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M. LEVIN’S CONSTRUCTION OF ABSOLUTELY NORMAL

NUMBERS WITH VERY LOW DISCREPANCY

NICOLÁS ÁLVAREZ AND VERÓNICA BECHER

Abstract. Among the currently known constructions of absolutely normal
numbers, the one given by Mordechay Levin in 1979 achieves the lowest dis-
crepancy bound. In this work we analyze this construction in terms of com-
putability and computational complexity. We show that, under basic assump-
tions, it yields a computable real number. The construction does not give the
digits of the fractional expansion explicitly, but it gives a sequence of increas-
ing approximations whose limit is the announced absolutely normal number.

The n-th approximation has an error less than 2−2n . To obtain the n-th

approximation the construction requires, in the worst case, a number of math-
ematical operations that is doubly exponential in n. We consider variants on
the construction that reduce the computational complexity at the expense of
an increment in discrepancy.

1. Introduction

Normal numbers were introduced by Émile Borel in 1909 [9]. A real number α
is normal to an integer base λ greater than or equal to 2 if its fractional expansion
in base λ given by

α− �α� =
∑
k≥1

dk
λk

,

where each dk is in {0, 1, . . . , λ− 1}, is such that, for each positive integer L, each
fixed block of digits of length L appears in (dk)k≥1 with asymptotic frequency λ−L.
Borel calls a number absolutely normal if it is normal to every integer base greater
than or equal to 2. Let (ξk)k≥0 be an arbitrary sequence of real numbers in the
unit interval:

D(N, (ξk)k≥0) = sup
0≤u<v≤1

∣∣∣∣#{k : 0 ≤ k < N and u ≤ ξk < v}
N

− (v − u)

∣∣∣∣
is the discrepancy of (ξk)

N−1
k=0 . The sequence (ξk)k≥0 is uniformly distributed in the

unit interval if D(N, (ξk)k≥0) goes to 0 when N goes to infinity. By a theorem of
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D. Wall [10, Theorem 4.14], a real number α is normal to base λ if, and only if, the

sequence {αλk}k≥0, where {ξ} = ξ − �ξ� is the fractional part of ξ, is uniformly
distributed in the unit interval.

We use the customary notation for asymptotic growth of functions and we say
f(n) is in O(g(n)) if ∃k > 0 ∃n0 ∀n > n0, |f(n)| ≤ k|g(n)|.

Borel [9] proved that almost every real number (in the sense of Lebesgue mea-
sure) is normal to every integer base and Gaal and Gál [14] showed that, indeed,
for almost every real number α and for every integer base λ the discrepancy

D(N, {αλk}k≥0) is in O

(√
log logN

N

)
. For a thorough presentation of normal

numbers and the theory of uniform distribution see the books [10, 13, 16].
In 1979 Mordechay Levin [18] considered the notion of normality for real numbers

with respect to bases that are real numbers greater than 1: a real number α is
normal with respect to a real base λ if the condition in Wall’s theorem holds, that
is, if the sequence {αλk}k≥0 is uniformly distributed in the unit interval. Levin
gave an explicit construction of a number that is normal to countably many real
bases, with controlled discrepancy of normality. More precisely, given a sequence
(λj)j≥1 of real numbers greater than 1, a monotone increasing sequence (tj)j≥1 of
positive integers and a non-negative real number a, Levin constructs a real number
α greater than a that is normal to each of the bases λj , for j = 1, 2, . . . such

that D(N, {αλk
j }k≥0) is in O

(
(logN)2√

N
ω(N)

)
, where ω(N) is a non-decreasing

unbounded function determined from (λj)j≥1 and (tj)j≥1. For a convenient choice

of ω(N), D(N, {αλk}k≥0) ends up being in O

(
(logN)3√

N

)
. With λj = j + 1 for

j = 1, 2, . . .. Levin obtains a number α that is absolutely normal in Borel’s sense.
A particular interest of this construction by Levin is that, among the currently

known methods to construct absolutely normal numbers, it achieves the lowest
discrepancy bound. In the present note we give a plain presentation of Levin’s
work [18] and analyze it in terms of computability and computational complexity.
Section 2 constructs a real number α that is absolutely normal with respect to
each base in a given countable set of real bases greater than 1. Section 3 shows
that Levin’s construction does not give the digits of the fractional expansion of
the number α explicitly, but it gives a sequence of increasing approximations with

limit α. The n-th approximation has an error less than 22
−n

. We prove that Levin’s
construction cannot be modified to produce directly the digits of α, one after the
other. We also conclude that any change in the construction implying a faster com-
putation would necessarily yield a larger discrepancy associated to the absolutely
normal number. Section 4 proves that, for basic assumptions on the starting ele-
ments, Levin’s construction yields an algorithm to compute the number α. Finally
Section 5 analyzes the computational complexity of the algorithm in terms of the
number of mathematical operations needed in the computation. To obtain the n-
th approximation to the number α the construction requires, in the worst case, a
number of mathematical operations that are doubly exponential in n.

About known constructions of absolutely normal numbers. With the ex-
ception of this work by Levin, known constructions of absolutely normal numbers
considered explicitly the computational complexity but they did not give a closed
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formula for the discrepancy. The recent work of Adrian-Maria Scheerer [21] pro-
vides these missing calculations. Thus, regarding discrepancy and computational
complexity, known constructions of computable absolutely normal numbers can be
classified as follows:

• Constructions that run in doubly exponential time, which means that to pro-
duce the N -th digit of the expansion of the constructed number α in a given base
they perform a number of operations that are doubly exponential in N . One

example is Alan Turing’s algorithm [4, 24] for which D(N, {αλc22k+1}k≥0) is in

O

(
1

16
√
N

)
, proved in [21, section A.4]. Another is the computable reformulation

of Sierpiński’s construction [3] for which D(N, {αλk}k≥0) is in O

(
1

6
√
N

)
, proved

in [21, section A.1].
• Constructions that run in exponential time, as Wolfgang Schmidt’s algo-

rithm [23] for which D(N, {αλk}k≥0) is in O

(
log logN

logN

)
. Scheerer [21] gives this

discrepancy bound and he presents a modification of Schmidt’s algorithm such that,
for any fixed positive A, it computes a number that depends on A with associated
discrepancy O

