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ABSTRACT
Motivation: There is significant ongoing research to identify the
number and types of repetitive DNA sequences. As more genomes
are sequenced, efficiency and scalability in computational tools
become mandatory. Existing tools fail to find distant repeats because
they can not accommodate whole chromosomes, but segments. Also,
a quantitative framework for repetitive elements inside a genome or
across genomes is still missing.
Results: We present a new efficient algorithm and its implementation
as a software tool to compute all perfect repeats in inputs of up to
500 million nucleotide bases, possibly containing many genomes.
Our algorithm is based on a suffix array construction and a novel
procedure to extract all perfect repeats in the entire input, that can
be arbitrarily distant, and with no bound on the repeat length.

We tested the software on the Homo sapiens DNA genome
NCBI 36.49. We computed all perfect repeats of at least 40 bases
occurring in any two chromosomes with exact matching. We found
that each Homo sapiens chromosome shares approximately 10%
of its full sequence with every other human chromosome,
distributed more or less evenly among the chromosome surfaces.
We give statistics including a quantification of repeats by
diversity, length, and number of occurrences. We compared
the computed repeats against all biological repeats currently
obtainable from Ensembl enlarged with the output of the dust
program and all elements identified by TRF and RepeatMasker
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/jherrero/.repeats/all repeats.txt.bz2.
We report novel repeats as well as new occurrences of repeats
matching with known biological elements.
Availability: The source code, results, and visualization of some
statistics are accessible from http://kapow.dc.uba.ar/patterns/
Contact: vbecher@dc.uba.ar adeymo@dc.uba.ar pheiber@dc.uba.ar

1 INTRODUCTION
We present a time and memory efficient algorithm and its
implementation as a software tool to exhaustively find all perfect
repeats in sequences of up to 500 million nucleotide bases. Thus, the
input can be made of possibly many whole chromosomes (a single
chromosome, two, or more). The search is efficiently performed,
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with no upper bound on the length of the perfect repeats, and
the different occurrences can be arbitrarily distant. The output is
ordered by length reporting, for each perfect repeat, its number of
occurrences and starting positions in the input data. Our tool also
gives a quantification in terms of length, diversity and number of
occurrences, in possibly many genomes.

The main contribution of our algorithm is its efficiency and
exhaustiveness in extracting all perfect repeats in large inputs, hence
its usefulness to find novel repeats and to perform cross comparisons
in different genomes. We tested our tool on Human genome, our
findings are reported in the second part of this paper. We verified
the efficiency of our method with respect to the trade-off in time
and memory, granted by its theoretical complexity. Our algorithm
is based on the suffix array construction of Manber and Myers
(1993) and a novel procedure to extract all perfect repeats in the
entire input. It is well known that the linear space complexity of
the alternative data structure, the suffix trees, hides a large constant
that makes it impossible to allocate and manipulate multiple entire
chromosomes even in 8 Gigabyte RAM, the currently largest
addressable memory with nowadays workstations. Hence, the
attractive linear time operations of suffix trees vanishes for such
large inputs needed in comparative genomics. In contrast, the small
constant involved in the linear space complexity of suffix arrays,
and the order of n log n worst case time complexity for inputs of
size n, have made suffix arrays the standard data structure replacing
suffix trees (Gusfield (1997); Kärkkäinen et al. (2006); Puglisi et al.
(2007); Poddar et al. (2007)).

