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We prove that finite-state transducers with injective behavior, deterministic or not, real-
time or not, with no extra memory or a single counter, cannot compress any normal word. 
We exhaust all combinations of determinism, real-time, and additional memory in the form 
of counters or stacks, identifying which models can compress normal words. The case of 
deterministic push-down transducers is the only one still open. We also present results on 
the preservation of normality by selection with finite automata. Complementing Agafonov’s 
theorem for prefix selection, we show that suffix selection preserves normality. However, 
there are simple two-sided selection rules that do not.

 2015 Elsevier Inc. All rights reserved.

1. Introduction

Let us recall the definition of normality for real numbers, given by Émile Borel [4] more than one hundred years ago. 
A real number is normal to an integer base if, in its infinite expansion expressed in that base, all blocks of digits of the same 
length have the same limiting frequency. Borel proved that almost all real numbers are normal to all integer bases. However, 
very little is known on how to prove that a given number has the property. The problem of proving normality to just one 
base does not seem easier, see Bugeaud’s book [6]. This is a motivation to investigate different equivalent definitions of 
normality and different operations that preserve it.

The present work deals with the characterization and the preservation of normality by means of operations done by 
finite automata. For this, given an integer base b, greater than or equal to 2, we consider the alphabet consisting of the 
digits 0, 1, . . . , b − 1. We regard the expansion of a real number expressed in base b as a sequence of symbols in this 
alphabet, or, as we shall call it, an infinite word. This determines the notion of normality for infinite words.

A fundamental theorem relates normality and finite automata: an infinite word is normal to a given alphabet if and only 
if it cannot be compressed by lossless finite transducers. These are deterministic finite automata with injective input–output 
behavior. This result was first obtained by joining a theorem by Schnorr and Stimm [17] with a theorem by Dai, Lathrop, 
Lutz and Mayordomo [10]. Becher and Heiber gave a direct proof [3].

What is the true computational power needed to compress normal words? Of course, each computable normal word 
is compressible by some Turing machine. For instance, consider Champernowne’s construction [9]. Since automata with 
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Table 1
Compressibility of normal infinite words by different kinds of transducers.

Finite-state transducer Deterministic Non-deterministic Non-real-time

No extra memory Not compress 
(Theorem 2.3)

Not compress 
(Theorem 4.1)

Not compress 
(Corollary 4.4)

One counter Not compress Not compress Not compress 
(Theorem 5.2)

More than one counter Not compress 
(Theorem 3.1)

Not compress 
(Corollary 5.1)

Compress 
(Turing complete)

One stack ? Compress 
(Theorem 6.1)

Compress

One stack and one counter Compress 
(Theorem 6.2)

Compress Compress 
(Turing complete)

enough computational power are equivalent to a Turing machine, to answer the question we ought to start with the most 
elementary type of automata, which are finite-state automata, and consider different enhancements. Here we analyze de-
terministic, non-deterministic real-time and non-real-time transition functions; having zero, one, or more counters; with or 
without a stack.

Whether deterministic or non-deterministic machines have the same computational power is a fundamental question 
in theoretical computer science. Here we address it with respect to the ability of compressing normal words. Recall that 
although deterministic and non-deterministic finite automata recognize the same rational sets, deterministic Büchi automata 
are strictly less expressive than the non-deterministic ones (see Perrin and Pin’s book [15]). It is not always possible to 
determinize a Büchi automaton to recognize the same set of infinite words (it is only possible as a Muller automaton). 
Furthermore, functions and relations realized by deterministic transducers are proper subclasses of rational functions and 
relations realized by non-deterministic ones [2].

Here we prove that finite transducers with injective behavior, even non-deterministic non-real-time ones, but with no 
extra memory or just a single counter, cannot compress any normal infinite word. Adding memory yields compressibility 
results: there are non-deterministic non-real-time transducers with more than one counter that compress some normal 
infinite words. Also there are non-deterministic real-time transducers with a stack that can do it.

Table 1 summarizes the results we obtain about compressibility of normal infinite words by different kinds of trans-
ducers. The columns represent different levels of restrictions on the transitions. The first column represents determinism, 
that is, there is exactly one transition leaving a given state by reading a given symbol. The second column represents non-
determinism, there are several transitions leaving a given state by reading the same symbol. The restriction represented in 
the third column adds the possibility of also having transitions that do not read any symbol (usually called λ-transitions). 
The rows of the table represent different memory models. In all cases there is bounded memory represented by states. Each 
row details possible additions of counters or stacks. The realized relation is assumed to be bounded-to-one. The case of a 
deterministic transducers with a single stack remains open:

Open question. Can any deterministic push-down transducer compress a normal word?

In the present paper, we consider transducers that process the input word from left to right without coming back. 
These are called one-way transducers. In contrast, two-way transducers can move their reading head back and forth. They 
have been investigated with regards to normality by Carton and Heiber in [7] where it is shown that these more powerful 
transducers still cannot compress normal words.

We also obtain new results on the preservation of normality by selection. A celebrated theorem by Agafonov describes 
an operation by a finite automaton that selects symbols from an infinite word by looking at its prefixes and by recogniz-
ing those that belong to a rational set. In case the word is normal, the word obtained by the selected symbols is normal 
as well. Agafonov published it in 1968 [1], but unfortunately the proof there depends on work only available in the Rus-
sian literature. Schnorr and Stimm [17] proved a generalization of the theorem. M. O’Connor [14] gave another proof of 
Agafonov’s result using automata predictors, and Broglio and Liardet [5] generalized it to arbitrary alphabets. Becher and 
Heiber [3] wrote an alternative proof using the characterization of normality in terms of incompressibility. It is known that 
Agafonov’s theorem fails for slightly more powerful selection. Merkle and Reimann [12] showed that normality is preserved 
neither by deterministic one-counter sets (recognized by deterministic one-counter automata) nor by linear sets (recognized 
by one-turn pushdown automata).

Here we complement Agafonov’s theorem and we show that selection based on suffixes, as opposed to prefixes, also 
preserves normality. However, there are simple two-sided selection rules that do not preserve normality and we exhibit one. 
These results are proved in Theorems 7.2 and 7.3.
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1.1. Notation

We write Z for the set of all integers. An alphabet is a finite set with at least two symbols. A word over alphabet A is a 
sequence of elements from A. A" is the set of words of " symbols from A, A<" = ⋃

"′<" A"′
is the set of words of less than 

" symbols from A, A∗ = ⋃
"≥0 A" is the set of all finite words over A and Aω is the set of all infinite words over A. We 

mostly use upper-case letters to denote sets or other complex objects, lower-case letters a, b, c to denote alphabet symbols, 
u, v, w to denote finite words and x, y, z to denote infinite words. The empty word is denoted by λ, the length of a word u
is |u| and if u and v are words, uv is the concatenation of u and then v . Similarly, ux is the concatenation of word u and 
then an infinite word x. We write x ! " for the prefix of length " of x and x " " for the suffix of x that results on removing 
the first " symbols from it. As usual, we say that a set of words is rational if it can be recognized by some finite automaton. 
For any finite set S we denote its cardinality with |S|. We write log for the logarithm in base 2.

1.2. Normality

We consider the definition of normality directly on infinite words over an alphabet A. See the books [6,11] for a thorough 
presentation of the material.

Definition. Let " be a positive integer. An infinite word x ∈ Aω is simply normal to word length " if x = v1 v2 v3 · · · where for 
each i ≥ 1, |vi| = ", and for every u ∈ A" ,

lim
n→∞

|{i : 1 ≤ i ≤ n, u = vi}|
n

= |A|−".

An infinite word x is normal if it is simply normal to every word length.

The concept of normality can be equivalently characterized according to the following theorem. We will use this charac-
terization in Section 7.

Theorem 1.1. (See Theorem 4.2 [6], originally proved by Pillai between 1939 and 1940.) An infinite word x = a1a2a3 · · · ∈ Aω is
normal if, and only if, for every u ∈ A∗ ,

lim
n→∞

|{i : 1 ≤ i ≤ n − |u| + 1, u = aiai+1 · · ·ai+|u|−1}|
n

= |A|−|u|.

2. Deterministic transducers

We recall the standard definition of a deterministic transducer and fix notation. A transducer is an automaton equipped 
with an output tape. The execution of each transition consumes at most one symbol from the input and produces a word 
on the output. Thus, the transducer outputs the concatenation of all the words output by the executed transitions.

We first introduce transducers where the underlying automaton is deterministic. These transducers are also called se-
quential in the literature [16].

Definition. A deterministic transducer is a tuple T = 〈Q , A, B, δ, q0〉, where

• Q is a finite set of states,
• A and B are the input and output alphabets, respectively,
• δ : Q × A → B∗ × Q is the transition function
• q0 ∈ Q is the starting state.

The transducer T processes infinite words over A: if at state p symbol a is processed, T moves to state q and outputs a 
word v where 〈v, q〉 = δ(p, a). In this case, we write p a|v−−→ q. Notice that v can be empty.

A finite run of the transducer is a finite sequence of consecutive transitions

p0
a1|v1−−−→ p1

a2|v2−−−→ p2 · · · pn−1
an|vn−−−→ pn

and we write p0
u|v−−→ pn where u = a1a2 · · ·an and v = v1 v2 · · · vn .

An infinite run of the transducer is a sequence of consecutive transitions

p0
a1|v1−−−→ p1

a2|v2−−−→ p2
a3|v3−−−→ p3 · · ·

and we write p0
x|y−−→ ∞ where x = a1a2a3 · · · and y = v1 v2 v3 · · · . An infinite run is accepting if p0 = q0. This is the Büchi 

acceptance condition where all states are accepting. We write T (x) to refer to the word such that q0
x|T (x)−−−−→ ∞.
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Fig. 1. A transducer for the division by 3 in base 2.

Fig. 2. A lossless and a 2-to-one transducer.

When it is clear from context we may omit whether a run is finite or infinite. Notice that in this definition T (x) is not 
required to be an infinite word. However, in the next theorems we impose a condition on the transducers that ensures that 
the output is infinite. Hereafter a transducer is a deterministic transducer unless indicated otherwise.

The transducer pictured in Fig. 1 realizes the following function from binary words to binary words. If the input x is the 
binary expansion of some real number α in the unit interval, then the output is the binary expansion of α/3. This function 
is not one-to-one since dyadic numbers have two binary expansions. The two binary expansions 01111 · · · and 10000 · · · of 
1/2 are mapped to the unique binary expansion 0010101 · · · of 1/6.

We say that a state q is reachable if there is a finite run from the starting state to q.

Definition. Let T = 〈Q , A, B, δ, q0〉 be a transducer.

1. T is one-to-one if the function x ,→ T (x) is one-to-one.
2. T is lossless if for every pair of different words u1 and u2, it is not true that q0

u1|v−−−→ p and q0
u2|v−−−→ p for some word 

v and state p.
3. T is bounded-to-one if the function x ,→ T (x) is bounded-to-one.

Being lossless is a property defined on the structure of the transducer whereas being one-to-one or bounded-to-one is 
defined on the realized function. Observe that the same function can be realized by a lossless or a non-lossless transducer 
as shown by the following example.

Consider the two transducers pictured in Fig. 2. They both realize the shift function that maps each infinite word x =
a1a2a3 · · · to the infinite word y = a2a3a4 · · · obtained by removing its first symbol. The first one is lossless whereas the 
second one is not. However they are both 2-to-one, and of course, neither is one-to-one.

Proposition 2.1. Every one-to-one transducer is lossless. Every lossless transducer is bounded-to-one.

Proof. Let T = 〈Q , A, B, δ, q0〉 be a transducer. For the first implication, assume T is not lossless. Then there are different 
words u1 and u2, a word v and a state p such that q0

u1|v−−−→ p and q0
u2|v−−−→ p. Let x be a non-periodic infinite word, then 

it is clear that u1x -= u2x but q0
u1|v−−−→ p x|y−−→ ∞ and q0

u2|v−−−→ p x|y−−→ ∞ for some y, thus T (u1x) = T (u2x) = v y, so T is not 
one-to-one.

