On simply normal numbers with digit dependencies

Verónica Becher, Agustín Marchionna, Gérald Tenenbaum

Abstract

Given an integer $b \geqslant 2$ and a set \mathcal{P} of prime numbers, the set $\mathcal{J}_{\mathcal{P}}$ of Toeplitz numbers comprises all elements of $\left[0, b\left[\right.\right.$ whose digits $\left(a_{n}\right)_{n \geqslant 1}$ in the base- b expansion satisfy $a_{n}=a_{p n}$ for all $p \in \mathcal{P}$ and $n \geqslant 1$. Using a completely additive arithmetical function, we construct a number in $\mathcal{T}_{\mathcal{P}}$ that is simply Borel normal if, and only if, $\sum_{p \notin \mathcal{P}} 1 / p=\infty$. We then provide an effective bound for the discrepancy.

Let \mathbb{P} denote the set of prime numbers, and let $\mathcal{P} \subseteq \mathbb{P}$. Following Jacobs and Keane's definition of Toeplitz sequences in [4], we define the set $\mathcal{T}_{\mathcal{P}}$ of Toeplitz numbers as the set of all real numbers $\xi \in\left[0, b\left[\right.\right.$ whose base- b expansion $\xi=\sum_{n \geqslant 1} a_{n} / b^{n}$ satisfies

$$
a_{n}=a_{n p} \quad(n \geqslant 1, p \in \mathcal{P}) .
$$

For example, 0. $a_{1} a_{2} a_{3} \ldots$ is a Toeplitz number for $\mathcal{P}=\{2,3\}$ if, for every $n \geqslant 1$, we have

$$
a_{n}=a_{2 n}=a_{3 n}
$$

Then, $a_{1}, a_{5}, a_{7}, a_{11}, \ldots$ are independent while $a_{2}, a_{3}, a_{4}, a_{6}, \ldots$ are completely determined by earlier digits.

As defined by Émile Borel, a real number is called simply normal to the integer base $b \geqslant 2$ if every possible digit in $\mathbb{Z} / b \mathbb{Z}$ occurs in its b-ary expansion with the same asymptotic frequency $1 / b$. A real number is said to be normal to the base b if it is simply normal to all the bases $b^{j}, j \geqslant 1$. Borel proved that, with respect to the Lebesgue measure, almost all numbers are normal to all integer bases at least equal to 2 . For a presentation of the theory of normal numbers see for example [3, 55.

In [1], Aistleitner, Becher and Carton considered the notion of Borel normality under the assumption of dependencies between the digits of the expansion. Thus [1, th. 1] states that, given any integer base $b \geqslant 2$ and any finite subset \mathcal{P} of the primes, almost all numbers, with respect to the uniform probability measure on $\mathcal{S}_{\mathcal{P}}$, are normal to the base b. In the particular case $\mathcal{P}=\{2\}$, they show [1, th. 2] that almost all elements in $\mathcal{T}_{\mathcal{P}}$ (still with respect to the uniform measure on $\mathcal{T}_{\mathcal{P}}$) are normal to all integer bases greater than or equal to 2 . For $\mathcal{P}=\{2\}$, a construction of an explicit number in $\mathcal{T}_{\mathcal{P}}$ that is normal to the base 2 appears in [2]. This construction can be generalized to any integer base b and any singleton \mathcal{P}.

Let $\Omega_{\mathcal{P}}$ denote the completely additive arithmetical function defined by $\Omega_{\mathcal{P}}(p)=\mathbb{1}_{(\mathbb{P} \backslash \mathcal{P})}(p)$. Then, $\Omega_{\mathcal{P}}(n)$ is the sum of the exponents in the canonical factorization of n of those prime

[^0]factors that do not belong to \mathcal{P}. For $n \geqslant 1$ and $b \geqslant 2$, let $a_{n}=a_{n, b}$ denote the representative of the congruence class $\Omega_{\mathcal{P}}(n)+b \mathbb{Z}$ lying in $[0, b[$. Thus, given $b \geqslant 2$, the real number
\[

$$
\begin{equation*}
\xi_{\mathcal{P}}=\sum_{n \geqslant 1} a_{n} / b^{n} \tag{1}
\end{equation*}
$$