2 WHAT IS A PATTERN?
Notation. Assume an alphabet A, i.e., a set of symbols. A string is
a finite sequence of symbols inA. The length of a string w, denoted
by |w|, is the number of symbols in w. We address the position
of a string w by counting from 1 to |w|. The symbol in position i
is denoted w[i], and w[i..j] represents the substring that starts in
position i and ends in position j of w, inclusive. A prefix of a string
w is an initial segment of w, w[1..`]. A suffix of a string w is a final
segment of w, w[i..|w|]. We say u is a substring of w if u = w[i..j]
for some i, j, and we say u occurs in w at position i if u = w[i..i +
|u| − 1]. When u is a substring of w we call w an extension of u.
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Definition of a pattern. Biological repeats can be generated
by many different processes including tandem repeats, segmental
duplication and satellites as well as families of transposable
elements. They result from sequence divergence, abortive repair
of double-strand DNA breaks, incomplete reverse transcription,
and recombination or nesting among transposable elements (Caspi
and Pachter (2006); Bergman and Quesneville (2007); Goodier and
Kazazian (2008); Catasti et al. (1999)). Repeat classes, such as
segmental duplications and tandem repeats, may be interleaved.
We tackle the fragmental nature of biological repeats with the
mathematical definition of a pattern. It requires exact matching of
the different occurrences, allowing nested and overlapping patterns.
Biological repeats could then be found by combining smaller exact
matching patterns (this phase is beyond the scope of this paper). The
plots of the distribution of patterns along the chromosome surfaces,
as shown in Figure 6, give some insight of such combinations.

We define a pattern as a string that occurs more than once,
and each of its extensions occur fewer times, Gusfield (1997).
For example, the set of patterns in w = abcdeabcdfbcdebcd is
{abcd, bcde, bcd}. Clearly abcd and bcde are patterns occurring
twice. But also bcd is a pattern because it occurs three times in w,
and every extension of bcd occurs fewer times. There are no other
patterns in w (bc, for example, occurs three times but since bcd
occurs the same number of times, bc is not a pattern). The time
complexity of our algorithm relies on the fact that there can be at
most n patterns in any string of length n, Gusfield (1997).

To find the patterns in many strings requires more than treating
them individually. If s and t are two strings, and $ is a symbol not
occurring in s nor in t, the patterns in w = s$t may be different
from getting the individual patterns and take their union, because
a pattern in w may occur only once in each string. For instance, if
s = ACTGC and t = CTGAG, the individual patterns are just C
for s and G for t, but there is a pattern CTG that occurs twice in
w = ACTGC$CTGAG.

3 ALGORITHM
Let w be a string of length n = |w|. The suffix array (Manber and
Myers (1993)) of w is a permutation r of the indices 1...n such that
for each i < j, w[r[i]..n] is lexicographically less than or equal to
w[r[j]..n]. Thus, a suffix array represents the lexicographic order
of all suffixes of the input w. For convenience we also store the
inverse permutation of r and call it p, namely, p[r[i]] = i. As a
first step of our procedure we use a simplified version of the fast
algorithm of Larsson and Sadakane (2007) to build the suffix array
of the input. We can think each substring of w as a prefix of a suffix
of w. The algorithm has to distinguish which prefixes of the already
represented suffixes are patterns.

Suppose a pattern u occurs k times in w; thus, it is a prefix
of k different suffixes of w. Since the suffix array r records the
lexicographical order of the suffixes of w, the pattern u can be seen
as a string of length |u| addressed by k consecutive indexes of r.
Namely, there will be an index i such that u occurs in positions
r[i], r[i + 1], ..., r[i + k − 1] of w. The algorithm has to identify
which strings addressed by consecutive indexes of the suffix array
are indeed patterns. We need to find out the longest common prefix
of such strings. For this task we use the linear time algorithm
of Kasai et al. (2001) that computes the Longest Common Prefix

Fig. 1. Suffix array and the LCP array for w = mississippi

LCP[i] r[i] w[r[i]..n]
11 i1 8 ippi1 5 issippi4 2 ississippi0 1 mississippi0 10 pi1 9 ppi0 7 sippi2 4 sissippi1 6 ssippi3 3 ssissippi

(LCP ) array of the lexicographically ordered suffixes of w. For any
position 1 ≤ i < n, LCP [i] gives the length of the longest common
prefix of w[r[i]..n] and w[r[i+1]..n]. Figure 1 gives an example of
the suffix array and the LCP array for w = mississippi.