For the second implication, assume T is lossless, and thus, there is no cyclic run p u|λ−−→ p with u non-empty and p a 
reachable state. Therefore T (x) is infinite for all infinite words x. Let x1, . . . , xn be different infinite words that yield the 
same output y = T (xi) for i = 1, . . . , n. Let " be the minimum length such that the prefixes ui = xi ! " are mutually distinct. 
Let

k = max{|w| : ∃p ∈ Q ,∃i,1 ≤ i ≤ n,q0
ui |w−−→ p}.

Let vi be the shortest prefix of xi such that for some word wi with |wi | > k and state pi , q0
vi |wi−−−−→ pi . Let

m = max{|w| : ∃a ∈ A,∃p,q ∈ Q , p
a|w−−→ q}

be the length of the longest output of a transition of T . Since each transition only adds at most m symbols to the output, 
|wi | > k + m would imply vi is not shortest. Therefore, k + 1 ≤ |wi | ≤ k + m. By definition, for each i, |vi | > ", hence the 
vi are pairwise different. Since T is lossless, the tuples δ(q0, vi) are pairwise different and they are included in the set 
Q × {y ! j : k + 1 ≤ j ≤ k + m}. Therefore, there are at most |Q |m such tuples, so n ≤ |Q |m and T is (|Q |m)-to-one. !

Definition. An infinite word x = a1a2a3 · · · is compressible by a transducer if its accepting run q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→

q3 · · · satisfies

lim inf
n→∞

|v1v2 · · · vn| log |B|
n log |A| < 1.
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Notice that the factor log |B|/ log |A| in the definition above just accounts for the necessary recoding from one alphabet 
to another one. Hereafter, to ease the presentation of the proofs we assume that |A| = |B|. The generalization is straightfor-
ward: if the lengths of words over B are multiplied by the factor log |B|/ log |A| whenever they are compared to lengths of 
words over A, all the proofs hold for the general case.

Lemma 2.2. Let " be a positive integer, and let u1, u2, u3, . . . be words of length " over the alphabet A such that u1u2u3 · · · is simply 
normal to word length ". Let

C0
u1|v1−−−→ C1

u2|v2−−−→ C2
u3|v3−−−→ C3 · · ·

be a run where each Ci is a configuration of some kind of transducer. Assume there is a real ε > 0 and a set U ⊆ A" of at least 
(1 − ε)|A|" words such that ui ∈ U implies |vi| ≥ "(1 − ε). Then,

lim inf
n→∞

|v1v2 · · · vn|
n"

≥ (1 − ε)3.

Proof. Assume words ui as in the hypothesis. By definition of normality to word length ", let n0 be such that for every 
u ∈ A" and for every n ≥ n0,

|{i : 1 ≤ i ≤ n, ui = u}| ≥ n|A|−"(1 − ε).

Then, for every n ≥ n0,

|v1v2 · · · vn| =
n∑

i=1

|vi|

≥
∑

1≤i≤n,ui∈U

|vi|

≥
∑

1≤i≤n,ui∈U

"(1 − ε)

≥ n|A|−"(1 − ε)
∑

u∈U

"(1 − ε)

≥ n|A|−"(1 − ε)(1 − ε)|A|""(1 − ε)

≥ (1 − ε)3n". !

The next theorem extends the known characterization of normality as incompressibility by lossless finite transducers to 
bounded-to-one. This proof is a slight generalization of the one given by Becher and Heiber [3].

Theorem 2.3. No normal infinite word is compressible by a bounded-to-one transducer.

Proof. Fix a normal infinite word x = a1a2a3 · · · , a bounded-to-one transducer T = 〈Q , A, B, δ, q0〉 with only reachable 
states, a real ε > 0 and the accepting run q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · . It suffices to show that there is " and U such 
that Lemma 2.2 applies to this arbitrary choice of T and ε. For each word u ∈ A∗ let

hu = min{|v| : ∃p,q ∈ Q , p
u|v−−→ q}

be the minimum number of symbols that the processing of u can contribute to the output. Let

U" = {u ∈ A" : hu ≥ (1 − ε)"}
be the set of words of length " with relatively large contribution to the output. Let t be such that T is t-to-one. For each 
length ", pair of states p, q ∈ Q and word v , consider the set

U ′ = {u ∈ A" : p
u|v−−→ q}.

Since p is reachable, let u0, v0 be such that q0
u0|v0−−−−→ p. Thus, for different u1, u2 ∈ U ′ , q0

u0u1|v0 v−−−−−−→ q and q0
u0u2|v0 v−−−−−−→ q, 

therefore T (u0u1x) = T (u0u2x) for any x, and by the definition of t , |U ′| ≤ t . By bounding the cardinality of the sets U ′ , we 
can bound the complement of U" for each ".
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∀p,q ∈ Q ,∀v ∈ B∗, |{u ∈ A" : p
u|v−−→ q}| ≤ t

∀v ∈ B∗, |{u : ∃p,q ∈ Q , p
u|v−−→ q}| ≤ |Q |2t

|{u : hu < (1 − ε)"}| ≤ |Q |2t|B|(1−ε)"+1.

Thus, |U"| ≥ |A|" − |Q |2t|B|(1−ε)"+1. Fix " such that |U"| > |A|"(1 − ε), which is possible because the subtracted term in the 
lower bound of the last inequality is o(|A|") (recall |A| = |B|), and take U = U" . By construction, the only run of T over x
fulfills the hypothesis of Lemma 2.2 using states as configurations. The application of the lemma finishes the proof. !

3. Counter transducers

We consider deterministic transducers augmented with a fixed number of counters. Each counter contains an integer 
value. The execution of each transition reads exactly one input symbol, checks each counter for being zero or non-zero, 
and increments or decrements each counter by some amount. Thus, a counter can only increase or decrease by a bounded 
amount when processing a symbol of the input. Notice we are assuming, by default, that the transducers process in real-
time, which means that each transition necessarily consumes a symbol of the input. We will consider transducers that are 
not real-time in Section 4.2.

We introduce some notation for tuples, to be used in the rest of the document. When the range 1 to k is clear from the 
context, we write m for the k-tuple 〈m1, . . . , mk〉 and 0 for the k-tuple 〈0, . . . , 0〉.

Definition. A (deterministic) k-counter transducer is a tuple T = 〈Q , A, B, δ, q0〉, where

• Q is a finite set of states,
• A and B are the input and output alphabets, respectively,
• δ : Q × {true, false}k × A → B∗ × Q × Zk is the transition function,
• q0 ∈ Q is the starting state.

The transducer T processes infinite words over A: if at state p with values m in the counters, symbol a is processed, 
T moves to state q, stores value n = m+d in the counters (namely, mi = ni +di in counter i) and outputs v where 〈v, q,d〉 =
δ(p, c, a) and each ci indicates whether mi = 0 or not. Such a transition of the transducer is denoted by 〈p,m〉 a|v−−→ 〈q,n〉.

A finite run of the transducer is a finite sequence of consecutive transitions

〈p0,m0〉 a1|v1−−−→ 〈p1,m1〉 a2|v2−−−→ 〈p2,m2〉 · · · 〈pn−1,mn−1〉 an|vn−−−→ 〈pn,mn〉
and we write 〈p0,m0〉 u|v−−→ 〈pn,mn〉 where u = a1a2 · · ·an and v = v1 v2 · · · vn .

An infinite run of the transducer is a sequence of consecutive transitions

〈p0,m0〉 a1|v1−−−→ 〈p1,m1〉 a2|v2−−−→ 〈p2,m2〉 a3|v3−−−→ 〈p3,m3〉 · · ·
and we write 〈p0,m0〉 x|y−−→ ∞ where x = a1a2a3 · · · and y = v1 v2 v3 · · · . An infinite run is accepting if p0 = q0 and all initial 
values of the counters are 0, namely, m0 = 0. This is the Büchi acceptance condition where all states are accepting. We write 
T (x) to refer to the word such that 〈q0, 0〉 x|T (x)−−−−→ ∞.

Notice that for given p, m and u there is a unique choice of v , q and n such that 〈p,m〉 u|v−−→ 〈q,n〉. A configuration 
〈q,m〉 is reachable if there is a finite run from the starting configuration 〈q0,0〉 to 〈q,m〉. Extending the definition of 
bounded-to-one and compressibility to counter transducers is straightforward.

Definition. A counter transducer T is bounded-to-one if the function x ,→ T (x) is bounded-to-one.

Definition. An infinite word x = a1a2a3 · · · is compressible by a counter transducer if its accepting run 〈q0,0〉 a1|v1−−−→
〈q1,m1〉 a2|v2−−−→ 〈q2,m2〉 a3|v3−−−→ 〈q3,m3〉 · · · satisfies

lim inf
n→∞

|v1v2 · · · vn| log |B|
n log |A| < 1.

Theorem 3.1. No normal infinite word is compressible by a bounded-to-one counter transducer.

Before proving Theorem 3.1 we need to introduce some technical tools.

Definition. Let T = 〈Q , A, B, δ, q0〉 be a counter transducer. We define DT as the maximum absolute value of a counter 
increment or decrement in a transition in δ,

DT = max{|di| : 1 ≤ i ≤ k,∃p,q ∈ Q ∃a ∈ A ∃v ∈ B∗ ∃c ∈ {true, false}k 〈v,q,d〉 = δ(p, c,a)}.
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All runs with values of the counters far from 0 have a similar behavior, because if a counter does not become zero during 
the run, then its value has no impact. We formalize this with the concept of template.

Definition. For each positive integer L let πL : Z → [−L, L] ∪ {−∞, +∞} be the function that identifies each integer in 
(−∞, −L) with −∞ and each integer in (L, +∞) with +∞,

πL(n) =
{−∞ if n < −L

n if − L ≤ n ≤ L
+∞ if n > −L

The function πL can be extended component-wise to tuples of integers by setting πL(m) = n where ni = πL(mi).
For a positive integer L, an L-template for a k-counter transducer is a triple 〈M, N, O 〉 where each M, N, O is a k-tuple 

in ([−L, L] ∪ {−∞, +∞})k . We say that a run 〈p,m〉 u|v−−→ 〈q,n〉 of the transducer complies only to one L-template; namely, 
〈πL(m), πL(n), πL(m − n)〉.

Observe that there are exactly (2L + 3)3k L-templates of a k-counter transducer.

Lemma 3.2. Let u and u′ be two words of length ". Let 〈p,m〉 u|v−−→ 〈q,n〉 and 〈p,m′〉 u′|v−−→ 〈q,n′〉 be two runs of the same k-counter 
transducer T that comply to the same ("DT )-template 〈M, N, O 〉. Then, there exists a run 〈p,m′〉 u|v−−→ 〈q,n′〉 of the same transducer.

Proof. First notice that for each counter i, mi − ni is bounded by "DT because u has length " and at each step of the run a 
counter cannot increase or decrease more than DT . Since both runs comply to the same ("DT )-template and the difference 
in counters is within the interval [−"DT , "DT ], the difference in counters on both runs must coincide. This is true for each 
counter, so m − n = m′ − n′ , which implies m − m′ = n − n′ . Let us write the run over u = a1a2 · · ·a" explicitly:

〈p,m〉 = 〈p0,m0〉 a1|v1−−−→ 〈p1,m1〉 a2|v2−−−→ · · · a"|v"−−−→ 〈p",m"〉 = 〈q,n〉
where v = v1 v2 · · · v" . Consider the tuple d = m − m′ = n − n′ . We need only to prove that the following run over u,

〈p,m′〉 = 〈p0,m0 − d〉 a1|v1−−−→ 〈p1,m1 − d〉 a2|v2−−−→ · · · a"|v"−−−→ 〈p",m" − d〉 = 〈q,n′〉,
is a valid run. Let us show that in configuration 〈p j,m j〉 counter i is zero if and only if it is zero in configuration 〈p j,m j −d〉. 
That is, m j,i is zero if and only if m j,i − di is zero. Then, validity of each step follows from validity of the corresponding 
step in the original run. If di is zero, the requirement follows immediately. If di is non-zero, then mi -= m′

i , and therefore mi
and m′

i are both greater than "DT or both smaller than "DT . Assume mi, m′
i > "DT . Since m j,i ≥ m0,i − DT j = mi − DT j and 

j ≤ ", m j,i is positive. And m j,i − di = m j,i − mi + m′
i = m′

i − (mi − m j,i) ≥ m′
i − DT j is also positive. If, on the other hand, 

mi, m′
i < "DT , it follows by symmetry that both m j,i and m j,i − di are negative. !

