On simply normal numbers with digit dependencies

Verónica Becher, Agustín Marchionna, Gérald Tenenbaum

ABSTRACT. Given an integer $b \ge 2$ and a set \mathcal{P} of prime numbers, the set $\mathcal{T}_{\mathcal{P}}$ of Toeplitz numbers comprises all elements of [0, b] whose digits $(a_n)_{n\ge 1}$ in the base-*b* expansion satisfy $a_n = a_{pn}$ for all $p \in \mathcal{P}$ and $n \ge 1$. Using a completely additive arithmetical function, we construct a number in $\mathcal{T}_{\mathcal{P}}$ that is simply Borel normal if, and only if, $\sum_{p \notin \mathcal{P}} 1/p = \infty$. We then provide an effective bound for the discrepancy.

Let \mathbb{P} denote the set of prime numbers, and let $\mathcal{P} \subseteq \mathbb{P}$. Following Jacobs and Keane's definition of Toeplitz sequences in [4], we define the set $\mathfrak{T}_{\mathcal{P}}$ of *Toeplitz numbers* as the set of all real numbers $\xi \in [0, b]$ whose base-*b* expansion $\xi = \sum_{n \ge 1} a_n/b^n$ satisfies

$$a_n = a_{np}$$
 $(n \ge 1, p \in \mathcal{P}).$

For example, $0.a_1a_2a_3...$ is a Toeplitz number for $\mathcal{P} = \{2, 3\}$ if, for every $n \ge 1$, we have

$$a_n = a_{2n} = a_{3n}$$

Then, $a_1, a_5, a_7, a_{11}, \ldots$ are independent while $a_2, a_3, a_4, a_6, \ldots$ are completely determined by earlier digits.

As defined by Emile Borel, a real number is called *simply normal* to the integer base $b \ge 2$ if every possible digit in $\mathbb{Z}/b\mathbb{Z}$ occurs in its *b*-ary expansion with the same asymptotic frequency 1/b. A real number is said to be *normal* to the base *b* if it is simply normal to all the bases b^j , $j \ge 1$. Borel proved that, with respect to the Lebesgue measure, almost all numbers are normal to all integer bases at least equal to 2. For a presentation of the theory of normal numbers see for example [3, 5].

In [1], Aistleitner, Becher and Carton considered the notion of Borel normality under the assumption of dependencies between the digits of the expansion. Thus [1, th. 1] states that, given any integer base $b \ge 2$ and any finite subset \mathcal{P} of the primes, almost all numbers, with respect to the uniform probability measure on $\mathcal{T}_{\mathcal{P}}$, are normal to the base b. In the particular case $\mathcal{P} = \{2\}$, they show [1, th. 2] that almost all elements in $\mathcal{T}_{\mathcal{P}}$ (still with respect to the uniform measure on $\mathcal{T}_{\mathcal{P}}$) are normal to all integer bases greater than or equal to 2. For $\mathcal{P} = \{2\}$, a construction of an explicit number in $\mathcal{T}_{\mathcal{P}}$ that is normal to the base 2 appears in [2]. This construction can be generalized to any integer base b and any singleton \mathcal{P} .

Let $\Omega_{\mathcal{P}}$ denote the completely additive arithmetical function defined by $\Omega_{\mathcal{P}}(p) = \mathbb{1}_{(\mathbb{P} \setminus \mathcal{P})}(p)$. Then, $\Omega_{\mathcal{P}}(n)$ is the sum of the exponents in the canonical factorization of n of those prime

Date: April 12, 2023.

¹⁹⁹¹ Mathematics Subject Classification. Primary 11K16, 11N60; Secondary 11N56.

Key words and phrases. normal numbers, Toeplitz sequences, discrepancy, additive and multiplicative functions.

factors that do not belong to \mathcal{P} . For $n \ge 1$ and $b \ge 2$, let $a_n = a_{n,b}$ denote the representative of the congruence class $\Omega_{\mathcal{P}}(n) + b\mathbb{Z}$ lying in [0, b]. Thus, given $b \ge 2$, the real number

(1)
$$\xi_{\mathcal{P}} = \sum_{n \ge 1} a_n / b^n$$

is a an element of $T_{\mathcal{P}}$.