(
(logN)−A

)
. The variants of Schmidt’s algorithm given by Becher,

Bugeaud and Slaman [2,7] also require exponential time. These algorithms produce
numbers that are normal to all the bases in a given arbitrary set, while they are
not (simply) normal to any of the multiplicatively independent bases in the com-
plement. Furthermore, the algorithm for computing an absolutely normal Liouville
number α given by Becher, Heiber and Slaman [5] has at least exponential com-

plexity and we have not estimated the discrepancy of the sequence {αλk}N−1
k=0 , for

positive N .
• Constructions that run in polynomial time, as the algorithm given by Becher,

Heiber and Slaman [6] which computes an absolutely normal number α with just
above quadratic complexity (to produce the N -th digit of α it performs a number
of operations just above quadratic in N). Speed of computation is obtained by
sacrificing discrepancy. The algorithm deals explicitly with the discrepancy at the
intermediate steps of the construction but we have not estimated the discrepancy
of the sequence {αλk}k≥0.

About constructions ensuring normality to just one base. There are con-
structions of numbers ensuring normality to just one base which achieve much lower
discrepancy bounds than those for absolute normality. The one with smallest dis-
crepancy was given also by Levin [19] using van der Corput type sequences. Levin
constructs a number α normal to an integer base λ, such that the discrepancy

D(N, {αλk}k≥0) is in O

(
(logN)2

N

)
. This discrepancy bound is surprisingly small,

considering that Schmidt proved (see [10]) that for any sequence (ξk)k≥0 of reals

in the unit interval, lim sup
N→∞

D(N, (ξk)k≥0) ≥ 1

25

logN

N
. The computational com-

plexity of this construction by Levin has not been studied yet. Recently, Manfred
Madritsch and Robert Tichy [20] found conditions for van der Corput sets and sug-
gested using them for constructions ensuring normality not just to a single base,
but to all integer bases. This line of investigation seems worth studying.
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The construction ensuring normality to one base that has essentially the small-
est computational complexity coincides with the historically first construction of a
number that is normal to base 10, due to David Champernowne in 1933 [11]. Cham-
pernowne’s constant is the number in the unit interval whose decimal expansion is
the concatenation of the positive integers in their natural order:

0.1234567891011121314151617 . . . .

It is computable with logarithmic complexity, which means that the N -th digit in
the expansion can be obtained independently of all the previous digits by performing
O(logN) elementary operations. It is also possible to compute the first N digits of
Champernowne’s constant in O(N) operations. The discrepancy D(N, {αλk}k≥0)

is in O

(
1

logN

)
and it has been proved (see [11,19,22]) that there is a positive K

such that for every N , D(N, {αλk}k≥0) ≥
K

logN
.

2. Levin’s construction

In this section we give a comprehensible presentation of Levin’s construction [18].
Hereafter we use the star-discrepancy, which is similar to discrepancy but it is
defined in terms of intervals [0, γ) for 0 < γ ≤ 1, instead of intervals [u, v) for
0 ≤ u < v ≤ 1. For any positive integer N and for any sequence (ξk)k≥0 of real
numbers in the unit interval,

D∗(N, (ξk)k≥0) = sup
γ∈(0,1]

∣∣∣∣#{k : 0 ≤ k < N and ξk < γ}
N

− γ

∣∣∣∣ .
The two notions differ at most by a constant factor (see [16]) because

D∗ ≤ D ≤ 2D∗.

Definition. Let λ be a real number greater than 1 and let Λ = (λj)
∞
j=1 be a

sequence of real numbers, each greater than 1. A number α is normal to base
λ if the sequence {αλk}k≥0 is uniformly distributed in the unit interval, and Λ-
absolutely normal, if α is normal to base λj for each positive j.

Theorem 1 (Levin [18]). Let Λ = (λj)j≥1 be a sequence of real numbers greater
than 1, let (tj)j≥1 be a sequence of integers monotonically increasing at any speed
and let a be a non-negative real number. There is a real number α constructed from
a and the sequences (λj)j≥1 and (tj)j≥1 which is Λ-absolutely normal and such that
for any positive integer N ,

D∗(N, {αλk
j }k≥0) is in O

(
(logN)2ω(N)√

N

)
,

where ω(N) = 1 if N ∈ [1, �2), and ω(N) = k if N ∈ [�k, �k+1), with �k =
max(tk, max

1≤v≤k
2
| log2 log2 λv|� + 5) and the constant in the order symbol depends

on λj.

The real number α proposed by Levin is defined as

α = a+

∞∑
r=�1

ar
2nrqr

,
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where

nr = 2r − 2,
qr = 22

r+r+1, and
ar is an integer between 0 and qr that satisfies the property stated in
Lemma 4, which is used in the proof of Theorem 1.

Fix (λj)j≥1 an arbitrary sequence of real numbers greater than 1, fix (tj)j≥1 a
sequence of integers monotonically increasing at any speed and fix a non-negative
real a. Along this note we refer freely to the values �r, nr, qr, ar and ω(r) for any
positive r as well as to the real α.

We need some further notation. For each pair of positive integers r, j we let

nr,j = �nr logλj
2�,

τr,j = nr+1,j − nr,j , and
Ar,j = �√τr,j�.

Before the proof of Theorem 1 we give Lemmas 2, 3, 4 and 5.

Lemma 2. For every positive j and for every r ≥ �j − 1,

2r−1 logλj
2 ≤ τr,j ≤ 2r+1 logλj

2 and

τr,j ≥ max(7, τr+1,j/4).