Proof of Theorem 3.1. Fix a normal infinite word x, a bounded-to-one k-counter transducer T = 〈Q , A, B, δ, q0〉, a real ε > 0
and the accepting run

〈q0,0〉 a1|v1−−−→ 〈q1,m1〉 a2|v2−−−→ 〈q2,m2〉 a3|v3−−−→ · · · .
It suffices to show that there is " and U such that Lemma 2.2 applies to this arbitrary choice of T and ε. For each word 
u ∈ A∗ let

hu = min{|v| : ∃p,q ∈ Q ∃m,n ∈ Zk, 〈p,m〉 u|v−−→ 〈q,n〉}
be the minimum number of symbols that the processing of u can contribute to the output. Let

U" = {u ∈ A" : hu ≥ (1 − ε)"}
be the set of words of length " with relatively large contribution to the output. Let t be such that T is t-to-one. For each 
pair of states p, q ∈ Q , length ", word v and ("DT )-template τ , consider the following set

U ′ = {u ∈ A" : ∃m,n ∈ Zk, 〈p,m〉 u|v−−→ 〈q,n〉 complies to τ , 〈p,m〉 is reachable}.
Let u1, u2, . . . , un be the n different words in U ′ . Since each ui is in U ′ , let m1 and n1 be such that 〈p,m1〉 u1|v−−−→ 〈q,n1〉 com-
plies to τ and 〈p,m1〉 is reachable. By Lemma 3.2 with u = ui and u′ = u1, for each i there exist runs 〈p,m1〉 ui |v−−−→ 〈q,n1〉. 
Since 〈p,m1〉 is reachable, let u0, v0 be such that 〈q0,0〉 u0|v0−−−−→ 〈p,m1〉. Therefore, there is an accepting run 〈q0,0〉 u0|v0−−−−→
〈p,m1〉 ui |v−−−→ 〈q,n1〉 x|y−−→ ∞ which shows T (u0ui x) = v0 v y for each i. Therefore, by definition of t , n ≤ t and |U ′| ≤ t . Now 
we can continue the proof as in the case with no counters, given in Theorem 2.3.

|{u ∈ A" : ∃m,n ∈ Zk, 〈p,m〉 u|v−−→ 〈q,n〉 complies to τ , 〈p,m〉 is reachable}| ≤ t
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Fig. 3. A transducer for the multiplication by 3 in base 2.

So,

|{u ∈ A" : ∃p,q ∈ Q ∃τ ∃m,n ∈ Zk〈p,m〉 u|v−−→ 〈q,n〉 complies to τ , 〈p,m〉 is reachable}|
is at most |Q |2(2"DT + 3)3kt . Then,

|{u : |u| = ",hu < (1 − ε)"}| ≤ |Q |2(2"DT + 3)3kt|B|(1−ε)"+1

and

|U"| ≥ |A|" − |Q |2(2"DT + 3)3kt|B|(1−ε)"+1.

Fix " such that |U"| > |A|"(1 − ε) and apply Lemma 2.2 with U = U" to the considered run. This completes the proof. !

4. Non-deterministic transducers

4.1. Non-deterministic real-time transducers

We consider non-deterministic transducers. We focus first on transducers that operate in real-time, that is, they process 
exactly one input alphabet symbol per transition.

Definition. A non-deterministic transducer is a tuple T = 〈Q , A, B, δ, q0, F 〉, where

• Q is a finite set of states,
• A and B are the input and output alphabets, respectively,
• δ ⊂ Q × A × B∗ × Q is a finite transition relation,
• q0 ∈ Q is the starting state.
• F ⊆ Q is the set of accepting states,

T processes infinite words over A: if at state p symbol a is processed, T may move to a state q and output v whenever 
δ(p, a, v, q). In this case, we write p a|v−−→ q. Finite and infinite runs are defined as in the case of deterministic transducers, 
and an infinite run is accepting if it starts at q0 and visits infinitely often accepting states. This is the classical Büchi 
acceptance condition. We write T (x, y) whenever there is an accepting run q0

x|y−−→ ∞.

Note that we only consider transducers with a Büchi acceptance condition since any transducer with a stronger accep-
tance condition like the Muller one is equivalent to a non-deterministic transducer with a Büchi acceptance condition.

Definition. A non-deterministic transducer T is bounded-to-one if the function y ,→ |{x : T (x, y)}| is bounded.

Exchanging the input and the output of each transition of the transducer of Fig. 1 yields the transducer of Fig. 3. This 
transducer is non-deterministic. If the input x is the infinite binary expansion in base 2 of some real number α < 1/3, then 
the output is the binary expansion of 3α.

Definition. An infinite word x = a1a2a3 · · · is compressible by a non-deterministic transducer if it has an accepting run 
q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · satisfying

lim inf
n→∞

|v1v2 · · · vn| log |B|
n log |A| < 1.

Theorem 4.1. No normal infinite word is compressible by a bounded-to-one non-deterministic transducer.

Proof. Fix a normal infinite word x = a1a2a3 · · · , a real ε > 0, a bounded-to-one non-deterministic transducer T =
〈Q , A, B, δ, q0, F 〉, and an accepting run q0

a1|v1−−−→ q1
a2|v2−−−→ q2

a3|v3−−−→ q3 · · · . It suffices to show that there is " and U such 
that Lemma 2.2 applies to this arbitrary choice of ε, T and accepting run. For each word u ∈ A∗ let

hu = min{|v| : ∃i, j,0 ≤ i ≤ j,qi
u|v−−→ q j}
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Fig. 4. A non-real-time transducer that inserts dummy symbols #.

be the minimum number of symbols that the processing of u can contribute to the output in the run we fixed. Let

U" = {u ∈ A" : hu ≥ (1 − ε)"}
be the set of words of length " with relatively large contribution to the output. Let t be such that T is t-to-one. For each 
length ", pair of states p, q that appear in the run, and for each word v , consider the set

U ′ = {u ∈ A" : p
u|v−−→ q}.

Since p and q appear in the run, let q0
u0|v0−−−−→ p be a prefix of the run and q x0|y0−−−→ ∞ be a suffix of the run. This 

implies q x0|y0−−−→ ∞ goes infinitely often through an accepting state. Thus, for different u1, u2 ∈ U ′ , there are accepting runs 
q0

u0u1x0|v0 v y0−−−−−−−−−→ ∞ and q0
u0u2x0|v0 v y0−−−−−−−−−→ ∞, from which it follows that T (u0u1x0, v0 v y0) and T (u0u2x0, v0 v y0). Therefore, 

by definition of t , |U ′| ≤ t . Now we can continue the proof as in the deterministic case, given in Theorem 2.3,

|{u ∈ A" : p
u|v−−→ q}| ≤ t.

Thus,

|U"| ≥ |A|" − |Q |2t|B|(1−ε)"+1.

Fix " such that |U"| > |A|"(1 − ε) and apply Lemma 2.2 with U = U" to the considered run. This completes the proof. !

4.2. Non-deterministic non-real-time transducers

A non-real-time (necessarily non-deterministic) transducer T = 〈Q , A, B, δ, q0, F 〉 is identical to a non-deterministic trans-
ducer, with the exception that the transition relation δ is a finite subset of Q ×(A ∪{λ}) × B∗ × Q instead of Q × A × B∗ × Q . 
This allows the transducer to execute without processing a symbol of the input word. If the machine is at state p and 
δ(p, λ, v, q) holds, the machine can move to state q and output v without processing the next input symbol. We extend 
the definition and notation of runs and accepting runs to this case, and write the relation T in the same way as for non-
deterministic transducers.

We give here an example of a relation T that can be realized by a non-real-time transducer but that cannot be realized 
by a real-time one. Let A be any alphabet and let B be the alphabet A ∪ {#} obtained by adding to A a new dummy symbol 
# /∈ A. In this machine, T (x, y) if and only if y is obtained by inserting dummy symbols in x. This relation T is clearly 
one-to-one since x is recovered from y by removing all the symbols #. It is easy to see that this relation cannot be realized 
by a non-deterministic real-time transducer. On the other hand, Fig. 4 shows a non-real-time transducer that realizes it. 
Note that state q0 is accepting. This forces the transducer to copy x entirely. Otherwise, the word y could end with a tail 
#ω and the transducer would not be bounded-to-one.

Definition. An infinite word x over A is compressible by a non-real-time transducer if it has an accepting run q0
b1|v1−−−−→

q1
b2|v2−−−−→ q2

b3|v3−−−−→ q3 · · · , where each bi ∈ A ∪ {λ} and x = b1b2b3 · · · satisfying

lim inf
n→∞

|v1v2 · · · vn| log |B|
|b1b2 · · ·bn| log |A| < 1.

In this definition, if each bi were different from λ then |b1b2 · · ·bn| = n and the definition would coincide with com-
pressibility for real-time transducers.

Real-time transducers always read the entire input. However, non-real-time transducers may loop forever using transi-
tions without input. The next lemma shows that this cannot happen for accepting runs of bounded-to-one non-real-time 
transducers.

Lemma 4.2. Every accepting run of a bounded-to-one non-real-time transducer reads the entire input.

Proof. Fix the transducer T . If an accepting run over input wx with output y reads only w , then the same run is an 
accepting run of any input wx′ , thus, making T (wx′, y) true for any x′ , which contradicts the bounded-to-one condition. !

Theorem 4.3. For every bounded-to-one non-real-time transducer there exists a non-deterministic (real-time) transducer that com-
presses exactly the same infinite words.
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Proof. Let T = 〈Q , A, B, δ, q0, F 〉 be a non-real-time transducer. Let us show that for any run of T consisting of n transitions 
p0

λ|v1−−−→ p1
λ|v2−−−→ p2 · · · pn−1

λ|vn−−−→ pn there exists a run p0
λ|v−−→ pn consisting of at most 2|Q | transitions, such that |v| ≤

|v1 v2 · · · vn| and it visits an accepting state if and only if the original one does. If n > 2|Q |, there is a state q visited three 
times in the run, so we can write the run as p0

λ|w1−−−→ q λ|w2−−−→ q λ|w3−−−→ q λ|w4−−−→ pn where v1 v2 · · · vn = w1 w2 w3 w4. Notice 
that if q = p0 and/or q = pn the first and/or last subruns may be empty. If the subrun q λ|w2−−−→ q visits an accepting state, 
then we take the run p0

λ|w1−−−→ q λ|w2−−−→ q λ|w4−−−→ pn that is shorter and outputs no more than the original while still visiting 
an accepting state. If the subrun does not visit an accepting state, then we take the run p0

λ|w1−−−→ q λ|w3−−−→ q λ|w4−−−→ pn , which 
is also shorter and produces no more output. Also, since we removed a subrun that does not visit an accepting state, the 
new run has the required property. By induction, this proves the claim.

Consider the non-deterministic real-time transducer T ′ = 〈Q , A, B, δ′, q0, F 〉 where δ′(p, a, v w, q) if and only if there is 
a state r such that p λ|v−−→ r with at most 2|Q | transitions and r a|w−−−→ q. From the initial claim and Lemma 4.2, it is easy to 
see that an infinite word x is compressed by T if and only if it is compressed by a run of T that does not use more than 
2|Q | consecutive transitions of the form p λ|v ′−−−→ q. It is also easy to check that any such run induces a run in T ′ which also 
compresses x. !

Corollary 4.4. No normal infinite word is compressible by a bounded-to-one non-real-time transducer.

Proof. Immediate combining Theorem 4.1 and Theorem 4.3. !

5. Non-deterministic counter transducers

In this section we consider non-deterministic transducers with counters. For the sake of clarity the assumption of real-
time or non-real-time case is explicit.

5.1. Non-deterministic real-time counter transducers

It is straightforward to combine the proofs of incompressibility for non-deterministic real-time transducers and counter 
transducers, respectively Theorems 4.1 and 3.1, to obtain the following corollary.

Corollary 5.1. No normal infinite word is compressible by a bounded-to-one non-deterministic real-time counter transducer.