Recall that the definition of a pattern asks that any extension of a
pattern must occur fewer times. In this sense, patterns are maximal.
Let us say that a candidate is maximal to the left when all its
extensions to the left occur fewer times; similarly for maximality
to the right. Of course, a candidate is a pattern exactly when it is
maximal to the left and to the right. To identify patterns we first
identify the candidates that are maximal to the right, and then we
filter out those that are not maximal to the left.

Each pattern of length ` occurring k times in w will correspond
to consecutive indexes i, .., i + k − 1 of the suffix array such that
LCP [i−1] < `, and LCP [i+k−1] < `, and LCP [i+j] ≥ ` for
each j where 0 ≤ j < k− 1. (Notice that in the first two conditions
it can also be the case that i = 1 or i + k − 1 = n). Observe that at
least one of the LCP [i + j] must be exactly `, otherwise we would
have a pattern longer than `. For each such set of strings addressed
by consecutive indexes of the suffix array, it is clear that the implied
substring of w of length ` is maximal to the right. This is because
there is some j such that LCP [i + j] = `, hence any extension of
w[r[i + j]..r[i + j] + `− 1] to the right occurs fewer times.

If there were an extension to the left, then the respective k
extensions w[r[i]−1..r[i]+`−1], ..., w[r[i+k−1]−1..r[i+k−
1]+ `−1] should all coincide. Hence, they should all correspond to
consecutive indexes in the suffix array (in the same order as before).
To keep just those candidates that are maximal to the left we check
that this situation does not hold. The candidate is not maximal to
the left if and only if w[r[i] − 1] = w[r[i + k − 1] − 1] and the
difference between p[r[i]− 1] and p[r[i + k − 1]− 1] is exactly k.
We omit the formal proof because of its technicality.

In the previous mississippi example, the sets of positions
{11, 8, 5, 2}, {10, 9}, {7, 4, 6, 3}, {5, 2}, {7, 4} and {6, 3} imply
strings that are maximal to the right. However, {6, 3} implies the
string ssi which is not maximal to the left because issi also occurs
twice at positions {5, 2}. To round up the example, the patterns
in mississippi are: issi with two occurrences, p also with two
occurrences, and s and i, both with four occurrences.

We call the algorithm findpat. Its pseudocode is described in
Algorithm 1. It takes as an extra parameter an integer ml which
is the minimum length of a pattern to be reported (it can be set to 1
if desired). All patterns of length at least ml will be found.

To represent the set S of indexes of LCP we use a convenient
data structure. We need that the insertion operation in S, and the
queries for the “minimum greater than a certain value” and the
“maximum less than a certain value” to be done in O(log n) time.
Such a structure needs to have the total number of elements specified
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Algorithm 1
findpat(input: w, ml)
n := |w|
r := suffix array of w
p := inverse permutation of r
LCP := longest common prefix array of w and r
I := permutation array representing an increasing order of LCP
S := {u | LCP [u] < ml} ∪ {0, n}
ini := min{t | LCP [I[t]] ≥ ml}
–this is the main loop of the algorithm–
for t := ini to n− 1 do

i := I[t]
pi := max{j ∈ S ∧ j < i}+ 1
ni := min{j ∈ S ∧ j > i}
S := S ∪ {i}
if (pi = 1 or LCP [pi − 1] 6= LCP [i]) and (ni = n or
LCP [ni] 6= LCP [i]) then

–here we have a substring maximal to the right–
–check if it is maximal to the left–
if r[pi] = 0 or r[ni] = 0 or w[r[pi]− 1] 6= w[r[ni]− 1] or
|p[r[ni]− 1]− p[r[pi]− 1]| 6= ni− pi then

–here it is both maximal to the right and to the left –
report ni − pi + 1 patterns of size LCP [i] whose list of
positions in w are contiguous in r starting at pi.

end if
end if

end for

in advance. In our case this is not a problem because the universe
for the set S is the integer interval [0, n]. The set S is represented by
a binary tree of bits with n + 1 leaves. Each leaf represents one of
the n+1 elements of the universe, with its bit set to 1 if the element
is in S, and set to 0 otherwise. The internal nodes are set to 0 if and
only if all its children are set to 0, otherwise they are set to 1.

