
we obtain H∅′

(sn) ≤ 2|n| + O(1) and from (14) we conclude H (sn) − H∅′
(sn) ≥

n − 2|n| + O(1). Thus, the difference between H (sn) and H∅′
(sn) grows as n

increases.

We can show the following weaker version of Theorem 3.4 for H∞.

PROPOSITION 4.3. There is a sequence (sn)n∈N such that

lim
n→∞ H (sn) − H∞(sn) = ∞ and |H∞(sn) − H∅′

(sn)| ≤ H (n) + O(1).

Proof. The idea is similar to the proof of Theorem 3.4, but making ji such that
H (f (ji)) > 3i and ∀z, 0 ≤ z < ji : H (f (z)) ≤ 3i . We replace (6) by

H∞(cn) ≤ H (str(n)) + O(1) (15)

146 V. BECHER AND S. FIGUEIRA

since there is a machine that via an infinite computation computes n and cn from
a shortest program p such that U (p) = str(n). There is a machine with oracle ∅′

that computes str(n) from a minimal oracle program for cn . Then, restating (7), we
have for every n

H∅′
(str(n)) ≤ H∅′

(cn) + O(1). (16)

Let mn = min{s ∈ {0, 1}n : H∅′
(s) ≥ n} and sn = cstr−1(mn). From (15) and (16)

we have H∞(sn) − H∅′
(sn) ≤ H (mn) − H∅′

(mn) + O(1) ≤ H (mn) − n + O(1)
and, since H (mn) ≤ H (|mn|) + |mn| + O(1) we conclude H∞(sn) − H∅′

(sn) ≤
H (n) + O(1). We can construct an effective machine that computes f (jn) from a
minimal program for U which outputs cn . From (15) we have H (sn) − H∞(sn) +
O(1) > 3n − H (mn). Since for all n, H (mn) ≤ 2|mn| + O(1) = 2n + O(1), we
get H (sn) − H∞(sn) +O(1) > n and hence the difference can be made arbitrarily
large.

Proposition 3.5 for H∞ is still valid considering H (|str(n)|)+O(1) as the upper
bound.

It is easy to see that the recursive sequences in {0, 1}ω have minimal H
complexity, i.e., for any recursive A ∈ {0, 1}ω ∃c ∀n H (A� n) ≤ H (n) + c. It
is easy to see that the analog of Proposition 3.6 is also true for H∞.

We finally prove some properties that are only valid for H∞.

PROPOSITION 4.4. For all strings s and t

1. H (s) ≤ H∞(s) + H (|s|) + O(1).
2. H∞(ts) ≤ H∞(s) + H (t) + O(1).
3. H∞(s) ≤ H∞(st) + H (|t |) + O(1).
4. H∞(s) ≤ H∞(st) + H∞(|s|) + O(1).

Proof.

1. Let p, q ∈ {0, 1}∗ be such that U∞(p) = s and U (q) = |s|. Then there is
a machine that first simulates U (q) to obtain |s|, then it starts a simulation of
U∞(p) writing its output on the output tape, until it has written |s| symbols, and
then halts.

2. Let p, q ∈ {0, 1}∗ be such that U∞(p) = s and U (q) = t . Then there
is a machine that first simulates U (q) until it halts and prints U (q) on the
output tape. Then, it starts a simulation of U∞(p) writing its output on the
output tape.

3. Let p, q ∈ {0, 1}∗ be such that U∞(p) = st and U (q) = |t |. Then there is
a machine that first simulates U (q) until it halts to obtain |t |. Then it starts a

KOLMOGOROV COMPLEXITY FOR POSSIBLY INFINITE COMPUTATIONS 147

simulation of U∞(p) such that at each stage n of the simulation it writes the
symbols needed to print U (p)[n]� (|U (p)[n]| − |t |) on the output tape.

4. Consider the following monotone machine:

t := 1 ; v := λ ; w := λ

Repeat
if U (v)[t] asks for reading then v := vb
if U (w)[t] asks for reading then w := wb

where b is the next bit in the input
extend the actual output to U (w)[t]� (U (v)[t])
t := t + 1

If p and q are shortest programs such that U∞(p) = |s| and U∞(q) = st
respectively, then we can interleave p and q in a way that at each stage t , v � p
and w � q (notice that eventually v = p and w = q). Thus, this machine will
compute s and will never read more than H∞(st) + H∞(|s|) bits.

Acknowledgements

This work is supported by Agencia Nacional de Promoción Cientı́fica y Tecnológica
(V.B.), and by a grant of Fundación Antorchas (S.F.).

References

Becher, V., Daicz, S., and Chaitin, G., 2001, “A highly random number,” pp. 55–68 in Combina-
torics, Computability and Logic: Proceedings of the Third Discrete Mathematics and Theoretical
Computer Science Conference (DMTCS’01), C.S. Calude, M.J. Dineen, and S. Sburlan, eds.,
London: Springer-Verlag.

Chaitin, G.J., 1975, A theory of program-size formally identical to information theory, Journal of the
ACM 22, 329–340.

Chaitin, G., 1976a, “Algorithmic entropy of sets,” Computers & Mathematics with Applications 2,
233–245.

Chaitin, G.J., 1976b, “Information-theoretical characterizations of recursive infinite strings,”
Theoretical Computer Science 2: 45–48.

Ferbus-Zanda, M. and Grigorieff, S., 2004, “Kolmogorov complexities Kmax, Kmin” (submitted).
Katseff, H.P. and Sipser, M., 1981, “Several results in program-size complexity,” Theoretical Computer

Science 15, 291–309.
Kolmogorov, A.N., 1965, “Three approaches to the quantitative definition of information,” Problems

of Information Transmission 1, 1–7.
Levin, L.A., 1974, “Laws of information conservation (non-growth) and aspects of the

foundations of probability theory,” Problems of Information Transmission 10, 206–
210.

Li, M. and Vitányi, P. 1997, An Introduction to Kolmogorov Complexity and its Applications
(2nd edition), Amsterdam: Springer.

148 V. BECHER AND S. FIGUEIRA

Loveland, D.W., 1969, A Variant of the Kolmogorov Concept of Complexity, Information and Control
(15), 510–526.

Shoenfield, J.R.M., 1959, “On degrees of unsovability,” Annals of Mathematics 69, 644–653.
Solovay, R.M., 1977, “On random r.e. sets,” pp. 283–307 in Non-Classical Logics, Model

Theory, and Computability, A.I. Arruda, N.C.A. da Costa, and R. Chuaqui, eds., Amsterdam:
North-Holland.