Proof. Combine the proofs of Theorem 3.1 and Theorem 4.1. The only non-trivial point to notice is that, when defining U ′

as in the proof of Theorem 4.1, in addition to requiring that 〈p,m〉 be reachable, we need that there exists an infinite run 
starting from 〈q,n〉 that goes infinitely often through accepting states. It is easy to check that these requirements are met 
and they do not invalidate any step of the proof. !

5.2. Non-deterministic non-real-time counter transducers

As it stands, our proof for real-time counter transducers cannot be extended to non-real-time because in the non-real-
time case the processing of a fixed word may increase or decrease the counter an unbounded amount. This voids the 
argument we used to give an upper bound of the set U ′ . On the other hand, a non-real-time transducer with two or more 
counters is Turing-complete [13], so it can compress computable normal infinite words. This raises the question of whether 
non-real-time transducers augmented with just a single counter can compress normal infinite words. We answer it in the 
following theorem.

A non-real-time 1-counter transducer is a tuple T = 〈Q , A, B, δ, q0, F 〉, identical to a non-real-time transducer, but the 
transition δ is a subset of Q × {true, false} × (A ∪ {λ}) × B∗ × Q × Z. This means that the transducer can check the zero or 
non-zero status of the counter and modify it in each transition. The definition of compressible words is the natural one in 
this setting.

Theorem 5.2. No normal infinite word is compressible by a bounded-to-one non-real-time 1-counter transducer.

In the proof of Theorem 3.1 we used Lemma 3.2 to deal with counters. We bounded their increase or decrease by the 
length of the input word. For non-real-time transducers this argument fails. Lemma 5.7 gives an alternative argument, using 
Lemmas 5.3 to 5.6.

For a non-real-time 1-counter transducer T , we define DT as for deterministic real-time counter transducers: let DT be 
the maximum absolute value of a counter increment or decrement in a transition of T .

Lemma 5.3. For every non-real-time 1-counter transducer T there exists another non-real-time 1-counter transducer T ′ that realizes 
the same relation, compresses exactly the same infinite words and has DT ′ ≤ 1.
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Proof. We can simply emulate increasing (or decreasing) by k with k steps that do no input or output, and increase (or de-
crease) by 1. Since the maximum possible k is bounded by DT , we can do it with finitely many states and transitions. 
Formally, if T = 〈Q , A, B, δ, q0, F 〉 we let T ′ = 〈Q × [−DT , DT ], A, B, δ′, 〈q0, 0〉, F × {0}〉 where

δ′ = {〈〈q,k + 1〉, c,λ,λ,+1, 〈q,k〉〉 : 0 ≤ k < DT , c ∈ {true, false}} ∪
{〈〈q,k − 1〉, c,λ,λ,−1, 〈q,k〉〉 : DT < k ≤ 0, c ∈ {true, false}} ∪
{〈〈p,0〉, c,a, v,0, 〈q,k〉〉 : δ(p, c,a, v,k,q)}.

It is immediate to check that any step 〈p, n〉 a|v−−→ 〈q, m〉 of T induces a run 〈〈p, 0〉, n〉 a|v−−→ 〈〈q, 0〉, m〉 of at most DT + 1
steps of T ′ and vice versa. This implies that T and T ′ realize the same relation and compress the same infinite words. By 
inspection of δ′ it is clear that DT ′ ≤ 1. !

Lemma 5.4. Let 〈q0, 0〉 a1|v1−−−→ 〈q1, m1〉 a2|v2−−−→ 〈q2, m2〉 a3|v3−−−→ 〈q3, m3〉 · · · be an accepting run of a bounded-to-one non-real-time 
1-counter transducer. If there is a prefix 〈q0, 0〉 a1a2···an |v1 v2···vn−−−−−−−−−−−→ 〈qn, mn〉 of the run such that each accepting run that starts with it 
does not contain more configurations with a counter value 0, then each such accepting run does not compress a1a2a3 · · · .

Proof. Let T = 〈Q , A, B, δ, q0, F 〉 be the transducer. We claim that we can emulate T on input a1a2a3 · · · using a trans-
ducer without a counter. Let n be as in the hypothesis and let T ′ = 〈Q ∪ {r0, r1, . . . , rn}, A, B, δ′, r0, F 〉 be a non-real-time 
transducer, where

δ′ = {p
a|v−−→ q : ∃d ∈ Z, δ(p,a, false, v,q,d)} ∪ {ri

ai+1|vi+1−−−−−→ ri+1 : 0 ≤ i < n} ∪ {rn
an+1|vn+1−−−−−−→ qn+1}

and p a|v−−→ q stands for the tuple 〈p, a, v, q〉. Clearly, for each accepting run of T ′ ,

r0
a1|v1−−−→ r1

a2|v2−−−→ · · · an|vn−−−→ rn
bn+1|wn+1−−−−−−→ pn+1

bn+2|wn+2−−−−−−→ · · ·
there is an accepting run of T ,

〈q0,0〉 a1|v1−−−→ 〈q1,m1〉 a2|v2−−−→ · · · an|vn−−−→ 〈qn,mn〉 bn+1|wn+1−−−−−−→ 〈pn+1,m′
n+1〉

bn+2|wn+2−−−−−−→ · · ·
because by hypothesis the accepting run of T does not visit a configuration with a counter value 0 after step n, and then 
every transition is valid. Therefore, since T is bounded-to-one, T ′ is bounded-to-one. Also, consider the run of T in the 
hypothesis

〈q0,0〉 a1a2···an|v1 v2···vn−−−−−−−−−−−→ 〈qn,mn〉 an+1|vn+1−−−−−−→ 〈qn+1,mn+1〉 an+2|vn+2−−−−−−→ 〈qn+2,mn+2〉 · · ·
Since mn+1, mn+2, mn+3, . . . are all non-zero, the following run is an accepting run of T ′ that compresses the same input 
word.

r0
a1a2···an|v1 v2···vn−−−−−−−−−−−→ rn

an+1|vn+1−−−−−−→ qn+1
an+2|vn+2−−−−−−→ qn+2 · · ·

By Corollary 4.4, T ′ does not compress a1a2a3 · · · , so the given run of T does not compress it either. !

Lemma 5.5. Let T be a non-real-time 1-counter transducer with DT ≤ 1 and let k be a positive integer. Every finite run of T 〈p, m〉 u|v−−→
〈q, n〉 such that |m − n| ≥ (k + 1)(|u| + |v| + 1) contains a run 〈p′, m′〉 λ|λ−−→ 〈q′, n′〉 with |m′ − n′| ≥ k and (m − n)(m′ − n′) > 0.

Proof. From the given run 〈p, m〉 u|v−−→ 〈q, n〉, we extract a subrun with no input and no output. Assume m −n ≥ (k +1)(|u| +
|v| +1). The case m −n ≤ −(k +1)(|u| +|v| +1) follows by symmetry. The counter decreases by at least (k +1)(|u| +|v| +1)
during the run. At most |u| +|v| of that decrease happens in transitions reading some input symbol, or writing some output 
symbol or both. Then, the counter decreases by at least k(|u| + |v| + 1) in transitions with no input nor output. Those are 
divided into at most |u| + |v| + 1 consecutive groups by the |u| + |v| transitions that do input or output or both. By the 
pigeonhole principle, at least one of those groups decreases the counter by at least k, yielding the desired run. !

Lemma 5.6. Let T = 〈Q , A, B, δ, q0, F 〉 be a non-real-time 1-counter transducer with DT ≤ 1. Let 〈p, m〉 u1|v1−−−→ 〈q1, n1〉 u2|v2−−−→
〈q2, n2〉 u3|v3−−−→ 〈r, m〉 be a finite run of T such that all the values of the counter are greater than |Q |2 and min(n1, n2) − m ≥ |Q |2 . 
Then, there is another run of T , 〈p, m〉 u′

1|v ′
1−−−→ 〈q1, n′

1〉 u2|v2−−−→ 〈q2, n′
2〉 

u′
3|v ′

3−−−→ 〈r, m〉, such that 0 < n1 − n′
1 = n2 − n′

2 ≤ |Q |2 , |u′
1| ≤

|u1|, |v ′
1| ≤ |v1|, |u′

3| ≤ |u3| and |v ′
3| ≤ |v3|.

Proof. From the run 〈p, m〉 u1|v1−−−−→ 〈q1, n1〉 u2|v2−−−−→ 〈q2, n2〉 u3|v3−−−−→ 〈r, m〉, we construct, as follows, a new run by removing 
two subruns, each of them having the same starting and ending state. This process may remove some part of the input 
and/or some part of the output. Let n = min(n1, n2). Consider the two subruns
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ρ = 〈p,m〉 u1|v1−−−→ 〈q1,n1〉 and σ = 〈q2,n2〉 u3|v3−−−→ 〈r,m〉.
Since DT ≤ 1, the value of the counter is set in every integer in the range [m, n] in at least one configuration of ρ in 
increasing order. Similarly, the value of the counter is set in every integer of the range [m, n] in at least one configuration 
of σ in decreasing order.

Let 〈p0, m〉, 〈p1, m + 1〉, . . . , 〈pn−m, n〉 be configurations that occur in ρ in that order and let 〈rn−m, n〉, 〈rn−m−1, n −
1〉, . . . , 〈r1, m + 1〉, 〈r0, m〉 be configurations that occur in σ in that order. Consider the pairs (pi, ri). There are n − m + 1
such pairs and by hypothesis, n − m + 1 ≥ |Q |2 + 1. Consider only the first |Q |2 + 1 ones. By the pigeonhole principle, there 
are indices i, j with 1 ≤ j − i ≤ |Q |2 such that pi = p j and ri = r j . Factorize the run in the hypothesis as:

〈p,m〉 u1,1|v1,1−−−−−→ 〈pi,m + i〉 u1,2|v1,2−−−−−→ 〈p j,m + j〉 u1,3|v1,3−−−−−→ 〈q1,n1〉
u2|v2−−−→

〈q2,n2〉
u3,1|v3,1−−−−−→ 〈r j,m + j〉 u3,2|v3,2−−−−−→ 〈ri,m + i〉 u3,3|v3,3−−−−−→ 〈r,m〉.

Now we construct a run as required in the statement of the lemma starting from the run in the hypothesis as follows:

• subtract j − i from the value of the counter to all configurations between 〈p j, m + j〉 and 〈r j, m + j〉 inclusive, in the 
original run;

• identify 〈pi, m + i〉 with 〈p j, m + j − ( j − i)〉, and 〈r j, m + j − ( j − i)〉 with 〈ri, m + i〉; and
• remove 〈pi, m + i〉 u1,2|v1,2−−−−−→ 〈p j, m + j − ( j − i)〉 and 〈r j, m + j − ( j − i)〉 u3,2|v3,2−−−−−→ 〈ri, m + i〉.

These modifications do not invalidate the run because j − i ≤ |Q |2, so, the values of the counter everywhere in the run are 
positive, as in the original. This yields a run that can be written using the above factorization as follows:

〈p,m〉 u1,1|v1,1−−−−−→ 〈pi,m + i〉 u1,3|v1,3−−−−−→ 〈q1,n1 − j + i〉
u2|v2−−−→

〈q2,n2 − j + i〉 u3,1|v3,1−−−−−→ 〈ri,m + i〉 u3,3|v3,3−−−−−→ 〈r,m〉.
Let n′

1 = n1 − j + i, n′
2 = n2 − j + i, u′

1 = u1,1u1,3, v ′
1 = v1,1 v1,3, u′

3 = u3,1u3,3 and v ′
3 = v3,1 v3,3. This definition ensures that 

all the needed requirements are met. !

The following lemma has the role that Lemma 3.2 had for real-time transducers, and it is the key piece in the proof of 
Theorem 5.2.

Lemma 5.7. Let T = 〈Q , A, B, δ, q0, F 〉 be a non-real-time 1-counter transducer with DT ≤ 1. Let 〈q0, 0〉 u1|v1−−−→ 〈q1, n1〉 u2|v2−−−→
〈q2, n2〉 u3|v3−−−→ 〈q3, 0〉 be a prefix of an accepting run of T having infinitely many configurations with a counter value 0. Then, there 
is a finite run of the form 〈q1, n′

1〉 u2|v2−−−→ 〈q2, n′
2〉, with |n′

1|, |n′
2| ≤ 2(|Q |2 + 1)(|u2| + |v2| + 2), contained in an accepting run of T

having infinitely many configurations with a counter value 0.