Motivated by the question posed in [1] on how to exhibit a normal number in $\mathcal{T}_{\mathcal{P}}$ for any set \mathcal{P} of primes, we construct in this note simply normal numbers for arbitrary bases and a large family of sets \mathcal{P} .

Theorem. Let $\mathcal{P} \subset \mathbb{P}$, $\mathcal{Q} := \mathbb{P} \setminus \mathcal{P}$, and let b be an integer ≥ 2 . The number $\xi_{\mathcal{P}}$ is simply normal to the base b if, and only if,

(2)
$$\sum_{p \in \Omega} 1/p = \infty$$

Moreover, defining, for $0 \leq k < b$,

$$\varepsilon_{N,k} := \left| \frac{1}{N} | \{ 1 \le n \le N : a_n = k \} | -\frac{1}{b} \right|, \quad E(N) := \sum_{p \le N, p \in \mathcal{Q}} \frac{1}{p} \quad (N \ge 1),$$

we have

(3)
$$\varepsilon_{N,k} \ll e^{-2E(N)/9b^2}$$

Our proof rests on the following auxiliary result where we use the traditional notation $e(u) := e^{2\pi i u}$ $(u \in \mathbb{R})$.

Lemma. Let $\mathcal{P} \subset \mathbb{P}$ and let b be an integer ≥ 2 . The number $\xi_{\mathcal{P}}$ is simply normal to the base b if, and only if,

(4)
$$\frac{1}{N}\sum_{n\leqslant N} \mathbf{e}\big(a\Omega_{\mathcal{P}}(n)/b\big) = o(1) \quad (a = 1, 2, \dots b - 1, N \to \infty).$$

Proof. The necessity of the criterion is clear. We show the sufficiency. Define

$$b_{k,N} = \frac{1}{N} |\{1 \le n \le N : a_n = k\}| \quad (0 \le k < b, N \ge 1).$$

Then

(5)
$$b_{k,N} = \frac{1}{bN} \sum_{0 \le a \le b} e(-ak/b) \sum_{1 \le n \le N} e(a\Omega_{\mathcal{P}}(n)/b) = \frac{1}{b} + o(1)$$

since by (4) all inner sums with $a \neq 0$ contribute o(N).

We may now embark on the proof of the Theorem. Let

$$S(N; a/b) := \sum_{n \leqslant N} e(a\Omega_{\mathcal{P}}(n)/b) \quad (a \in \mathbb{Z}, \, b \geqslant 2, \, N \geqslant 1).$$

We aim at necessary and sufficient conditions that ensure S(N, a/b) = o(N) as $N \to +\infty$, and seek effective upper bounds for S(N; a/b) when such conditions are met.

Whenever a and b are coprime, $b \ge 2$ and $|a| \le b/2$, we may apply [7, cor. 2.4(i)] with $r = 1, z = e(a/b), \vartheta = 2\pi a/b$ and $\kappa = 1$. Using [7, (7.4)], from which the bound [7, (2.19)] is actually derived, this yields

$$S(N; a/b) \ll Ne^{-2a^2 E(N)/(9b^2)}.$$

So, if (2) holds, then the above lemma implies that $\xi_{\mathcal{P}}$ is simply normal to the base *b*. Notice that $\{a \in \mathbb{Z} : |a| \leq \frac{1}{2}b\}$ describes a complete set of residues (mod *b*). The effective bound (3) is then provided by (5).