The insertion operation only needs to update the branch of the
modified leaf, so it can clearly be done in log n time. Algorithm 2
finds the maximum less than a given t. Finding the minimum greater
than t is analogous.

Algorithm 2
Maximum less than(input: t)
repeat

if t is a left child then
t := rightmost node to the left of t in its level

else
t := parent(t)

end if
until node t is set to 1
while t is not a leaf do

if right child(t) is set to 1 then
t := right child(t)

else
t := left child(t)

end if
end while
return t

In the repeat loop of Algorithm 2 there is at most one move to
the right for each move up, therefore we have in total O(log n)
iterations. Then, in the while loop, every move goes down one
level, therefore there are also O(log n) total moves. If the tree is
implemented over a bit array, all moves in the previous algorithm
are easily implemented in O(1), therefore the entire running time
of each query is O(log n).

Time complexity of the main algorithm findpat. All steps
before the main for loop clearly take less than n log n operations.
The main loop iterates n times. The most expensive procedure
performed in the loop body is the manipulation of the tree for the
set S, which requires at mostO(log n) operations. The overall time
complexity of the algorithm is then O(n log n). This is achievable
since it is possible to code the output in linear time and space in the
length of the input.

Space complexity of the main algorithm findpat. The whole
input w is allocated in memory. Since it contains n symbols, its
memory usage is n log |A| bits. The data structures r, p, LCP
and I are arrays of length n whose elements are between 0 and n;
therefore, each of them use n log n bits. The described tree for the
set S has 2n + 1 nodes, implemented with an array of 2n + 1 bits.
The total needed space is n(4 log n+log |A|+2) bits. The array I is
only used one element at a time in the main loop of the algorithm, so
it can be easily handled by the swap memory without significantly
affecting the running time.

4 IMPLEMENTATION
The tool is written in C (ANSI C99), it is platform independent and
compiles either in a 64 bits machine or a 32 bits one. The memory
space requirement is n(4 log n + log |A|+ 2) bits for an input of n
bits. For A the ASCII code and storing indices in 32 bits variables
this becomes a total memory space requirement of 17.25n bytes.
In a 64 bits processor and 8 Gigabyte RAM installed, the tool runs
inputs of size up to 474 Megabytes without any swapping. Inputs
of size up to half a Gigabyte can be run efficiently because a small
swapping does not affect the running time. Our tests validate this
assertion. Much larger inputs would require swapping on oftenly
used memory and increase runtime. In 64 bits environments, our
tool has a hard limit of the input size of 4 Gigabytes because the
indices are stored in 32 bits variables. In 32 bits environments, our
tool has an input size limit of 237 Megabytes because processes can
not handle more than 4 Gigabytes of RAM, regardless of whether
they are installed or not.

The input. The tool receives as arguments the input data, and
optional parameters including the minimum length of the patterns to
be reported in the output. The algorithm runs faster as this minimum
length increases, because it saves the effort of searching the smaller
patterns, which are the most abundant in common cases. Although
the algorithm (and the software tool) accepts any minimal pattern
length, it makes sense to choose a minimal pattern length that
ensures that not all possible patterns of that length occur in the input
sequence (much less with the same frequency). For random inputs
(i.e., inputs having a uniform distribution of the alphabet symbols)
of length m symbols all patterns of length up to log|A|m will have
the same relative frequency. But, necessarily, for all longer lengths
there will be absent patterns.

Invocation of the tool is as follows: ./findpat [options] input1
input2 output dir min length. Among the options, −1 counts
position starting at one (instead of zero). To search over two
genomic sequences, let them be in the files input1 and input2.
Internally, they will be concatenated inserting a special symbol in
between them, and the result is treated as a single input file. In
case of a single genomic sequence, let input1 be its file name,
and set input2 to /dev/null (or its equivalent in your platform).
To find patterns in many genomic sequences {s1, ..., sn} you
should construct a single input file by concatenating all sequences
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Fig. 2. Patterns of length ≥ 40 in HS1.

interleaved with different special symbols w=s1$1s2$2...$n−1sn.
Save w in a file input1, and set input2 /dev/null. The fact that each
$i symbol occurs only once in the string ensures that there will be
no patterns containing them.