Proof. Let m = (|Q |2 + 1)(|u2| + |v2| + 2). Let us prove the following weaker claim: for a run

ρ = 〈q0,0〉 u1|v1−−−→ 〈q1,n1〉 u2|v2−−−→ 〈q2,n2〉 u3|v3−−−→ 〈q3,0〉
with the requirements of the hypothesis, if |n1| > 2m or |n2| > 2m, there is another run

ρ ′ = 〈q0,0〉 u′
1|v ′

1−−−→ 〈q1,n′
1〉

u2|v2−−−→ 〈q2,n′
2〉

u′
3|v ′

3−−−→ 〈q3,0〉
where the same requirements hold and |n′

1| + |n′
2| < |n1| + |n2|. Then, by iterating this until |n1| and |n2| are not greater 

than 2m, we obtain a run whose middle part is the run required in the statement of the lemma. We consider first n1 > 2m, 
distinguishing two cases.

Case 1. Within 〈q1, n1〉 u2|v2−−−−→ 〈q2, n2〉 the counter takes a value not greater than m (possibly n2 = m). Since DT ≤ 1, every 
value in the counter in the range [m, n1] occurs at least once within 〈q1, n1〉 u2|v2−−−−→ 〈q2, n2〉. Therefore, we can find the 
leftmost occurrence of the value m. Since n1 > 2m, we can also find the rightmost occurrence of the value 2m to the left of 
the occurrence of the value m in the previous sentence. This yields the following factorization of 〈q1, n1〉 u2|v2−−−−→ 〈q2, n2〉:

〈q1,n1〉
u2,1|v2,1−−−−−→ 〈r0,2m〉 u2,2|v2,2−−−−−→ 〈r3,m〉 u2,3|v2,3−−−−−→ 〈q2,n2〉

where 〈r0, 2m〉 u2,2|v2,2−−−−−→ 〈r3, m〉 contains only configurations with values of the counter strictly between m and 2m, with 
the exception of the first and last one. Apply Lemma 5.5 to the subrun 〈r0, 2m〉 u2,2|v2,2−−−−−→ 〈r3, m〉 to further factorize 
〈q1, n1〉 u2|v2−−−−→ 〈q2, n2〉 as

〈q1,n1〉
u2,1|v2,1−−−−−→ 〈r0,2m〉 u2,2,1|v2,2,1−−−−−−−→ 〈r1,k1〉 λ|λ−−→ 〈r2,k2〉

u2,2,2|v2,2,2−−−−−−−→ 〈r3,m〉 u2,3|v2,3−−−−−→ 〈q2,n2〉
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with k1 − k2 ≥ |Q |2 + 1. Using DT ≤ 1 again, we can find the rightmost configuration of the form 〈p, k2〉 for some state p
in the run 〈q0, 0〉 u1|v1−−−−→ 〈q1, n1〉. This shows that ρ contains a subrun

ρ1 = 〈p,k2〉
u1,2,v1,2−−−−−→ 〈q1,n1〉

u2,1|v2,1−−−−−→ 〈r0,2m〉 u2,2,1|v2,2,1−−−−−−−→ 〈r1,k1〉 λ|λ−−→ 〈r2,k2〉
= 〈p,k2〉

u1,2,v1,2−−−−−→ 〈q1,n1〉
u2,1u2,2,1|v2,1 v2,2,1−−−−−−−−−−−→ 〈r1,k1〉 λ|λ−−→ 〈r2,k2〉

with min(n1, k1) −k2 ≥ |Q |2 + 1 and where all the values of the counter are greater than m ≥ |Q |2. Therefore, we can apply 
Lemma 5.6 to it and obtain

ρ ′
1 = 〈p,k2〉

u′
1,2,v ′

1,2−−−−−→ 〈q1,n′
1〉

u2,1u2,2,1|v2,1 v2,2,1−−−−−−−−−−−→ 〈r1,k′
1〉

λ|λ−−→ 〈r2,k2〉
with n′

1 < n1. The last part of ρ ′
1 having no input nor output follows from the bounds on the lengths of the new input and 

output of the obtained run when applying Lemma 5.6.
Observe that the portions of ρ ′

1 that have input from u2 or produce output to v2 are equal to those in ρ1. Define ρ ′ to 
be equal to ρ but replacing the subrun ρ1 with the subrun ρ ′

1. It follows that ρ ′ meets the required conditions.
Case 2. Within 〈q1, n1〉 u2|v2−−−−→ 〈q2, n2〉 the counter takes only values greater than m (including n2 > m). Using DT ≤ 1 as 

before, we can get the rightmost occurrence of a configuration 〈p, |Q |2 + 1〉 before 〈q1, n1〉 and the leftmost occurrence of 
a configuration 〈r, |Q |2 + 1〉 after 〈q2, n2〉 in ρ to obtain a subrun

ρ2 = 〈p, |Q |2 + 1〉 u1,2,v1,2−−−−−→ 〈q1,n1〉 u2|v2−−−→ 〈q2,n2〉
u3,1|v3,1−−−−−→ 〈r, |Q |2 + 1〉

where min(n1, n2) − (|Q |2 + 1) > 2(|Q |2 + 1) − (|Q |2 + 1) = |Q |2 + 1 and all values of the counter are greater than or equal 
to |Q |2 + 1. Therefore, we can apply Lemma 5.6 to it and obtain

ρ ′
2 = 〈p, |Q |2 + 1〉

u′
1,2,v ′

1,2−−−−−→ 〈q1,n′
1〉

u2|v2−−−→ 〈q2,n′
2〉

u′
3,1|v ′

3,1−−−−−→ 〈r, |Q |2 + 1〉
with n′

1 < n1 and n′
2 < n2. Define ρ ′ to be equal to ρ but replacing the subrun ρ2 with the subrun ρ ′

2. It follows that ρ ′

meets the required conditions.
The cases n1 < −2m, n2 > 2m and n2 < −2m follow by symmetric arguments and using symmetric statements and proofs 

for the required lemmas. !

We can now give the pending proof of Theorem 5.2.

Proof of Theorem 5.2. Fix a normal infinite word x = a1a2 . . . , a bounded-to-one non-real-time 1-counter transducer T =
〈Q , A, B, δ, q0, F 〉, a real ε > 0 and the accepting run

〈q0,0〉 a1|v1−−−→ 〈q1,m1〉 a2|v2−−−→ 〈q2,m2〉 a3|v3−−−→ 〈q3,m3〉 · · · .
By Lemma 4.2, T reads the entire input. It suffices to show that there is a length " and a set U such that Lemma 2.2 applies 
to this arbitrary choice of T and ε. By Lemma 5.3, let us assume without loss of generality that DT ≤ 1. Lemma 5.4 proves 
that if there is a prefix of an accepting run that cannot be extended to an accepting run visiting a configuration with a 
counter value 0, then the run does not compress the input. So we assume there is no such a prefix. For each word u ∈ A∗

let

hu = min{|v| : ∃i, j,0 ≤ i ≤ j, 〈qi,mi〉 u|v−−→ 〈q j,m j〉}
be the minimum number of symbols that the processing of u can contribute to the output in the run we fixed. Let

U" = {u ∈ A" : hu ≥ (1 − ε)"}
be the set of words of length " with relatively large contribution to the output. Let t be such that T is t-to-one. For each 
pair of states p, q, pair of integers c1, c2, word v and length ", consider the set U ′(p, q, c1, c2, v, ") consisting of the words 
u ∈ A" such that there is a run 〈p, c1〉 u|v−−→ 〈q, c2〉 contained in an accepting run of T having infinitely many configurations 
with a counter value 0. By construction, for each z ∈ U ′(p, q, c1, c2, v, "), there is an accepting run

〈q0,0〉 u0|z0−−−→ 〈p, c1〉 z|v−−→ 〈q, c2〉 x|y−−→ ∞.

Thus, for each z ∈ U ′(p, q, c1, c2, v, "), T (u0zx, z0 v y). This implies |U ′(p, q, c1, c2, v, ")| ≤ t .
Suppose u is such that hu < (1 − ε)|u|. Then, u produces an output v with |v| < (1 − ε)" somewhere along the run we 

fixed; that is, there is a prefix 〈q0, 0〉 u0|v0−−−−→ 〈qi, mi〉 u|v−−→ 〈q j, m j〉 of the fixed run. By our assumption, this prefix can be 
extended to a prefix of an accepting run of the form 〈q0, 0〉 u0|v0−−−−→ 〈qi, mi〉 u|v−−→ 〈q j, m j〉 u1|v1−−−−→ 〈p, 0〉. Applying Lemma 5.7
to this prefix shows that u ∈ U ′(qi, q j, mi, m j, v, ") for |mi |, |m j| ≤ 2(|Q |2 + 1)(|u| + |v| + 2), |v| < (1 − ε)|u| and |u| = ". 
Thus, given u, there are at most
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|Q |2
(
4(|Q |2 + 1)(" + (1 − ε)" + 2) + 1

)2|B|(1−ε)"

possible combinations for the values of qi, q j, mi, m j, v with the mentioned restrictions. Since for each such combination 
|U ′(qi, q j, mi, m j, v, ")| ≤ t , there are at most

t|Q |2
(
4(|Q |2 + 1)(" + (1 − ε)" + 2) + 1

)2|B|(1−ε)"

values of w such that hw < (1 − ε)" and |w| = ". This magnitude is o(|A|" , so we can fix " such that |U"| > |A|"(1 − ε) and 
take U = U" . By construction, the fixed run of T over x fulfills the hypothesis of Lemma 2.2 using pairs of a state and a 
counter value as configurations. !

6. Pushdown transducers

A pushdown transducer is a transducer equipped with a single stack as memory that can hold elements of a finite given 
alphabet. The machine makes decisions based on the input and the top symbol of the stack. When moving, it can pop 
symbols from the stack or push symbols onto the stack. A special bottom symbol ⊥ as top represents the empty stack. If 
the alphabet of the stack (symbols that can be pushed onto the stack, not including the bottom symbol) is unary, the only 
relevant information for the current configuration is the number of symbols contained in the stack. Also, the automaton can 
only test for the number to be zero (empty stack) or non-zero (non-empty stack). The stack is then equivalent to a counter 
with only non-negative values, although counters with positive and negative values can also be emulated with the help of 
the automaton states. This shows that a stack gives at least as much power as a counter.

In this section we show that both non-deterministic pushdown transducers and deterministic pushdown transducers 
with a single additional counter can compress normal infinite words. The latter implies that deterministic pushdown trans-
ducers with at least two stacks can compress normal infinite words. The question remains open for deterministic pushdown 
transducers with a single stack.

In both cases we show that a particular transducer can compress the same infinite word. Let x0 be a normal word and 
let ui = x0 ! 2i−1 be its prefix of length 2i−1. We work with the infinite word x1 = u1ũ1u2ũ2u3ũ3 · · · , where ̃ui is the reverse 
word of ui . It is easy to see that this infinite word is also normal, for instance with an argument similar to Champernowne’s 
original argument [9]. The features of x1 we exploit to provide the counterexamples are similar to the ones used by Merkle 
and Reimann [12]. To ease the presentation, we compress an input over alphabet A into an output over alphabet A ∪ {#}, 
where # /∈ A. However, we could have chosen any other output alphabet because there are one-to-one maps for alphabet 
conversion whose output/input ratio is as close to 1 as desired.

6.1. Non-deterministic pushdown transducer

In a non-deterministic pushdown transducer with a stack each transition depends on the current state, the top symbol 
of the stack and the input symbol. It produces an output word, a word of stack symbols that replaces the top symbol, and 
the new state. The transition relation δ is a finite subset of Q × C × A × B∗ × Q × C∗ where Q is the state set, A and B
are the input and output alphabets and C is the stack alphabet. Note that the top symbol of the stack is always replaced by 
a word w over the stack alphabet. This means that the transducer pops the top symbol if |w| = 0, replaces the top symbol 
by another if |w| = 1 and pushes several symbols if |w| > 1.

Theorem 6.1. There is a one-to-one non-deterministic pushdown transducer that compresses a normal infinite word.