Proof. From the definitions we know that τr,j = 2r logλj
2 + θr,j , where |θr,j | ≤ 1,

while for r ≥ �j − 1 we have 8 = 2log2 log2 λj+3 logλj
2 ≤ 2r logλj

2. The wanted
inequalities follow. �

Fix α�1 = a and for each positive integer m, let am in [0, qm). For every r ≥ �1,

αr+1 = α�1 +
r∑

m=�1

am
2nmqm

.

We write e(x) to denote e2πix. For integers c,m1,m2, r with r ≥ �j we define

Sr,j(m1,m2, c) =

τr,j−1∑
k=0

e

(
m1

(
αr +

c

2nrqr

)
λ
nr,j+k
j +

m2k

τr,j

)
,

Dr,j(c) =

Ar,j∑′

m1,m2=−Ar,j

|Sr,j(m1,m2, c)|
m1 m2

,

where m = max(1, |m|) and
∑′

denotes that the term with m1 = m2 = 0 is absent

from the sum.

Remark. In [18] the definition of Sr,j(m1,m2, c) appears with
∑′

and the definition

of Dr,j(c) appears with
∑

. We corrected these because
∑′

excludes the term

m1 = m2 = 0, which only makes sense in the definition of Dr,j(c).

Lemma 3 (Lemma 1 in [18]). Let integers j, r,m1,m2 such that r ≥ �j and 0 <
max(|m1|, |m2|) ≤ Ar,j. Then,(

1

qr

qr−1∑
c=0

|Sr,j(m1,m2, c)|2
)1/2

< 2

(
λj

λj − 1

)3/2 √
τr,j .
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Construction: M.Levin’s construction of absolutely normal numbers

Input : a sequence (λj)j≥1 of reals greater than 1; an increasing
sequence (tj)j≥1 of integers; a non-negative real a.

Output: a sequence of rationals (αr)r≥1 such that lim
r→∞

αr = α and for

each λj, the discrepancy of {αλk
j }Nk=0 is in O

(
(logN)2ω(N)√

N

)
.

Define the function �k = max(tk, max
1≤j≤k

2
| log2 log2 λj |�+ 5)

r = �1
αr = a

repeat forever
nr = 2r − 2

qr = 22
r+r+1

if r in [1, �2) then ω(r) = 1

else ω(r) = the unique k such that r in [�k, �k+1)

for j = 1 to ω(r) do
τr,j = nr+1,j − nr,j

Ar,j = �√τr,j�
end
find the least integer ar in [0, qr) such that for each j in [1, ω(r)]

Dr,j(ar) < 2

(
λj

λj − 1

)3/2 √
τr,j (3 + ln τr,j)

2

where

Dr,j(c) =

Ar,j∑′

m1,m2=−Ar,j

|Sr,j(m1,m2, c)|
m1 m2

,

Sr,j(m1,m2, c) =

τr,j−1∑
k=0

e

(
m1

(
αr +

c

2nrqr

)
λ
nr,j+k
j +

m2k

τr,j

)
,

∑′
denotes the sum without the term with m1 = m2 = 0,

m = max(1, |m|).

αr+1 = αr +
ar

2nrqr
print αr+1

r = r + 1

end
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Proof. Let Tr,j(m1,m2) =

(
1

qr

qr−1∑
c=0

|Sr,j(m1,m2, c)|2
)1/2

.

Remark. In [18] Levin uses Sr,j(m1,m2). We changed it to the correct expression
Sr,j(m1,m2, c).

For a complex expression S, we write S∗ for its complex conjugate. Then, the

square of the absolute value of S =
N∑

k=1

e(xk) is

|S|2 = S · S∗ =

N∑
k=1

e(xk) ·
N∑

k=1

e(−xk) =

N∑
k,j=1

e(xk − xj).

Then,

T 2
r,j(m1,m2)

=

τr,j−1∑
k,h=0

1

qr

qr−1∑
c=0

e

(
m1

(
αr +

c

2nrqr

)(
λ
nr,j+k
j − λ

nr,j+h
j

)
+

m2(k − h)

τr,j

)
.

In accordance with the familiar inequality

1

N

∣∣∣∣∣
N−1∑
k=0

e(θk)

∣∣∣∣∣ ≤ min

(
1,

1

2N〈〈θ〉〉

)
,

where 〈〈θ〉〉 is the distance of θ from the nearest integer, we have

T 2
r,j(m1,m2)

=

τr,j−1∑
k,h=0

1

qr

qr−1∑
c=0

e

(
m1

(
αr +

c

2nrqr

)(
λ
nr,j+k
j − λ

nr,j+h
j

)
+

m2(k − h)

τr,j

)

<

τr,j−1∑
k,h=0

min

⎛
⎜⎝1,

1

2qr〈〈m1
λ
nr,j+k

j −λ
nr,j+h

j

2nr qr
〉〉

⎞
⎟⎠ .

If m1 equals 0, then m2 does not belong to 0 (mod τr,j), τr,j ≥ 7, 0 < |m2| ≤ Ar,j <
τr,j , and Tr,j(0,m2) = 0. Let |m1| > 0. Let us show that the expression under the
〈〈〉〉 sign above has absolute value less than 1/2. Since r ≥ �j , by Lemma 2,

λ
nr+1,j

j ≤ λ
nr+1logλj

2

j = 2nr+1 = 2nr22
r

,

logλj
2 = 2− log2 log2 λj < 2�j−3 < 2r−3,

Ar,j = �
√
τr,j� <

√
2r+1 logλj

2 < 2r−1.

Hence,

|m1(λ
nr,j+k
j − λ

nr,j+h
j )| < 2Ar,jλ

nr+1,j

j < 2r2nr22
r

= (1/2)2nrqr,

and we can replace 〈〈〉〉 by the absolute value sign:

T 2
r,j(m1,m2) ≤ τr,j + 2

∑
τr,j>k>h≥0

2nr

2|m1|λnr,j

j (λk
j − λh

j )
.
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Using the definition of nr,j ,

λ
nr,j+1
j ≥ λ

nr logλj
2

j = 2nr .