The output. There are three kinds of output. The full output
lists all the patterns, each one in two lines. The first line describes
the pattern, the number of occurrences of that pattern and the
length of that pattern, in a human readable format, for example:
TGGATAACTTTTT #5 (13). The second line, which is optional,
lists the positions of each occurrence, separated by a space, for
example: >14542942 <27416506 >25965497 >25103413 <16670527.
All the positions of the patterns are relative to the beginning of each
file, and are preceded with a sign “<” or “>” indicating whether
they correspond the first or the second input file. The statistics
output lists, for each pattern, a single line containing the length
of the pattern, the total number of occurrences of that pattern and
the number of occurrences in input1 and input2. The abbreviated
statistics output lists, for each group of patterns of the same length
and the same number of occurrences, one line indicating these two
values and the number of different patterns in this situation. The
three kinds of output can be generated in the same run, directed to
three distinct output files. This is considerably faster than running
the algorithm three times.

5 PATTERNS IN HOMO SAPIENS
We ran the experiment on Linux operating system with a 64 bits
processor and 8 Gigabytes RAM. We worked with the FASTA
files NCBI 36.49 downloadable from Ensembl. For every two
chromosomes we computed all patterns of length at least 40 bases
occurring jointly in both chromosomes, as well as those occurring
in individual chromosomes. Our choice of 40 was just to have a
manageable output. These sum up 276 runs obtained with ./findpat -p
-s -S -2 input1 input2 ./ 40, and for patterns in single chromosomes, the
24 runs ./findpat -p -s -S input1 /dev/null ./ 40. We produced the three
kinds of output–full, statistics, and abbreviated statistics–.

Statistics. For each abbreviated statistics file we produced a graph
that summarizes its results, as shown in Figures 2, 3, and 4 for

Fig. 3. Patterns of length ≥ 40 in HS2.

Fig. 4. Patterns of length ≥ 40 jointly in HS1 and HS2.

chromosomes 1 and 2 (hereafter HS1 and HS2). For each length
and number of occurrences we place a colored point in the xy plane
which represents the number of found patterns for that length and
total number of occurrences. The x axis runs from 40 to the length
of the longest found pattern. The y axis runs from 2 to the maximum
number of occurrences of a pattern. The colors vary from green to
blue to red as the number of different patterns on the same point
increases. Observe that in Figure 2, there is a pattern of length 40
occurring 2186 times; there are 28632 patterns of length 40 having
exactly 2 occurrences. The longest pattern has length 67632, and it
occurs twice. The diversity of patterns of length 40 is approximately
the same in Figures 2 and 4 but drops to 25536 for the patterns solely
in HS2, as shown in Figure 3.
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Fig. 5. Length of the longest patterns

Length of the largest patterns. In the symmetric matrix of
Figure 5 we depict in a color scale the length of the longest patterns
occurring jointly in each of the two chromosomes addressed by row
and column. The diagonal shows that for individual chromosomes.
The longest pattern in the whole HS genome has 67631 bases and
it occurs inside chromosome HS1 (top left square, the brightest
red in the matrix). The longest pattern occurring jointly in two
chromosomes has length 21864 and it occurs in HS1 and 5. The
shortest of the longest has 493 bases and belongs to HS17 and 21
(lightest green square). The longest patterns occur exactly once in
each chromosome, except for a few cases, e.g., HS7 and HS20 have
exactly four occurrences of their longest joint pattern.