\]

is a an element of $\mathcal{T}_{\mathcal{P}}$.
Motivated by the question posed in [1] on how to exhibit a normal number in $\mathcal{T}_{\mathcal{P}}$ for any set \mathcal{P} of primes, we construct in this note simply normal numbers for arbitrary bases and a large family of sets \mathcal{P}.
Theorem. Let $\mathcal{P} \subset \mathbb{P}, Q:=\mathbb{P} \backslash \mathcal{P}$, and let b be an integer $\geqslant 2$. The number $\xi_{\mathcal{P}}$ is simply normal to the base b if, and only if,

$$
\begin{equation*}
\sum_{p \in \mathfrak{Q}} 1 / p=\infty . \tag{2}
\end{equation*}
$$

Moreover, defining, for $0 \leqslant k<b$,

$$
\varepsilon_{N, k}:=\left|\frac{1}{N}\right|\left\{1 \leqslant n \leqslant N: a_{n}=k\right\}\left|-\frac{1}{b}\right|, \quad E(N):=\sum_{p \leqslant N, p \in Q} \frac{1}{p} \quad(N \geqslant 1)
$$

we have

$$
\begin{equation*}
\varepsilon_{N, k} \ll \mathrm{e}^{-2 E(N) / 9 b^{2}} \tag{3}
\end{equation*}
$$

Our proof rests on the following auxiliary result where we use the traditional notation $\mathrm{e}(u):=\mathrm{e}^{2 \pi i u}(u \in \mathbb{R})$.
Lemma. Let $\mathcal{P} \subset \mathbb{P}$ and let b be an integer $\geqslant 2$. The number $\xi_{\mathcal{P}}$ is simply normal to the base b if, and only if,

$$
\begin{equation*}
\frac{1}{N} \sum_{n \leqslant N} \mathrm{e}\left(a \Omega_{\mathcal{P}}(n) / b\right)=o(1) \quad(a=1,2, \ldots b-1, N \rightarrow \infty) \tag{4}
\end{equation*}
$$

Proof. The necessity of the criterion is clear. We show the sufficiency. Define

$$
b_{k, N}=\frac{1}{N}\left|\left\{1 \leqslant n \leqslant N: a_{n}=k\right\}\right| \quad(0 \leqslant k<b, N \geqslant 1) .
$$

Then

$$
\begin{equation*}
b_{k, N}=\frac{1}{b N} \sum_{0 \leqslant a<b} \mathrm{e}(-a k / b) \sum_{1 \leqslant n \leqslant N} \mathrm{e}\left(a \Omega_{\mathcal{P}}(n) / b\right)=\frac{1}{b}+o(1) \tag{5}
\end{equation*}
$$

since by (4) all inner sums with $a \neq 0$ contribute $o(N)$.
We may now embark on the proof of the Theorem. Let

$$
S(N ; a / b):=\sum_{n \leqslant N} \mathrm{e}\left(a \Omega_{\mathcal{P}}(n) / b\right) \quad(a \in \mathbb{Z}, b \geqslant 2, N \geqslant 1)
$$

We aim at necessary and sufficient conditions that ensure $S(N, a / b)=o(N)$ as $N \rightarrow+\infty$, and seek effective upper bounds for $S(N ; a / b)$ when such conditions are met.

Whenever a and b are coprime, $b \geqslant 2$ and $|a| \leqslant b / 2$, we may apply [7, cor.2.4(i)] with $r=1, z=\mathrm{e}(a / b), \vartheta=2 \pi a / b$ and $\kappa=1$. Using [7, (7.4)], from which the bound [7, (2.19)] is actually derived, this yields

$$
S(N ; a / b) \ll N e^{-2 a^{2} E(N) /\left(9 b^{2}\right)}
$$

So, if (2) holds, then the above lemma implies that $\xi_{\mathcal{P}}$ is simply normal to the base b. Notice that $\left\{a \in \mathbb{Z}:|a| \leqslant \frac{1}{2} b\right\}$ describes a complete set of residues $(\bmod b)$. The effective bound (3) is then provided by (5).