We obtain

T 2
r,j(m1,m2) ≤ τr,j +

∑
τr,j>k>h≥0

1

λh
j λ

k−h−1
j (1− λh−k

j )

< τr,j +

∞∑
h,k=0

1

λh
j λ

k
j (1− λ−1

j )

= τr,j +

(
λj

λj − 1

)3

< 4τr,j

(
λj

λj − 1

)3

. �

Lemma 4 ([18, Lemma 2] ). Let r ≥ �1. There exists an integer ar in [0, qr) such
that, given any positive integer j and with the condition r ≥ �j, we have

Dr,j(ar) < 2

(
λj

λj − 1

)3/2 √
τr,j (3 + ln τr,j)

2 ω(r).

Proof. Using the Cauchy-Bunyakovskii-Schwarz inequality we obtain

1

qr

qr−1∑
c=0

Dr,j(c) =

Ar,j∑′

m1,m2=−Ar,j

1

m1m2qr

qr−1∑
c=0

|Sr,j(m1,m2, c)|

≤
Ar,j∑′

m1,m2=−Ar,j

1

m1m2

(
1

qr

qr−1∑
c=0

|Sr,j(m1,m2)|2
)1/2

.

Since the conditions of Lemma 3 are satisfied, we have

1

qr

qr−1∑
c=0

Dr,j(c) < 2

(
λj

λj − 1

)3/2 √
τr,j(3 + 2 lnAr,j)

2

≤ 2

(
λj

λj − 1

)3/2 √
τr,j(3 + ln τr,j)

2.

Consequently, with r ≥ �j , the number of integers c in [0, qr) such that

Dr,j(c) ≥ 2ω(r)

(
λj

λj − 1

)3/2 √
τr,j(3 + ln τr,j)

2

is less than qr/ω(r). By the definitions of ω(r) and �j , conditions r ≥ �j and
ω(r) ≥ j are equivalent. In this case, the number of integers c in [0, qr), such that the
above inequality holds for at least one positive integer j, with the condition r ≥ �j
(alternatively, j ∈ [1, ω(r)]) is less than ω(r)�qr/ω(r)� = qr. Thus, there exists an
integer c = ar in [0, qr), such that the inequality in the statement of this lemma
holds for all positive integers j with the condition r ≥ �j . �

For the proof of Theorem 1 Levin uses multidimensional discrepancy and applies
Erdös-Turán-Koksma’s inequality [15].
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Let s be a positive integer, let γv for v = 1, . . . , s be real numbers in the unit
interval, let (βk,v)k≥0 for v = 1, . . . , s be real number sequences, and let Cv(N) be
the number of solutions for k = 0, 1, . . . , N − 1 of the system of inequalities

{βk,1} < γ1

{βk,2} < γ2
...

{βk,s} < γs.

The quantity

D∗(N, ({βk,1}, . . . , {βk,s})k≥0) = sup
γ1,...,γs∈(0,1]s

∣∣∣∣Cv(N)

N
− γ1 · . . . · γs

∣∣∣∣
is called the discrepancy of the sequences {βk,1}, . . . , {βk,s}, for k = 0 . . . , N − 1.

Lemma 5 (Erdös-Turán-Koksma [15], [13, Theorem 1.21]). Let s be a positive
integer, let γv, for v = 1, . . . , s, be real numbers in the unit interval, let (βk,v)k≥0

for v = 1, . . . , s be a set of real number sequences. Let N be a positive integer.
Then, for every integer n, the quantity D∗(N, ({βk,1}, . . . , {βk,s})k≥0) is at most

(
3

2

)s
⎛
⎝ 2

n+ 1
+

1

N

n∑′

m1...ms=−n

∣∣∣∑N−1
k=0 e (

∑s
v=1 mvβk,v)

∣∣∣
m1 . . .ms

⎞
⎠ ,

where
∑′

denotes that the term with m1 = m2 = . . . = ms = 0 is absent from the

sum, and m = max(1, |m|).

Remark. Instead of the version of Erdös-Turán-Koksma inequality in Lemma 5,
Levin uses in [18] the weaker version which states that, for every integer n,
D∗(N, ({βk,1}, . . . , {βk,s})k≥0) is at most

30s

⎛
⎝ 1

n
+

1

N

n∑′

m1...ms=−n

∣∣∣∑N−1
k=0 e (

∑s
v=1 mvβk,v)

∣∣∣
m1 . . .ms

⎞
⎠ .

In the proof of Theorem 1 we use the stronger version but we obtain the same
asymptotic expression for the discrepancy as that obtained by Levin.

Proof of Theorem 1. For any three real numbers ξ, λ, γ and non-negative integers
M and N , we denote by Cξ,λ,γ(M,N) the number of solutions of the inequality

{ξλk} < γ, for k = M, . . . ,M +N − 1.

We write Cξ,λ,γ(N), to denote Cξ,λ,γ(0, N). Fix any positive integer j and any
positive real γ in the unit interval. Fix any positive integer N and define an integer
h from the condition nh,j ≤ N < nh+1,j . Then,

N = nh,j +R1, where 0 ≤ R1 < τh,j .

Observe that when N is large enough, h ≥ �j . Using the definition of Cα,λj ,γ ,

Cα,λj ,γ(N) = Cα,λj ,γ(n�j,j) +

h∑
r=�j

Cα,λj ,γ(nr,j , τ
′
r,j),

where τ ′r,j = τr,j for r ∈ [�j , h) and τ ′h,j = R1.
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Remark. In [18] Levin uses n�j . We changed it to the correct expression n�j ,j .

Let us estimate Cα,λj ,γ(nr,j , R) for r ≥ �j and 0 ≤ R ≤ τr,j . The quantity
Cα,λj ,γ(nr,j , R) is equal to the number of solutions of the system of inequalities, for
k = 0, . . . , τr,j − 1,

{
k

τr,j

}
<

R

τr,j
,

{αλnr,j+k
j } < γ.