Coverage of chromosomes by patterns. The coverage analysis
was done for patterns in single chromosomes, as well as for patterns
jointly in two chromosomes. For each chromosome we counted the
total number of bases covered by patterns of length ≥ 40 bases,
and expressed it as a percentage of the size of the chromosome.
See Table 1, where the maximum and minimum cases are in
boldface. Clearly if one considers patterns starting at a smaller
length (or accepts imperfect matching) the coverage increases. So,
this quantification is informative as a parameter of the minimum
pattern length. We plotted the physical distribution of the patterns
along each chromosome, as shown in Figure 6. Here one pixel
represents∼ 5000 bases. HS1 has approximately 250 million bases,
so its map consists in 50 rows of 1000 pixels per row. The color of a
pixel indicates the percentage of the bases that has been covered by
patterns. There are patterns in single chromosomes that cover long
regions in the centromeric area (red spots).

Patterns versus Biological repeats. We compared our computed
patterns with all repeats currently in Ensembl (2009) in
all strands, enlarged with the output of the dust program
(BLAST reference), and all elements output by the TRF
program (1999), and Repeat Masker (2009). This database
was compiled by Javier Herrero at EMBL-EBI UK and can
be downloaded from ftp://ftp.ebi.ac.uk/pub/databases/ensembl/jherrero/
.repeats/all repeats.txt.bz2. It is ordered by chromosome number

Table 1. Coverage of chromosomes by patterns. Left, patterns in
single chromosomes. Right, patterns jointly in HS1 and another.

chr length %chr 1-crh %HS1 %chr

1 247249719 12.53
2 242951149 10.85 1-2 10.07 9.58
3 199501824 10.35 1-3 9.84 10.09
4 191273063 10.64 1-4 9.84 10.02
5 180857866 11.36 1-5 9.71 10.19
6 170899992 10.78 1-6 9.73 10.32
7 158821424 12.77 1-7 9.81 11.04
8 146274826 10.15 1-8 9.39 9.73
9 140273252 5.46 1-9 9.16 9.25

10 135374737 12.65 1-10 9.30 10.13
11 134452384 10.79 1-11 9.38 10.38
12 132349534 11.32 1-12 9.43 11.27
13 114142980 6.86 1-13 8.57 7.33
14 106368585 8.59 1-14 8.78 9.01
15 100338915 11.13 1-15 8.63 8.82
16 88827254 13.68 1-16 8.63 10.74
17 78774742 15.81 1-17 8.70 13.55
18 76117153 7.65 1-18 8.24 8.63
19 63811651 17.35 1-19 8.68 15.84
20 62435964 8.94 1-20 8.15 9.85
21 46944323 5.56 1-21 7.22 6.56
22 49691432 10.17 1-22 7.54 9.11
X 154913754 13.85 1-X 9.63 12.39
Y 57772954 9.37 1-Y 6.17 4.90

and starting position of the entries (many of them overlap). We
compared the intervals covered by the occurrences of our patterns,
against the intervals covered by the entries in the database of
biological repeats. This comparison can be done in linear time with
respect to the number of entries of the two files and the size or sizes
of the chromosomes involved.

For each chromosome, and for each biological class, we
computed the total number of instances in the class, how many
of these instances have been (partially or totally) covered by
our patterns, and the percentage of coverage of each instance.
Table 2 shows these results for all patterns in HS1 of length
≥ 40. These include not just the patterns occurring solely in
HS1 but also all the patterns occurring jointly in HS1 and some
other chromosome(s). Again, the coverage would increase if one
considers patterns starting at a smaller length. A detailed analysis
on HS1 reveals that, with the exception of LINE/RTE, all biological
classes have a greater coverage by patterns occurring jointly in HS1
and another chromosome, than by the patterns occurring solely
in HS1. This contrasts with the fact that, disregarding biological
classes, chromosomes have a larger coverage by their individual
patterns than by patterns jointly in two chromosomes, see Table 1.