If, on the contrary, condition (4) fails, we apply [7, cor. 2.2], which is an effective version of a result of Delange (see [6, th. III.4.4]. We have

(6)
$$\sum_{p \in \Omega, \ p \leqslant N} \frac{\log p}{p} \ll \eta_N \log N$$

for some $\eta_N \to 0$. A possible choice is

$$\eta_N := \min_{1 \leqslant z \leqslant N} \left(\frac{\log z}{\log N} + \sum_{p \in \mathcal{Q}, \, p > z} \frac{1}{p} \right).$$

The validity of (6) is then obtained by bounding $\log p$ by $\log z$ if $p \leq z$ and by $\log N$ otherwise. That $\eta_N = o(1)$ follows by noticing that the last sum tends to 0 as $z \to \infty$. Then we get

$$S(N; a/b) = \frac{N}{\log N} \left(\prod_{p} \sum_{p^{\nu} \leqslant N} \frac{e(\nu a \Omega_{\mathcal{P}}(p)/b)}{p^{\nu}} + O\left(\eta_N^{1/8} e^{E(N)} + \frac{e^{E(N)}}{\log^{1/12} N}\right) \right),$$

where we are picking the corresponding values from [7, cor. 2.2] as a = 1/8, b = 1/12, and $\rho = 1$.

To prove that

(7)

$$S(N, a/b) \gg N$$

it hence suffices to show that

$$\log N \ll \prod_{p} \sum_{p^{\nu} \leqslant N} \frac{e(\nu a \Omega_{\mathcal{P}}(p)/b)}{p^{\nu}} = \prod_{p \in \mathcal{Q}} \frac{1 - e(\nu_p a/b)/p^{\nu_p}}{1 - e(a/b)/p} \prod_{p \in \mathcal{P}} \frac{1 - 1/p^{\nu_p}}{1 - 1/p}$$

where we have put $\nu_p := 1 + \lfloor (\log N) / \log p \rfloor$, so that $p^{\nu_p} \ge N$. Now the double product above is clearly

$$\sim \sigma_N := \prod_{p \leqslant N} \frac{1}{1 - 1/p} \prod_{p \in \Omega} \frac{1 - 1/p}{1 - \mathrm{e}(a/b)/p}$$

Since the general factor of the last product equals $1 + \{e(a/b) - 1\}/p + O(1/p^2)$, we deduce from the convergence of $\sum_{p \in \Omega} 1/p$ and Mertens' formula that $\sigma_N \sim c \log N$ for some $c \neq 0$. This yields (7) as required.

References

- Christoph Aistleitner, Verónica Becher, and Olivier Carton. Normal numbers with digit dependencies. Trans. Amer. Math. Soc., 372(6):4425–4446, 2019.
- [2] Verónica Becher, Olivier Carton, and Pablo Ariel Heiber. Finite-state independence. Theory Comput. Syst., 62(7):1555–1572, 2018.
- [3] Yann Bugeaud. Distribution Modulo One and Diophantine Approximation. Series: Cambridge Tracts in Mathematics 193. Cambridge University Press, 2012.
- [4] Konrad Jacobs and Michael Keane. 0 1-sequences of Toeplitz type. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 13:123–131, 1969.
- [5] Lauwerens Kuipers and Harald Niederreiter. Uniform distribution of sequences. Pure and Applied Mathematics. Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974.
- [6] Gérald Tenenbaum. Introduction to analytic and probabilistic number theory, volume 163 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, third edition, 2015.

Verónica Becher, Agustín Marchionna, Gérald Tenenbaum

 [7] Gérald Tenenbaum. Moyennes effectives de fonctions multiplicatives complexes. The Ramanujan Journal, 44(3):641–701, 2017. Correction in: The Ramanujan Journal 53:1:243–244, 2020.

Verónica Becher

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires e ICC CONICET Pabellón 0, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina vbecher@dc.uba.ar

Agustín Marchionna Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires Pabellón 0, Ciudad Universitaria, C1428EGA Buenos Aires, Argentina agusmarchionna1998@gmail.com

Gérald Tenenbaum Institut Élie Cartan, Université de Lorraine BP 70239 54506 Vandœuvre-lès-Nancy Cedex France gerald.tenenbaum@univ-lorraine.fr

4