We apply Lemma 5 with s = 2, N = τr,j and n = Ar,j and obtain

∣∣∣∣Cα,λj ,γ(nr,j , R)− γ
R

τr,j
τr,j

∣∣∣∣
≤

(
3

2

)2
⎛
⎝ 2τr,j
Ar,j + 1

+

Ar,j∑′

m1,m2=−Ar,j

1

m1 m2

∣∣∣∣∣
τr,j−1∑
x=0

e

(
m1αλ

nr,j+x
j +

m2x

τr,j

)∣∣∣∣∣
⎞
⎠ .

Using the definition of αr, we have that for any r ≥ �1,

α = αr +
ar

2nrqr
+

θr
2nr+1

,

where 0 ≤ θr ≤ 2 because

θr
2nr+1

=

∞∑
k=r+1

ak
2nkqk

<

∞∑
k=r+1

1

2nk
=

1

2nr+1

∞∑
k=r+1

1

2nk−nr+1
≤ 2

2nr+1
.

By definition, Dr,j(ar) =

Ar,j∑′

m1,m2=−Ar,j

|Sr,j(m1,m2, ar)|
m1 m2

, so

∣∣Cα,λj ,γ(nr,j , R)− γR
∣∣

≤
(
3

2

)2
⎛
⎝ 2τr,j
Ar,j + 1

+Dr,j(ar) +

Ar,j∑′

m1,m2=−Ar,j

1

m1 m2
|U(m1,m2, ar)|

⎞
⎠

where

|U(m1,m2, ar)| =
∣∣∣∣∣Sr,j(m1,m2, ar)−

τr,j−1∑
k=0

e

(
m1αλ

nr,j+k
j +

m2k

τr,j

)∣∣∣∣∣ .
By the definition of Sr,j(m1,m2, ar), the condition 0 ≤ θr ≤ 2, and the fact that
for every pair of reals ξ1 and ξ2,

|e(ξ1)− e(ξ2)| = 2| sin(π(ξ1 − ξ2))| ≤ 2π|ξ1 − ξ2|,
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we find that

|U(m1,m2, ar)| ≤ 2π

τr,j−1∑
k=0

|m1|λnr,j+k
j

θr
2nr+1

≤ 4π|m1|λnr+1,j
j

1

(λj − 1)2nr+1

≤ 4π|m1|
λj − 1

≤ 4πAr,j

λj − 1

≤ 4π

λj − 1

√
τr,j .

By the upper bound for Dr,j(ar) given in Lemma 4 for r ≥ �j , and the inequality
Ar,j∑′

m1,m2=−Ar,j

1

m1m2
≤ (3 + ln τr,j)

2, we obtain that

|Cα,λj ,γ(nr,j , R)− γR|

≤
(
3

2

)2
(
2
√
τr,j + 2

(
λj

λj − 1

)3/2 √
τr,j(3 + ln τr,j)

2ω(r)

+
4π

λj − 1

√
τr,j(3 + ln τr,j)

2

)

≤
(
3

2

)2

15

(
λj

λj − 1

)3/2 √
τr,j(3 + ln τr,j)

2ω(r).

Using N = nh,j +R1, where 0 ≤ R1 < τh,j , and the equality for h ≥ �j ,

Cα,λj ,γ(N) = Cα,λj ,γ(n�j,j) +

h∑
r=�j

Cα,λj ,γ(nr,j , τ
′
r,j),

we obtain that

|Cα,λj ,γ(N)− γN |

≤ |Cα,λj ,γ(n�j,j)− γn�j ,j |+
h∑

r=�j

(
3

2

)2

15

(
λj

λj − 1

)3/2 √
τr,j(3 + ln τr,j)

2ω(r),

and, by Lemma 2,
1

4
τh,j ≤ τh−1,j ≤ N.

Hence,

3 + ln τr,j ≤ 3 + ln(4N) ≤ 5 + lnN

and by definition of τr,j ,

h∑
r=�j

√
τr,j ≤

h∑
r=�j

√
2r+1 logλj

2 ≤ 3
√
2h+2 logλj

2 ≤ 10
√
τh,j ≤ 20

√
N.
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Let us show that, for h ≥ �j , ω(N) ≥ ω(h). Since ω(r) is a non-decreasing sequence,
it is sufficient to show that, for h ≥ �j , N ≥ h. In fact, using the definitions of �j
and nh,j , and the equality N = nh,j +R1 we have for h ≥ 5,

h ≥ �j ≥ 5, 2
h+1
2 ≥ h+ 1.

Thus,

N − h ≥ nh,j − h

≥ (2h − 2) logλj
2− h− 1

≥ (logλj
2)(2h−1 − (h+ 1) log2 λj)

≥ (logλj
2)(2h−1 − (h+ 1)2

�j−3

2 )

≥ 2
h−3
2 (logλj

2)(2
h+1
2 − h− 1)

≥ 0.

Then, by the obvious inequality |Cα,λjγ(n�j ,j)− γn�j ,j | ≤ n�j ,j , we have

|Cα,λj ,γ(N)− γN | ≤ n�j ,j +

(
3

2

)2

· 15 · 20
(

λj

λj − 1

)3/2 √
N(5 + lnN)2ω(N)

≤ n�j ,j + 675

(
λj

λj − 1

)3/2 √
N(5 + lnN)2ω(N).

The above inequality also holds for h ≤ �j − 1, since

|Cα,λj ,γ(N)− γN | ≤ N < nh+1,j ≤ n�j ,j .

Recalling the definition of n�j ,j we finally obtain

|Cα,λj ,γ(N)− γN | ≤ 2�j logλj
2 + 675

(
λj

λj − 1

)3/2 √
N(5 + lnN)2ω(N).