Tandem repeats. Each green dotted line in Figures 2, 3 and 4
depicts a tandem repeat. For instance, a tandem repeat of CCCTT
yields patterns of length multiple of 5. The more instances of
CCCTT in a pattern, the fewer the number of occurrences of such
pattern. Table 2 indicates that half of the tandem repeats of HS1
found by the TRF program (1999) were covered by our patterns of
length ≥ 40.

Novel repeats. We used the above mentioned database of
biological repeats and a database of all genes from Ensembl,
also compiled by Javier Herrero at EMBL-EBI UK, available at
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/jherrero/.repeats/all genes.txt.bz2.
Given a pattern, if each of its occurrences overlaps with no entries in
the database of biological repeats or genes, we consider this pattern
to be novel. If at least one of its occurrences overlaps with some
entry in the database, but some other occurrence overlaps none, we
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Fig. 6. Coverage of HS1 by its individual patterns of length≥ 40 bp. One pixel represents 5000 bases. Red means 100% covered, blue means 0%, green
means less than 1%, gray means no base has been covered. Intermediate colors denote intermediate percentages.

Fig. 7. Coverage of HS1 by the novel patterns.

consider this pattern to be a witness of new occurrences of known
repeats.

The total number of found patterns of length ≥ 40 in HS1
(occurring solely or jointly in HS1 and another chromosome) was
64449272. About 0.05% of them were novel patterns, and 0.01%
were witnessing patterns. The remaining patterns had all their
occurrences overlapping some known repeats or genes, in one or
more nucleotide bases. About 65% of the novel patterns and about
59% of the witnessing patterns occur in intergenic regions. Novel
patterns covered 0.85% of the full chromosome HS1 (actually
2102787 covered bases out of 247249719). Figure 7 shows their
physical distribution.

The largest novel pattern has length 1579, and it occurs twice in
HS1, at positions 143216056 and 143035804 (we count positions
starting at 1), both occurrences are intergenic.

Another example is a pattern of length 1313 that also occurs
twice in HS1, in intergenic regions, at positions 146884281 and
147046309. This novel pattern contains five blocks of TAATTA,
which is a recognition sequence for the homeodomain DNA-binding
module, highly present in non-exonic ultraconserved elements —
these are perfect repeats longer than 200 nucleotide bases occurring

jointly in mouse, rat and human, Bejerano et al. (2004); Katzman
et al. (2007)—. It presents a 3.5 rate of occurrence of AT over GC.
Higher rates of AT over CG is a property of ultraconserved elements
that suggests a biological mechanism, Chiang et al. (2008). None of
our novel patterns occur in UCbase, the database of ultraconserved
elements of Taccioli et al. (2009). About half of the novel patterns
of HS1 (indeed 11787 out of 25333) occur just once in HS1 and
once or more in some other chromosome(s).

We are currently doing a thorough analysis of the novel patterns,
which lays outside the scope of this work. Witnessing patterns
in HS1 are reported in http://kapow.dc.uba.ar/ media/homo1-
ext.txt.bz2. The format of this file is as follows: pattern, number
of new occurrences in HS1, length, and the list of new positions.

Patterns occurring in all chromosomes. There are no patterns
occurring jointly in every chromosome having length 600 bases
or more; however, there are many of them of length 100, and
a lot of length 40. The most frequent pattern of length 100 has
1983 occurrences in the whole HS genome and it is the sequence:
TTTTTATGGCTGCATAGTATTCCATGGTGTATATGTGCCACATTTTCTTAATCC

AGTCTATCATTGTTGGACATTTGGGTTGGTTCCAAGTCTTTGCTAT. It is part
of the reverse transcriptase of L1 retrotransposons.
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Table 2. Biological classes in HS1 and average of the percentage of
coverage per instance by patterns of length ≥ 40.

class # instances # covered average of
in the class instances % coverage per instance