If, on the contrary, condition (4) fails, we apply [7, cor. 2.2], which is an effective version of a result of Delange (see [6, th. III.4.4]. We have

$$
\begin{equation*}
\sum_{p \in Q, p \leqslant N} \frac{\log p}{p} \ll \eta_{N} \log N \tag{6}
\end{equation*}
$$

for some $\eta_{N} \rightarrow 0$. A possible choice is

$$
\eta_{N}:=\min _{1 \leqslant z \leqslant N}\left(\frac{\log z}{\log N}+\sum_{p \in Q, p>z} \frac{1}{p}\right) .
$$

The validity of (6) is then obtained by bounding $\log p$ by $\log z$ if $p \leqslant z$ and by $\log N$ otherwise. That $\eta_{N}=o(1)$ follows by noticing that the last sum tends to 0 as $z \rightarrow \infty$. Then we get

$$
S(N ; a / b)=\frac{N}{\log N}\left(\prod_{p} \sum_{p^{\nu} \leqslant N} \frac{e\left(\nu a \Omega_{\mathcal{P}}(p) / b\right)}{p^{\nu}}+O\left(\eta_{N}^{1 / 8} \mathrm{e}^{E(N)}+\frac{\mathrm{e}^{E(N)}}{\log ^{1 / 12} N}\right)\right)
$$

where we are picking the corresponding values from [7, cor. 2.2] as $a=1 / 8, b=1 / 12$, and $\varrho=1$.

To prove that

$$
\begin{equation*}
S(N, a / b) \gg N, \tag{7}
\end{equation*}
$$

it hence suffices to show that

$$
\log N \ll \prod_{p} \sum_{p^{\nu} \leqslant N} \frac{e\left(\nu a \Omega_{\mathcal{P}}(p) / b\right)}{p^{\nu}}=\prod_{p \in Q} \frac{1-\mathrm{e}\left(\nu_{p} a / b\right) / p^{\nu_{p}}}{1-\mathrm{e}(a / b) / p} \prod_{p \in \mathcal{P}} \frac{1-1 / p^{\nu_{p}}}{1-1 / p},
$$

where we have put $\nu_{p}:=1+\lfloor(\log N) / \log p\rfloor$, so that $p^{\nu_{p}} \geqslant N$. Now the double product above is clearly

$$
\sim \sigma_{N}:=\prod_{p \leqslant N} \frac{1}{1-1 / p} \prod_{p \in Q} \frac{1-1 / p}{1-\mathrm{e}(a / b) / p} .
$$

Since the general factor of the last product equals $1+\{\mathrm{e}(a / b)-1\} / p+O\left(1 / p^{2}\right)$, we deduce from the convergence of $\sum_{p \in Q} 1 / p$ and Mertens' formula that $\sigma_{N} \sim c \log N$ for some $c \neq 0$. This yields (7) as required.

References

[1] Christoph Aistleitner, Verónica Becher, and Olivier Carton. Normal numbers with digit dependencies. Trans. Amer. Math. Soc., 372(6):4425-4446, 2019.
[2] Verónica Becher, Olivier Carton, and Pablo Ariel Heiber. Finite-state independence. Theory Comput. Syst., 62(7):1555-1572, 2018.
[3] Yann Bugeaud. Distribution Modulo One and Diophantine Approximation. Series: Cambridge Tracts in Mathematics 193. Cambridge University Press, 2012.
[4] Konrad Jacobs and Michael Keane. 0 - 1-sequences of Toeplitz type. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13:123-131, 1969.
[5] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley \& Sons], New York-London-Sydney, 1974.
[6] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory, volume 163 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, third edition, 2015.
[7] Gérald Tenenbaum. Moyennes effectives de fonctions multiplicatives complexes. The Ramanujan Journal, 44(3):641-701, 2017. Correction in: The Ramanujan Journal 53:1:243-244, 2020.

Verónica Becher
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e ICC CONICET
Pabellón 0, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
vbecher@dc.uba.ar
Agustín Marchionna
Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón 0, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina
agusmarchionna1998@gmail.com
Gérald Tenenbaum
Institut Élie Cartan, Université de Lorraine BP 70239
54506 Vandœuvre-lès-Nancy Cedex France
gerald.tenenbaum@univ-lorraine.fr

[^0]: Date: April 12, 2023.
 1991 Mathematics Subject Classification. Primary 11K16, 11N60; Secondary 11N56.
 Key words and phrases. normal numbers, Toeplitz sequences, discrepancy, additive and multiplicative functions.