Hence, the discrepancy of the sequence {αλk
j }k≥0, for any given positive integer N ,

D∗(N, {αλk
j }k≥0) = sup

γ∈(0,1]

∣∣∣∣Cα,λj ,γ(N)

N
− γ

∣∣∣∣
is in O

(
(logN)2√

N
ω(N)

)
. This completes the proof of Theorem 1. �

Corollary 6 ([18]). Let λj = j + 1, tj = 2j for j = 1, 2, . . ., so �j ≤ 2j+1 + 1 and
ω(N) ≤ 2(5+lnN). Then, the constructed number α is absolutely normal in Borel’s
sense, and for any integer j ≥ 2, the discrepancy of {αjk}, for k = 0, . . . , N − 1 is

D∗(N, {αjk}k≥0) ≤
22

j+1+1

N
logj 2 + 1350

(5 + lnN)3√
N

,

which is in O

(
(logN)3√

N

)
.

Levin asserts that a similar method can be used for constructing a number α
such that, given any integer j, the discrepancy of the sequence {αλk

j }N−1
k=0 , is

O

(
(logN)3/2√

N
ω(N)

)
, where the constant in the order symbol O depends on λj ,

and he gives as a reference [17, Section 2].
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3. About Levin’s construction and its possible variants

3.1. Possible variants on the construction. Here we consider other possible
values for nr and qr to run Levin’s construction. Observe that smaller values of
qr imply a faster computation at step r, because ar is searched in a smaller range.
However, smaller values of qr imply slower growth of nr, which in turn imply a
larger discrepancy in the sequence {αλk

j }k≥0. Proposition 9 shows that it suffices

that nr grow quicker than rh for h > 1 to ensure that Levin’s construction yields
an absolutely normal number. We first prove two lemmas.

Lemma 7. If λj ≥ 2 and the sequences n1, n2, . . . and q1, q2, . . . satisfy, for every
positive r,

2nr+1−nr+1+ 1
2 log(nr+1−nr+1) ≤ qr,

then the statement of Lemma 3 holds.

Proof. In Lemma 3, every step of the proof is valid disregarding the values chosen
for n1, n2, . . . and q1, q2, . . . except for the statement

|m1|(λnr,j+k
j − λ

nr,j+h
j ) ≤ 1

2
2nrqr.

We show that the condition given by this lemma is sufficient to make the above
inequality true. Let us recall that nr,j = �nr logλj

2�, τr,j = nr+1,j − nr,j , 0 ≤
k, h < τr,j and |m1| ≤ Ar,j = �√τr,j�.

Then,

qr ≥ 2nr+1−nr+1+ 1
2 log2(nr+1−nr+1) =

√
nr+1 − nr + 1 2nr+1−nr+1

≥
√
(nr+1 logλj

2− nr logλj
2) + 1 2nr+1−nr+1

≥
√
nr+1,j − nr,j 2nr+1−nr+1 =

√
τr,j 2nr+1−nr+1

≥ |m1|2nr+1−nr+1 = 2|m1|2nr+12−nr

> 2|m1|λnr+1,j

j λ
−(nr,j+1)
j 2|m1|λnr+1,j−nr,j−1

j = 2|m1|λτr,j−1
j

> 2|m1|(λτr,j−1
j − 1)

≥ 2|m1|
λ
nr,j

j

2nr
(λ

τr,j−1
j − 1)

≥ 2|m1|
λ
nr,j

j

2nr
(λk

j − λh
j ) =

2

2nr
|m1|(λnr,j+k

j − λ
nr,j+h
j ).

�

In what follows we use customary asymptotic notation to describe the growth
rate of the functions. We write

f(n) is in o(g(n)) if ∀k > 0 ∃n0 ∀n > n0, |f(n)| ≤ k|g(n)|, and
f(n) is in Θ(g(n)) if ∃k1 > 0 ∃k2 > 0 ∃n0 ∀n > n0, k1g(n) ≤ f(n) ≤ k2g(n).

Lemma 8. Let j and N be positive integers and let k be such that nk,j ≤ N <

nk+1,j. If
k∑

r=1

√
nr+1,j − nr,j is in o

(
N

(logN)2ω(N)

)
, then Levin’s construction

yields an absolutely normal number.

Proof. See proof of Theorem 1 for the upper bound of |Cα,λj ,γ(N)− γN |. �
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The next proposition shows that if nr dominates any linear function on r, and qr
is increasing in r according to a condition in the growth of nr, then Levin’s con-
struction yields an absolutely normal number.

Proposition 9. Let (λj)j≥1 be a sequence of real numbers greater than 1 and
let (tj)j≥1 be a sequence of reals such that the function ω(N) has sub-polynomial

growth. If nr grows quicker than rh for h > 1 and qr is such that

nr+1 − nr + 1 +
1

2
log(nr+1 − nr + 1) ≤ log qr,

then Levin’s construction yields an absolutely normal number. However, if nr is
linear in r, Levin’s arguments do not prove that the discrepancy goes to 0.

Proof. Suppose nr is polynomial on r. Then, there is some h such that nr in Θ(rh).

By definition of nr,j , we have nr,j = �nr logλj
2� is in Θ(rh). Hence, nr+1,j − nr,j

is in Θ(rh−1); therefore,
√
nr+1,j − nr,j in Θ(r

h−1
2 ). Furthermore, if N and k are

such that nk,j ≤ N < nk+1,j , then k is in Θ(
h
√
N). Thus,

k∑
r=1

√
nr+1,j − nr,j is in Θ

((
h
√
N
) h+1

2

)
= Θ

(
N

h+1
2h

)
.

If nr were a linear function on r,

k∑
r=1

√
nr+1,j − nr,j would be in Θ(N), hence

k∑
r=1

√
nr+1,j − nr,j would not be in the required class o

(
N

(logN)2ω(N)

)
.