DNA 1070 87 2.44
DNA/AcHobo 1443 137 2.24
DNA/hAT 225 19 0.57
DNA/Mariner 1163 296 13.57
DNA/MER1 type 15422 2448 5.52
DNA/MER1 type? 147 17 0.21
DNA/MER2 type 6594 2962 12.31
DNA/Merlin 2 0 0.00
DNA/MuDR 158 58 7.00
DNA/PiggyBac 152 83 17.58
DNA/Tc2 610 54 1.62
DNA/Tip100 2275 204 1.26
dust 232100 77096 22.98
LINE/CR1 5932 350 2.39
LINE/L1 64678 24871 28.65
LINE/L2 41411 3066 1.76
LINE/RTE 1161 78 1.08
LTR/ERV 44 1 2.13
LTR/ERV1 13557 7582 28.61
LTR/ERVK 841 788 65.01
LTR/ERVL 9370 1953 10.03
LTR/MaLR 23497 8613 17.44
RNA 54 5 2.75
rRNA 161 37 19.38
Satellite 72 68 61.05
Satellite/acro 3 3 83.55
Satellite/centr 73 67 73.22
Satellite/telo 4 3 45.80
scRNA 133 34 18.66
SINE/Alu 102210 96320 72.16
SINE/MIR 59220 3179 1.93
snRNA 431 116 20.75
srpRNA 82 50 14.49
trf 110344 54064 32.87
tRNA 276 136 47.38
Other 483 483 96.83
Unknown 89 1 0.27
total 695487 285329 49.94

6 COMPARISON WITH OTHER METHODS
Our algorithm follows the recommendations in the recent survey
of Sahal et al. (2008a,b) which reviews major repeat exploration
methods, devoting special attention to ab initio programs as the
most promising tools. They emphasize the requirement that inputs
be entire genomic sequences, and ask for efficiency as well as
for interoperability with other tools. The main feature of our tool
is its ability to find all perfect repeats of unbounded length, that
can be arbitrary distant in very large inputs. Its efficiency is due
to the manipulation of the suffix array data structure in memory,
together with an original procedure to extract all patterns. With
this in mind, a comparison of our method against the most popular
perfect repeat finders follows from the survey of Sahal et al. Leave
aside heuristic methods such as FORRepeats (2003), programs
performing specific biological identifications as the already classical
Sputnik (1994), TRF (1999), or TROLL (2002) or library based
methods like RepeatMasker (2009). Existing methods based on the
suffix array use the length of repeats as a parameter at each run.
All repetitions of the specified length are listed, giving no clue to
know when a repeat is maximal. The toolkit of Poddar et al. (2007)
constructs a suffix array after constructing a suffix tree of the input.
For an input of 55 Megabytes, they report 2181 seconds for the
initial suffix tree, while we require 57 seconds for the actual suffix
array, with similar hardware. Then the two methods compute the
longest common prefixes in linear time, but afterwards they become
incomparable: Poddar et al. compute n-grams requiring one pass

for each n, while we compute all patterns of arbitrary length in one
pass. Lippert (2005) constructs a space efficient suffix array and
uses it to find fixed k-mers. His experiment reporting all 20-mers
in common between the mouse and human genomes already shows
the time increase due to his compressed structure.

The REPuter tool of Kurtz and Schleiermacher (1999), further
developed in Kurtz et al. (2001), not only looks for exact maximal
repeats but also approximate repeats and palindromes. Currently
our tool does not support these features. Although it is fairly
straightforward to extend it to account for reversed complementary
sequences, partial matching requires a vastly different strategy, or
a second phase. In the task of finding all exact maximal repeats
REPuter has two main drawbacks: first, the input can be up to
135 Megabytes, which is considerably less than the 500 Megabytes
of our tool. The memory requirement of REPuter depends on the
repeat length and the number of occurrences in the input. In the
worst case inputs are limited to RAM size/45. As output, REPuter
gives one entry per each occurrence of a repeat, followed with
the list of all the forward positions where it occurs. Therefore,
the output information is not factorized, and becomes very large,
needing O(n2) space for inputs of size n; this is not admissible for
any practical application. In contrast, our tool produces one entry
per pattern with the annotation of all the positions where it occurs.
Besides, our tool provides some statistics while REPuter does not.
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