Proof. We give a transducer that realizes the following relation. For each input word x, the output words y satisfy T (x, y)
where

T (x, y) ⇔ (x = w1 w̃1 w2 w̃2 · · · wn w̃n · · · , y = w1#w2# · · · #wn# · · ·) ∨
(x = w1 w̃1 w2 w̃2 · · · wn w̃nx′ , y = w1#w2# · · ·#wn#x′).

The relation is one-to-one since x can be recovered from either y = w1#w2# · · ·#wn# · · · or y = w1#w2# · · · #wn#x′ . 
In the case where the input has the form w1 w̃1 · · · wn w̃n · · · , one possible output is w1# · · ·#wn# · · · . Moreover, each 
factor of the input wi w̃i produces exactly the corresponding factor of the output wi#. Let A be the input alphabet and 
A ∪ {#} be the output alphabet. For i large enough, wi is very long and |wi#| log(|A| + 1)/(|wi w̃i | log |A|) approaches 
log(|A| + 1)/(2 log |A|) < 1. It follows that the procedure compresses the input.

The transducer proceeds as follows. It guesses non-deterministically either a factorization x = w1 w̃1 · · · wn w̃n · · · or a 
factorization x = w1 w̃1 · · · wn w̃nx′ of the input word x. Note that the second case is just a degenerate case of the first one 
where wn+1 becomes infinite. The transducer uses two states q0 and q1. It is in state q0 when it reads a factor wi of the 
remaining tail and it is in state q1 when it reads a factor w̃i . In state q0, each read symbol is output and pushed on the 
stack. The transducer non-deterministically either stays in state q0 or moves to states q1 to decide if the factor ended. An 
extra symbol # is output when it moves to state q1. In state q1, each read symbol is compared with the top symbol popped 
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from the stack. If these two symbols do not match, the run fails. If they do match, nothing is output. The transducer moves 
back to state q0 when the stack is empty. Note that the transducer is indeed real-time: an input symbol is read at each step 
of the run.

The complete transition table of the transducer is given below. The tuple 〈p, s, a, v, q, λ〉 is in δ if and only if the cell 
at row p and column 〈s, a〉 contains 〈v, q, pop〉. The tuple 〈p, s, a, v, q, w〉 is in δ for non-empty w if and only if that cell 
contains 〈v, q, push w〉. To ease the read of the table, a variable a is used in the columns, which can take the value 0 or 1, 
and ā is 1 − a.

〈a,a〉 〈a, ā〉 〈a,⊥〉
q0 〈a,q0,push a〉 〈a,q0,push a〉 〈a,q0,push a〉

〈a#,q1,push a〉 〈a#,q1,push a〉 〈a#,q1,push a〉
q1 〈λ,q1,pop〉 〈a,q0,push a〉

〈a#,q1,push a〉 !

6.2. Deterministic multi-pushdown

In Theorem 3.1 we proved that real-time transducers with any number of counters cannot compress normal infinite 
words. Here we show that adding a single counter to a deterministic pushdown machine gives enough power to compress 
a normal infinite word.

A deterministic pushdown transducer with one counter uses a stack and a counter as extra memory. Each of its transi-
tions depends on the current state, the top symbol of the stack, the zero or non-zero status of the counter, and the input 
symbol. It produces an output word, a word of stack symbols that replaces the top symbol, an integer to increase or decrease 
the counter and the new state. Thus, transitions are given by a function δ : Q × C × {true, false} × A → B∗ × Q × C∗ × Z.

Theorem 6.2. There is a one-to-one deterministic transducer with one stack and one counter that compresses a normal infinite word.

Proof. We give a transducer that realizes the following function. An infinite word factorized as w1 w ′
1 w2 w ′

2 w3 w ′
3 · · · where 

|wi | = |w ′
i | = 2i−1 is mapped to w1 v1#w2 v2#w3 v3# · · · where vi = w ′

i " "i is the prefix of length "i of w ′
i , with "i being the 

length of the longest common prefix between w ′
i and w̃i . Since from wi and vi we can easily recover wi and w ′

i , the func-
tion is one-to-one. In the case where w ′

i = w̃i the output for a prefix of the form w1 w̃1 w2 w̃2 · · · wn w̃n is w1#w2# · · · wn
and therefore such an input is compressible.

The required transducer uses the counter and the stack to recognize the positions where a wi or w ′
i starts. When 

starting to read wi , the counter contains |wi | = 2i−1 and the stack is empty. While reading each symbol of wi we decrease 
the counter by 1 and push it to the stack. Therefore, the counter at 0 indicates the first symbol of w ′

i and w̃i is in the stack. 
While reading each symbol of w ′

i , we pop from the stack and increase the counter by 2, so the empty stack indicates the 
beginning of wi+1 and the counter is left at 2i . By default, we output λ while reading from w ′

i . We compare the symbols 
read from w ′

i and the top of the stack. When they mismatch for the first time, we output the current symbol and move to 
a state that does the same process, but outputs the current symbol instead of λ. When moving between states, we control 
the counter and the stack to avoid off-by-1 errors.

Notice that since the starting value of the counter is 0, we need a special starting state for processing w1. The transducer 
has 4 states, a state q0 to start, a state q1 to read wi and push, a state q2 to read w ′

i and pop while it coincides with the 
stack and a state q3 to read the rest of w ′

i , pop the rest of the stack and write, to use after a mismatch.
The complete transition table for the transducer is given below. The cell at row q and column 〈a, s, c〉 contains δ(q, s, c, a), 

where q is a state, a is a symbol from the input, s is the top symbol from the stack (or ⊥ for empty stack) and c is 
represented as 0 for true and ∅ for false, to indicate zero and non-zero counter, respectively. The cells contain a tuple 
〈v, q, s, i〉 where v is the word to be output, q is the new state, s is an instruction to perform in the stack as in the previous 
proof, and i is an increment to the counter. As before, to ease the read of the table, a variable a is used in the columns, 
which can take the value 0 or 1, and ā is 1 − a, and an underscore (_) is also used, which means the field can take any 
value.

〈a, _, _〉
q0 〈a,q1,push a,0〉

〈a, _,∅〉 〈a,a,0〉 〈a, ā,0〉
q1 〈a,q1,push a,−1〉 〈λ,q2,pop,+2〉 〈a,q3,pop,+2〉

〈a,a, _〉 〈a, ā, _〉 〈a,⊥, _〉
q2 〈λ,q2,pop,+2〉 〈a,q3,pop,+2〉 〈#a,q1,push a,−1〉

〈a,a, _〉 〈a, ā, _〉 〈a,⊥, _〉
q3 〈a,q3,pop,+2〉 〈a,q3,pop,+2〉 〈#a,q1,push a,−1〉 !
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7. Selection

We consider the selection of symbols from an infinite word and define a word with the selected symbols. The general 
problem is which forms of selection preserve normality, that is, which families of functions f performing selection guarantee 
that f (x) is normal when x is normal. Notice that if a selection procedure is allowed to read the symbol being decided, it 
would be possible to “select only zeroes”, or yield similar schemes that do not preserve normality.

We consider three forms of selection. Prefix-selection looks at just the prefix of length i −1 to decide whether the symbol 
at position i is selected. Suffix selection looks at just the suffix starting at position i + 1 to decide whether symbol at position 
i is selected. Two-sided selection looks at the prefix of length i − 1 and the suffix starting at position i + 1 to decide the 
selection of the symbol at position i. Prefix-selection generalizes the selection defined by Agafonov [1]. Suffix-selection and 
two-sided selection are new.

Definition. Let x = a1a2a3 · · · be an infinite word over alphabet A. Let L ⊆ A∗ be a set of finite words over A and X ⊆ Aω a 
set of infinite words over A.

The word obtained by prefix-selection of x by L is x ! L = ap(1)ap(2)ap(3) · · · , where p( j) is the j-th smallest integer in the 
set {i : a1a2 · · ·ai−1 ∈ L}.

The word obtained by suffix-selection of x by X is x " X = ap(1)ap(2)ap(3) · · · , where p( j) is the j-th smallest integer in 
the set {i : ai+1ai+2ai+3 · · · ∈ X}.

To fix notation let us recall the definition of a finite-state automaton and the definition of a rational set of finite or 
infinite words.

Definition. A finite automaton is a tuple S = 〈Q , A, δ, q0, F 〉 where

• Q is the set of states,
• A is the input alphabet,
• δ ⊆ Q × A × Q is a finite transition relation,
• q0 ∈ Q is the starting state and
• F ⊆ Q is the set of accepting states

The automaton is deterministic if δ is a function Q × A → Q . The automaton processes symbols as the corresponding 
transducer, disregarding the output. The runs and accepting runs are defined as in the case of transducers.

Definition. A set of finite words L is rational if there is a deterministic finite automaton S = 〈Q , A, δ, q0, F 〉 such that 
L = {u : ∃q ∈ F , q0

u−→ q}. A set of infinite words X is rational if there is a (possibly non-deterministic) finite automaton 
S = 〈Q , A, δ, q0, F 〉 such that X = {x : there is an accepting run q0

x−→ ∞ of S}.

We prove Agafonov’s theorem and the counterpart theorem for suffix selection. However, there are simple two-sided 
selections that do not preserve normality.

Theorem 7.1. (See Agafonov [1].) Prefix selection by a rational set preserves normality.

Theorem 7.2. Suffix selection by a rational set preserves normality.

Theorem 7.3. The two-sided selection rule “select symbols in between two zeroes” does not preserve normality.

To prove each of these three theorems we use the characterization of normality given by Theorem 1.1, which considers 
the limit frequency of words in a given infinite word, disregarding the positions where these words occur.

7.1. Prefix selection

To maintain the paper self-contained we include a proof of Theorem 7.1. This proof is a slight generalization of the one 
given by Becher and Heiber [3].

Lemma 7.4. Let there be an accepting run of a deterministic finite automaton over a normal infinite word, such that the set of states it 
visits infinitely often is {q1, . . . , qn}. Then, for each word u and for each of those states qi there is another one of those states q j such 
that qi

u−→ q j .

Proof. Let Q ∞ = {q1, . . . , qn} be the set of states visited infinitely often in the accepting run ρ . Let ρ ′ be a suffix of ρ such 
that only states in Q ∞ are visited in ρ ′ . Since all are visited infinitely often in ρ ′ , it is clear that for any pair qi, q j ∈ Q ∞
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there is a subrun from qi to q j . By way of contradiction, assume the statement does not hold. Without loss of generality, 
assume there is u such that q1

u−→ p and p /∈ Q ∞ . We build a word u1u2 · · · un such that being the input to any state in Q ∞ , 
it goes outside Q ∞ . Let u1 = u, so q1

u−→ p. Inductively, consider the state p′ such that qi+1
u1u2···ui−−−−−−→ p′ . If p′ ∈ Q ∞ then set 

u′
i+1 such that p′ u′

i+1−−−→ q1 and ui+1 = u′
i+1u such that qi+1

u1u2···ui ui+1−−−−−−−−→ p. If p′ /∈ Q ∞ , set ui+1 = λ. In both cases, we obtain 
qi+1

u1u2···ui ui+1−−−−−−−−→ r with r /∈ Q ∞ . Then, for each subrun of the form r1
u1u2···un−−−−−−→ r2, either r1 is not in Q ∞ , or r1 = qi and 

qi
u1u2···ui−−−−−−→ r with r /∈ Q ∞ . By normality of the input word, there are infinitely many subruns of the form r1

u1u2···un−−−−−−→ r2
in ρ ′ . Hence, some state not in Q ∞ is visited infinitely often in ρ ′ , hence in ρ , contradicting the assumption. !

Lemma 7.5. If a1a2a3 · · · is a normal infinite word and q0
a1−→ p1

a2−→ p2
a3−→ · · · is the accepting run of a deterministic finite automaton 

that visits infinitely often state q1, then,

lim inf
n→∞

|{i : i ≤ n, pi = q1}|
n

> 0.