We conclude that, to obtain a normal number with Levin’s construction, nr can
not be linear in r. Instead, nr can be any polynomial on r with degree greater
than 1 provided that ω(N) is chosen to have sub-polynomial growth. �

In Levin’s construction smaller values of nr imply a larger upper bound on
discrepancy of the sequence {αλk}. The following table shows the bound for the

discrepancy of the sequence {λk
jα}Nk=0, obtained using Levin’s proof for different

choices of nr. In each case the constant behind the O symbol depends on λj .

nr Discrepancy bound given by Levin’s proof

r O(log(N)2ω(N)) —it does not go to 0 when N goes to ∞—

rh O

(
log(N)2ω(N)

N
h−1
2h

)

2r − 2 O

(
log(N)2ω(N)√

N

)
In all of these cases, the upper bound for discrepancy contains ω(N), as in Levin’s
formulation and the constant hidden in the O symbol depends on the base λj .
Although Levin stated that for any non-decreasing function ω(N) his construction
produces an absolutely normal real number, the growth of ω(N) cannot be arbitrary.

For example, when nr is 2r − 2, ω(N) =
√
N does not give a discrepancy bound

going to 0.
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3.2. Necessary conditions on the construction. Levin’s construction is not
conceived as the concatenation of the binary expansions of the ar for r = 1, 2, . . ..
This means that the expansion in base 2 of αr+1 is not obtained as a concatenation
of the expansion of αr with the base-2 representation of ar. Recall the definition
of αr+1: α�1 is equal to a starting real number a (argument for the construction)
and for every r ≥ �1,

αr+1 = α�1 +

r∑
m=�1

am
2nmqm

,

where am is an integer in [0, qm) satisfying the conditions of Lemma 4,

nm = 2m − 2 and qm = 22
m+m+1.

Since log qr = 2r + r + 1 > nr+1 − nr = 2r we have

αr+1 − �2nr+1αr+1�2−nr+1 > 0.

In Levin’s construction qr and nr are increasing in r and qr > 2nr+1−nr . This
is necessary for the proof (it is not hard to check that without this condition the
proof breaks) and it determines that Levin’s construction of the number α cannot
be achieved as the concatenation of the ar, for r = 1, 2, . . ..

Proposition 10. If qr and nr are such that log qr > nr+1 − nr, then Levin’s
construction of α is not achievable as the concatenation of the ar, for r = 1, 2, 3 . . ..

Proof. To run the construction as a concatenation of the ar, for r = 1, 2, 3, . . ., we

need that

r−1∑
m=0

log qm ≤ nr. But

r−1∑
m=0

log qm >

r−1∑
m=0

nm+1 − nm = nr − n0 = nr. �

4. Levin’s normal numbers are computable

The theory of computability defines a computable function from non-negative
integers to non-negative integers as one which can be effectively calculated by some
algorithm. The definition extends to functions from one countable set to another,
by fixing enumerations of those sets. A real number x is computable if there is a base
and a computable function that gives the digit at each position of the expansion of
x in that base. Equivalently, a real number is computable if there is a computable
sequence of rational numbers (rn)n≥0 such that |x− rn| < 2−n for each n ≥ 0.

Theorem 11 (Turing [12, Theorem 5.1.2]). The following are equivalent:

(1) The real x is computable.
(2) There is a computable sequence of rationals (rn)n≥0 that tends to x such

that |x− rn| < 2−n for all n.
(3) There is a computable sequence of rationals (rn)n≥0 that converges to x and

a computable function f : N → N such that |x− rf(n)| < 2−n for all n.

Theorem 12. Let (λj)j≥1 be computable sequence of integers greater than 2, let
(tj)j≥1 be a computable sequence of integers monotonically increasing at any speed,
and let the starting value a be a rational number. Then, the number α defined by
Levin, proved to be absolutely normal in Theorem 1, is computable.
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Proof. The number α is the limit of αr for r going to infinity, where a�1 = a with
�1 = max(t1, 2
| log2 log2 λ1|�+ 5), and for r ≥ 1,

αr+1 = αr +
ar

2nrqr
,

where ar is an integer in [0, qr) satisfying the inequalities of Lemma 4, nr = 2r − 2

and qr = 22
r+r+1. Lemma 4 proves that such ar exists. Since Dr,j(c) is a

computable function it is possible to find ar by an exhaustive search among all
integers in [0, qr) and all bases λj for j = 1, 2, . . . , ω(r), where ω(r) = 1 if r
in [1, �2)), otherwise ω(r) is the unique index k such that r in [�k, �k+1), with
�k = max(tk, max

1≤v≤k
2
| log2 log2 λv|� + 5). At each step r, we can compute bit-

wise approximations of Dr,j from above, for each of the possible candidate values
of ar until we find one that satisfies the required inequality for all j between 1
and ω(r). Thus, the sequence of rationals α1, α2, . . . is computable and converges
to an absolutely normal number α. From the proof of Theorem 1 we know that,
for each r,

|α− αr| <
2

2nr
.

Since α is an absolutely normal number, and therefore an irrational number, by
Theorem 11 we conclude that α is computable. �

5. The computational complexity of Levin’s construction

Theorem 12 proves that under some assumptions of the sequences (λj)j≥1 and
(tj)j≥1, and the starting value a, Levin’s construction is indeed an algorithm to
compute the number α. The algorithm is recursive. The standard computational
model is the Turing machine model, which works just with finite representations,
so it only deals with numbers that are the limit of a computable sequence of finite
approximations. In this model, at step r, the number of elementary operations
needed to find the number ar cannot be easily determined. This is because to find
ar the algorithm must compute sums of exponential sums. The terms in these sums
are transcendental numbers, which can only be computed as limits of finite approx-
imations. It is impossible to determine how many approximations to each term of
the exponential sums must be computed to find that a candidate ar is conclusive.
So, instead of counting the number of elementary operations needed to compute the
number ar at step r, here we give the number of mathematical operations needed
in an idealized computational model over the real numbers, based on machines
with infinite-precision real numbers. A canonical model for this form of computa-
tion over the reals is the Blum-Shub-Smale machine [8], abbreviated BSS machine.
This is a machine with registers that can store arbitrary real numbers and can
compute rational functions over reals at unit cost. Since elementary transcendental
functions, as exponential function or trigonometric functions, are not computable
by a BSS machine we need to consider the extended BSS machine which includes
exponential and trigonometric functions as primitive operations. For our purpose,
the extended BSS model is identical to considering Boolean arithmetic circuits aug-
mented with trigonometric functions. Of course, for any given real-valued function,
its complexity in the BSS model gives just a lower bound of its complexity in the
classical Turing machine model, where the cost for arithmetic (and trigonometric)
operations over the real numbers is not constant.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

LEVIN’S CONSTRUCTION OF ABSOLUTELY NORMAL NUMBERS 2943

Theorem 13. Let (λj)j≥1 be a computable sequence of reals greater than 1 and let
(tj)j≥1 be a computable sequence of integers. Levin’s algorithm requires

O

⎛
⎝22

r+3r+1

ω(r)∑
j=1

(logλj
2)2

⎞
⎠

mathematical operations to compute αr, for each r.