Proof. Let Q ∞ = {q1, . . . , qn} be the set of states visited infinitely often in the accepting run ρ . Let ρ ′ be a suffix of ρ such 
that only states in Q ∞ are visited in ρ ′ . Since all the states in Q ∞ are visited infinitely often in ρ ′ , it is clear that for 
any pair qi, q j ∈ Q ∞ there is a subrun from qi to q j . We build a word u1u2 · · · un such that when it is the input to any 
state in Q ∞ , it visits q1. Let u1 = λ, so q1

u1−−→ q1. By Lemma 7.4, qi+1
u1u2···ui−−−−−−→ q j for some j, so let ui+1 be such that 

qi+1
u1u2···ui−−−−−−→ q j

ui+1−−−→ q1. Since the automaton is deterministic, each time a subrun of the form r1
u1u2···un−−−−−−→ r2 occurs in ρ ′ , 

state q1 is visited, because if r1 = qi , the prefix qi
u1u2···ui−−−−−−→ q1 visits q1 by definition. By normality of the input, u1u2 · · · un

occurs with a fixed positive frequency ε, so q1 is visited at least with that same minimum frequency in ρ ′ , and therefore 
in ρ . !

Lemma 7.6. For any set of finite words L, the function x ,→ 〈x ! L, x ! A∗ \ L〉 is one-to-one.

Proof. Let y1 = x ! L and y2 = x ! A∗ \ L. By definition, y1 contains some symbols of x, in the same relative order, and y2
contains the complement, also in the same relative order. It is possible to reconstruct x by interleaving appropriately the 
symbols in y1 and y2. For each i ≥ 1, the i-th symbol of x comes from y1 if and only if x ! (i − 1) ∈ L. Thus, there is a 
unique x such that y1 = x ! L and y2 = x ! A∗ \ L. !

We now introduce two-output transducers. These are ordinary transducers with two output tapes instead of one. In 
terms of compressibility they are equivalent to ordinary transducers. We give the proof for the deterministic case. It is 
straightforward to extend it to other cases.

Definition. A (deterministic) two-output transducer is a tuple T = 〈Q , A, B, δ, q0〉, where each element is as in deterministic 
transducers except the transition function δ : Q × A → B∗ × B∗ × Q , which gives two output words.

T processes infinite words over A: if at state p symbol a is processed, T moves to state q and outputs v on tape 1
and w on tape 2, where 〈v, w, q〉 = δ(p, a). In this case, we write p a|v,w−−−−→ q. Finite runs, infinite runs and accepting runs 
are defined as for deterministic transducers. When putting together several steps, concatenation of each output is done 
component-wise; thus, the concatenation of the two runs

p0
u1|v1,w1−−−−−→ p1 and p1

u2|v2,w2−−−−−→ p2 is denoted by p0
u1u2|v1 v2,w1 w2−−−−−−−−−−→ p2.

We write T (x) to refer to the ordered pair of words such that q0
x|T (x)−−−−→ ∞

Definition. A two-output transducer T is bounded-to-one if the function x ,→ T (x) is bounded-to-one.

Definition. An infinite word x = a1a2a3 · · · is compressible by a two-output transducer if its accepting run q0
a1|v1,w1−−−−−−→

q1
a2|v2,w2−−−−−−→ q2

a3|v3,w2−−−−−−→ q3 · · · satisfies

lim inf
n→∞

(|v1 v2 · · · vn| + |w1 w2 · · · wn|) log |B|
n log |A| < 1.

Theorem 7.7. An infinite word is compressible by a bounded-to-one two-output transducer if and only if it is compressible by a 
bounded-to-one transducer.

Proof. The “if” part is immediate by not using one of the output tapes. For the “only if” part, let x = a1a2a3 · · · be an infinite 
word over A compressible by a bounded-to-one two-output transducer T = 〈Q , A, B, δ, q0〉. We show that there is a block 
size m0 such that we can interleave both outputs in blocks of m0 symbols with one extra symbol before each block that 
identifies which output it came from. We maintain in the finite memory (the states) a FIFO buffer for each output tape of 
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up to m0 symbols. Each time we have at least m0 symbols from the same tape, we output as many blocks as possible and 
drop the corresponding symbols from the buffer.

Let b1, b2 ∈ B be different symbols. We use bi to mark that a given output block comes from tape i, for i = 1, 2. For each 
positive integer m we define O m : B∗ × B → B∗ and Lm : B∗ → B∗ , be such that, if the current buffer contains u, O m(u, b) is 
what is to be output, adding the extra symbol b before each block of m symbols, and Lm(u) is what is left in the buffer. For 
each word u there is a unique factorization in 7|u|/m8 words u1, u2, . . . , u7|u|/m8 of length m and a word v of length less 
than m such that u = u1u2 · · · u7|u|/m8v . We can define O m and Lm formally in terms of such factorization:

O m(u1u2 · · · u7|u|/m8v,b) = bu1bu2 · · ·bu7|u|/m8, Lm(u1u2 · · · u7|u|/m8v) = v.

Notice that, when |u| < m, O m(u, b) = λ and Lm(u) = u. Also for each positive integer m let Tm = 〈Q × B<m ×
B<m, A, B, δm, 〈q0, λ, λ〉〉 be a deterministic transducer with

δm(〈p, v, w〉,a) = 〈〈q, Lm(v v ′), Lm(w w ′)〉, O m(v v ′,b1)O m(w w ′,b2)〉
where δ(p, a) = 〈q, v ′, w ′〉. From an output y of Tm we can get a unique tuple of outputs y1, y2 of T , where yi is the 
concatenation, in order, of the last m symbols of each block of m + 1 symbols in y that starts with bi . Therefore, from T
being bounded-to-one we can conclude each Tm is bounded-to-one. Fix an input word x and consider the accepting run of 
T over x,

q0
a1|v1,w1−−−−−→ q1

a2|v2,w2−−−−−→ q2
a3|v3,w3−−−−−→ q3 · · ·

and the accepting run of Tm over x,

〈q0,λ,λ〉 a1|v ′
1−−−→ C1

a2|v ′
2−−−→ C2

a3|v ′
3−−−→ C3 · · ·

where each Ci ∈ {qi} × B<m × B<m . By construction, the output of Tm has at most one extra symbol per m symbols of some 
output of T ,

|v ′
1v ′

2 · · · v ′
n| ≤

m + 1
m

(|v1v2 · · · vn| + |w1 w2 · · · wn|)

By compressibility of x,

lim inf
n→∞

(|v1 v2 · · · vn| + |w1 w2 · · · wn|) log |B|
n log |A| < 1.

Then, let m0 be large enough such that

lim inf
n→∞

(|v1 v2 · · · vn| + |w1 w2 · · · wn|) log |B|
n log |A|

m0 + 1
m0

< 1,

which together with the previous claim implies that Tm0 compresses x. !

Proof of Theorem 7.1. Assume x ∈ Aω is normal and L ⊆ A∗ is rational such that x ! L is infinite and not normal. By 
Lemma 7.6, x ,→ 〈x ! L, x ! A∗ \ L〉 is one-to-one. Since x ! L is not normal, there is a bounded-to-one deterministic trans-
ducer T with the same input and output alphabets that compresses it (the compressibility of non-normal words is vastly 
known [3]). Therefore, the function x ,→ 〈T (x ! L), x ! A∗ \ L〉 is bounded-to-one. We can compose the automaton S that ac-
cepts L with T to get a two-output transducer T ′ that realizes that function. It carries out S and T in parallel, sending each 
symbol from the input to S . If the symbol is not selected, it is output in tape 2. Else, the symbol feeds T which produces 
an output in tape 1.

Let S = 〈Q S , A, δS , q0,S , F 〉 be a deterministic automaton recognizing the rational set L and let T = 〈Q T , A, A, δT , q0,T 〉
be a transducer compressing x ! L. The transducer T ′ is given by T ′ = 〈Q S × Q T , A, A, δ, 〈q0,S , q0,T 〉〉 where

δ = {〈ps, pt〉 a|λ,a−−−→ 〈qs, pt〉 : ps /∈ F , ps
a−→ qs} ∪

{〈ps, pt〉 a|v,λ−−−→ 〈qs,qt〉 : ps ∈ F , ps
a−→ qs, pt

a|v−−→ qt}
and p a|v,w−−−−→ q stands for the tuple 〈p, a, v, w, q〉.

Now, if 〈q0,S , q0,T 〉 a1|v1,w1−−−−−−→ 〈q1,S , q1,T 〉 a2|v2,w2−−−−−−→ 〈q2,S , q2,T 〉 a3|v3,w3−−−−−−→ · · · is the accepting run of x = a1a2a3 · · · on T ′ , 
then by construction q0,S

a1−−→ q1,S
a2−−→ q2,S

a3−−→ · · · is a run over S . Also by construction qi,S /∈ F implies wi = ai and vi = λ
and qi,S ∈ F implies wi = λ. Then,

lim inf
n→∞

(|v1 v2 · · · vn| + |w1 w2 · · · wn|) log |A|
n log |A| = lim inf

n→∞

∑
i≤n:qi,S∈F |vi| +

∑
i≤n:qi,S /∈F 1

n

By x ! L being infinite and Lemma 7.5, there is ε > 0 such that
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lim inf
n→∞ |{i ≤ n : qi,S ∈ F }|/n = ε.

Let n1, n2, . . . be an increasing sequence such that

lim
j→∞

|{i ≤ n j : qi,S ∈ F }|/n j = ε

and apply that sequence to the inferior limit above, getting

lim inf
n→∞

(|v1 v2 · · · vn| + |w1 w2 · · · wn|) log |A|
n log |A| ≤ lim inf

j→∞

∑
i≤n j :qi,S∈F |vi| +

∑
i≤n j :qi,S /∈F 1

n j

Since lim j→∞
∑

i≤n j :qi,S /∈F 1/n j = (1 − ε) and z = lim j→∞

∑
i≤n j :qi,S ∈F |vi |

εn j
< 1 because T compresses x ! L, we get

lim inf
n→∞

(|v1 v2 · · · vn| + |w1 w2 · · · wn|) log |A|
n log |A| ≤ lim inf

j→∞
εn j z + (1 − ε)n j

n j
= εz + (1 − ε) < 1.

So, T ′ compresses x. But by Theorem 7.7 and Theorem 2.3, this is impossible. Therefore, the assumption that x ! L is not 
normal must be false. !

7.2. Suffix selection

The proof of Theorem 7.2 is similar to the one for prefix selection, but it has additional subtleties. Lemmas 7.4 and 7.5 use 
the determinism of the selecting automaton. This is possible because rational sets of finite words can be defined equivalently 
using deterministic or non-deterministic automata.

However, as we already mentioned in the Introduction, functions and relations realized by deterministic transducers 
are proper subclasses of rational functions and relations realized by non-deterministic ones [2]. We need slight variants of 
Lemmas 7.4 and 7.5 for the non-deterministic case. We will use the characterization of rational sets of infinite words that 
provides co-determinism instead of determinism given by Carton and Michel [8].

Definition. A Büchi automaton is a tuple S = 〈Q , A, δ, Q 0, F 〉 where

• Q is the set of states,
• A is the input alphabet,
• δ ⊆ Q × A × Q is a finite transition relation,
• Q 0 ⊆ Q is the set of starting states
• F ⊆ Q is the set of accepting states

The processing of the input symbols and the definition of the run coincide with those for a non-deterministic automaton. 
A run is accepting if it starts at any of the starting states and visits an accepting state infinitely often.

Note that we allow Büchi automata to have several starting states, and we use it in Theorem 7.8.

Definition. A Büchi automaton is prophetic if there exists exactly one run visiting a finite state infinitely often over each 
infinite word.

Let B be a Büchi automaton. Let Xq be the set of infinite words labeling a run starting in q and visiting a finite state 
infinitely often. The automaton B is prophetic if the family of sets (Xq) is a partition of the set of all infinite words.

Theorem 7.8. (See Carton and Michel [8].) Any rational set of infinite words is accepted by a prophetic automaton.

Proposition 7.9. (See [8, Proposition 3].) A prophetic automaton is co-deterministic. That is, if q is a state in at least one infinite run 
and a is a symbol, there is exactly one state p such that p a−→ q.

Proof. Since q is a state in at least one infinite run assume q x−→ ∞. Let p ax−−→ ∞ be the only run over ax. Since it contains 
as a suffix a run over x, and there is only one such run, the second state in the run must be q, and thus p a−→ q. By way 
of contradiction, assume p a−→ q and p′ a−→ q. Then, p ax−−→ ∞ and p′ ax−−→ ∞, contradicting the condition of the prophetic 
automaton. !