Proof. Assume a BSS machine which includes exponential and trigonometric func-
tions as primitive operations. The expression Sr,j(m1,m2, c) is the sum of τr,j
terms, each of them can be computed in constant time in our machine. Hence, the
time needed to compute each value of Sr,j is in O(τr,j). To obtain a value of Dr,j

we must calculate O(Ar,j
2) = O(τr,j) values of Sr,j . Therefore, the computation of

Dr,j is in O(τr,j
2) = O((2r logλj

2)2). Finding the value of ar requires computing

Dr,j(c) for each j between 1 and ω(r) until we find a value of c in [0, qr) which
satisfies the inequalities of Lemma 4. In the worst case, it will be necessary to try
all possible values for c. In this worst case, the required time is in

O

⎛
⎝qr−1∑

c=0

ω(r)∑
j=1

(2r logλj
2)2

⎞
⎠=O

⎛
⎝qr

ω(r)∑
j=1

(2r logλj
2)2

⎞
⎠=O

⎛
⎝22

r+3r+1

ω(r)∑
j=1

(logλj
2)2

⎞
⎠ .

Let Tk be the time required to compute ak,

Tk = 22
k+3k+1

ω(k)∑
j=1

(logλj
2)2

Then, the time to compute αr is

r∑
k=1

Tk. Observe that Tr dominates

r−1∑
k=1

Tk because

r−1∑
k=1

Tk ≤ (r − 1)Tr−1 = (r − 1)22
r−1+3(r−1)+1

ω(r−1)∑
j=1

(logλj
2)2,

and this last expression is in O

⎛
⎝22

r+3r+1

ω(r)∑
j=1

(logλj
2)2

⎞
⎠. �

Notice that Theorem 13 estimates the complexity of obtaining a rational approx-
imation αr with an error bounded by 2−(nr+1−1). Since αr is just an approximation
to α, it is not determined how many bits in the expansion of αr are conclusive so
as to conform the expansion of α. One would like that the first nr+1 − 1 bits of αr

determine those of α. As we showed in Proposition 10 Levin’s construction is not
achievable as the concatenation of the values ar. An overlapping of the fractions
ar

2nrqr
may occur, causing carries and changing some of the first bits of αr.

Lemma 14. The sum

N∑
λ=2

(logλ 2)
2 has an asymptotic growth in Θ

(
N

logN

)
.

Proof. Let Li(x) be the Eulerian logarithmic integral [1, Chapter 5], defined as

Li(x) =

∫ x

2

dt

ln t
. Then,

N∑
λ=2

(logλ 2)
2 has the same asymptotic growth as

∫ N

2

dt

(ln t)2
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which is in Θ

(
Li(N)− N

logN

)
. Since Li(N) is in Θ

(
N

logN

)
, the lemma is

proved. �

Corollary 15. For λj = j+1, tj = 2j, ω(r) ∈ O(log r), Levin’s algorithm computes
a normal number in Borel’s sense which requires

O

(
22

r+3r+1 log r

log log r

)

mathematical operations for the r-th approximation αr.

Theorem 13 proves that the complexity of computing αr with Levin’s original
formulation for nr and qr, is doubly exponential in r. Since nr is the number of bits
of αr that are obtained at step r, and in Levin’s original formulation nr is 2r − 2,
it is fair to say that the complexity of Levin’s algorithm is simply exponential in
the number of bits computed at step r.

We now prove that, in case nr is quadratic in r, then Levin’s algorithm requires
a number of operations that is simply exponential in the square root of the number
of bits computed at step r.

Theorem 16. The variant of Levin’s construction with nr = r2 takes

O

⎛
⎝r322r

ω(r)∑
j=1

(logλj
2)2

⎞
⎠

mathematical operations in an extended BSS machine to compute αr.

Proof. First, we need to choose values for qr that ensure normality. As we showed

in Lemma 7, a sufficient condition is 2nr+1−nr+1+ 1
2 log(nr+1−nr+1) ≤ qr. We choose

qr = 22r+2+	log(2r+2)
.

By Theorem 13, to find ar, in the worst case it is necessary to compute Dr,j(c)
for each j between 1 and ω(r) and for each c between 0 and qr − 1 and each
Dr,j requires O

(
τ2r,j

)
operations. Then, the number of operations to find ar is in

O

⎛
⎝qr

ω(r)∑
j=1

τ2r,j

⎞
⎠, because qr is in O

(
r22r

)
, τr,j is in O

(
r logλj

2
)
, and

O

⎛
⎝qr

ω(r)∑
j=1

τ2r,j

⎞
⎠ = O

⎛
⎝r322r

ω(r)∑
j=1

(logλj
2)2

⎞
⎠

.
The time to compute αr is essentially the time required to find ar because

r∑
k=1

k322k
ω(k)∑
j=1

(logλj
2)2 ≤ r322r+2

ω(r)∑
j=1

(logλj
2)2,

which is in O

⎛
⎝r322r

ω(r)∑
j=1

(logλj
2)2

⎞
⎠. �
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Corollary 17. The variant of Levin’s construction with nr = r2, λj = j + 1,

tj = 2j, ω(r) ∈ O(log r), takes

O

(
r322r

log r

log log r

)
mathematical operations for the r-th approximation αr.
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