The next lemmas do the job of Lemmas 7.4 and 7.5 in the opposite direction. The proofs are almost the same as the ones 
for Lemmas 7.4 and 7.5 but using the fact that prophetic automata are co-deterministic instead of deterministic.
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Lemma 7.10. Let there be an accepting run of a prophetic automaton over a normal infinite word such that the set of states it visits 
infinitely often is {q1, . . . , qn}. Then, for each of those states q j and each word u, there is another one of those states qi such that 
qi

u−→ q j .

Proof. Let Q ∞ = {q1, . . . , qn} be the set of states visited infinitely often in the accepting run ρ . Let ρ ′ be a suffix of ρ such 
that only states in Q ∞ are visited in ρ ′ . Since all are visited infinitely often in ρ ′ , it is clear that for any pair qi, q j ∈ Q ∞
there is a subrun from qi to q j . By way of contradiction, assume the statement does not hold, and without loss of generality, 
assume there is u such that p u−→ q1 and p /∈ Q ∞ . We build a word unun−1 · · · u1 such that finishing its process in any state 
in Q ∞ , it ensures a visit to a state outside Q ∞ . Let u1 = u, so p u1−−→ q1. Inductively, consider the only state p′ such 
that p′ ui ui−1···u2u1−−−−−−−−→ qi+1. If p′ ∈ Q ∞ then set u′

i+1 such that q1
u′

i+1−−−→ p′ and ui+1 = uu′
i+1 such that p ui+1ui ···u2u1−−−−−−−−→ qi+1. 

If p′ /∈ Q ∞ , set ui+1 = λ. In both cases, we obtain r ui+1ui ···u2u1−−−−−−−−→ qi+1 with r /∈ Q ∞ . Thus, each time there is a subrun 
r1

unun−1···u2u1−−−−−−−−−→ r2, either r2 is not in Q ∞ , or r2 = qi and there is a prefix of the subrun r ui ui−1···u2u1−−−−−−−−→ r2 with r /∈ Q ∞ . By 
normality of the input word, there are infinitely many subruns of the form r1

unun−1···u2u1−−−−−−−−−→ r2 in ρ ′ . Then, some state not in 
Q ∞ is visited infinitely often in ρ ′ , and therefore in ρ , contradicting the assumption. !

Lemma 7.11. If a1a2a3 · · · is a normal infinite word and p0
a1−→ p1

a2−→ p2
a3−→ · · · is the accepting run of a prophetic automaton that 

visits infinitely often state q1, then,

lim inf
n→∞

|{i : 1 ≤ i ≤ n, pi = q1}|
n

> 0.

Proof. Let Q ∞ = {q1, . . . , qn} be the set of states visited infinitely often in the mentioned run ρ . Let ρ ′ be a suffix of 
ρ such that only states in Q ∞ are visited in ρ ′ . Since all are visited infinitely often in ρ ′ , it is clear that for any pair 
qi, q j ∈ Q ∞ there is a subrun from qi to q j . We build a word unun−1 · · · u1 such that finishing its process in any state 
in Q ∞ , it ensures a visit to q1. Let u1 = λ, so q1

u1−−→ q1. By Lemma 7.10, q j
ui ui−1···u2u1−−−−−−−−→ qi+1 for some j, so let ui+1 be 

such that q1
ui+1−−−→ q j

ui ui−1···u2u1−−−−−−−−→ qi+1. Then, since the automaton is co-deterministic, each time r1
unun−1···u2u1−−−−−−−−−→ r2 occurs 

in ρ ′ , state q1 is visited, because if r2 = qi , the suffix q1
ui ui−1···u2u1−−−−−−−−→ r2 visits q1 by definition. By normality of the input, 

unun−1 · · · u2u1 occurs with a fixed positive frequency ε, so q1 is visited at least with that minimum frequency on ρ ′ , and 
therefore on ρ . !

When selecting with a rational set of infinite words, we need to check a prophetic automaton. Notice that the unique 
run for the input x contains as suffixes the unique runs for all the suffixes of x. Moreover, the run over x visits accepting 
states infinitely often if and only if so does each of the runs over the suffixes of x. Thus, a symbol is selected according to 
the state at which prophetic automaton arrives after processing it. This is the mirror of prefix selection by a finite automata, 
where a symbol is selected according to the state that the automaton leaves before processing it.

Two-output transducers and Theorem 7.7 can be generalized to non-deterministic transducers directly. However 
Lemma 7.6 cannot be used because it is based on the determinism of the automaton recognizing the rational set. A mir-
ror Lemma 7.6 would need a finishing state, which does not exist for infinite runs. Moreover, functions of the form 
x ,→ 〈x " X, x " Aω \ X〉 are not necessarily bounded-to-one, as the following example illustrates. Consider A = {0, 1} and 
X = 01Aω the set of binary infinite words that start with 01. The selection rule induced by X is then the following: select 
symbol at position i if and only if, the two symbols at positions i + 1 and i + 2 are 0 and 1, respectively. Consider words 
x = 000 · · · 000010101 · · · that start with a positive number of zeroes, and then alternate zeroes and ones. It is clear that all 
of them get mapped by x ,→ 〈x " X, x " Aω \ X〉 to 〈0111 · · · , 000 · · ·〉 = 〈01ω, 0ω〉.

To solve the last problem we insert the current state once in a while in the output in a predictable way. We also add a 
way to synchronize the two outputs, so that for each state we can calculate the two prefixes that were output up to that 
point. Then, the whole splitting process is one-to-one, because from a finishing state and two finite words we can uniquely 
recover the originating word by doing the same as in the proof of Lemma 7.6, but from right to left.

To add the identification for the state and the synchronization, we need to get inside the two-output merging done in 
the proof of Theorem 7.7, so each time we insert a block from one of the tapes, we also write the current state and the 
number of symbols left in the buffer of the other tape. This increases the overhead of the interleaving from 1 symbol per 
m symbols of input to k + 9log m: symbols per m symbols of input, for some constant k required to encode the states. 
However, (k + 9log m:)/m is also arbitrarily close to 0, so compressibility is maintained in the same way as in the proof of 
Theorem 7.7.

Proof of Theorem 7.2. Assume x ∈ Aω is normal and X is a rational set of infinite words. By Theorem 7.8, assume X is 
recognized by the prophetic automaton S = 〈Q S , A, δS , Q 0,S , F 〉. Let q0

a1−−→ q1
a2−−→ q2

a3−−→ · · · be the unique run of S over 
x = a1a2a3 · · · . Note that the suffix of the run qi

ai+1−−−→ qi+1
ai+2−−−→ qi+2

ai+3−−−→ · · · is the unique run of S over the suffix of 
the input ai+1ai+2ai+3 · · · . If finitely many of the qi are in F , then none of these runs is accepting and x " X is empty, 
and thus, finite. From now on, assume infinitely many of the qi are in F . Symbol ai is selected if and only if the run 
qi

ai+1−−−→ qi+1
ai+2−−−→ qi+2

ai+3−−−→ · · · is accepting. Since we know it visits an accepting state infinitely often, the only additional 
condition is that qi ∈ Q 0,S .
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Assume x " X is not normal and let T = 〈Q T , A, A, δT , q0,T 〉 be a bounded-to-one deterministic transducer that com-
presses it [3]. We build a family of bounded-to-one non-deterministic transducers Tm where each Tm simulates S and splits 
the output into the selected and non-selected parts x1 and x2, passes x1 through T and then merges T (x1) and x2 in blocks 
of m digits as in the proof of Theorem 7.7. While merging, it adds to blocks from T (x1) an indicator of the state of S where 
the automaton is standing, and the number of digits left in the buffer of x2. This allows to recover, for infinitely many 
prefixes of each of the bounded possibilities of x1, a corresponding prefix of x2 and a finishing state. These, in turn, imply 
that the originating prefix of x is unique, making the construction bounded-to-one overall.

As in the proof of Theorem 7.7, let b1 and b2 be two different symbols of the output alphabet A. Let (qS )b1,b2 for a state 
qS ∈ Q S be an injective codification of the states as integers in the range [0, |Q S | −1], written with exactly 9log |Q S |: binary 
digits. For an integer k between 0 and m − 1, let (k)b1,b2 , be the binary representation of k in exactly 9log m: binary digits. 
To represent binary digits over alphabet A, we write b1 for digit 0, and b2 for digit 1. For each positive integer m we define 
O m : A∗ × A∗ → A∗ and Lm : A∗ → A∗ . We use the same factorization as before, with 7|u|/m8 words u1, u2, . . . , u7|u|/m8 of 
length m and a word v of length less than m such that u = u1u2 · · · u7|u|/m8v .

O m(u1u2 · · · u7|u|/m8v, w) = wu1 wu2 · · · wu7|u|/m8, Lm(u1u2 · · · u7|u|/m8v) = v.

As before, when |u| < m, O m(u, w) = λ and Lm(u) = u. Observe that in this case O m can place any word before each block 
and not just a single symbol. Let

Tm = 〈Q S × Q T × A<m × A<m, δm, 〈q0,q0,T ,λ,λ〉, F × Q T × A<m × A<m〉,

where δm is the set of all transitions

〈pS , pT , v, w〉 a|Om(v v ′,b1(qS )b1,b2 (|w|)b1,b2 )−−−−−−−−−−−−−−−−−−−→ 〈qS ,qT , Lm(v v ′), w〉

such that pS
a−→ qS , qS ∈ Q 0,S and pT

a|v ′−−−→ qT , together with the set of all transitions

〈pS , pT , v, w〉 a|Om(wa,b2)−−−−−−−→ 〈qS , pT , v, Lm(wa)〉

such that pS
a−→ qS and qS /∈ Q 0,S .

Thus, δm is defined as the union of two disjoint cases, the case where the current symbol is selected and the case 
when it is not. Since T is deterministic and the way the buffers behave encoded in Lm and O m is also deterministic, each 
transition of Tm is associated in a bijective way with a transition of S . Consequently, each run of Tm is associated with a 
unique run of S , and thus, there is exactly one run over each input. Moreover, the unique run of Tm over x is associated to 
the unique run of S over x, and it has the form

〈q0, p0,λ,λ〉 a1|v1−−−→ 〈q1, p1, . . .〉 a2|v2−−−→ 〈q2, p2, . . .〉 a3|v3−−−→ · · ·

where the . . . in the configurations represent the content of the buffers, which we do not record. Since infinitely many of 
the qi are in F , by definition of the accepting states of Tm , infinitely many of the 〈qi, pi, . . .〉 in the given run are accepting. 
Since 〈q0, p0, λ, λ〉 is the starting state, the given run is an accepting run of Tm over x.

By construction, the output of Tm has an overhead of at most km = 1 + 9log |Q S |: + 9log m: extra symbols per m symbols 
of the input, while outputting exactly the input on one case (the non-selecting) and a word asymptotically shorter than the 
input on the other case (selecting). By Lemma 7.11 and the fact that (m +km)/m is arbitrarily close to 1 for m large enough, 
it is straightforward to combine the reasoning in the proof of Theorem 7.7 and in the last part of the proof of Theorem 7.1
to show that the given run compresses the input for m large enough. Since it is an accepting run, Tm for m large enough 
compresses x.

To see that each Tm is bounded-to-one, assume we are given the output y and let us show that there are bounded 
number of possible inputs that produce it. First, parse y into blocks of m + 1 or m + 1 + 9log |Q S |: + 9log m: symbols, where 
the length of each block is simply determined by its first symbol being b1 or b2. This uniquely reconstructs T (x1) and x2 as 
mentioned above. There are a bounded number of possible x1 because T is bounded-to-one. Fix one. Each block of T (x1)

gives enough information (a pair of a state q and an integer k1) to associate a given prefix u1 of x1 (the shortest prefix that 
produces a prefix of T (x1) to fill that many blocks of output) to a unique prefix u2 of x2 (if k2 is the number of finished 
blocks of x2 before u1 is processed and k1 is the informed integer, u2 is exactly the first mk2 +k1 symbols of x2) and a state 
of S . Since S is co-deterministic, u1 and u2 can be merged into a unique u, which is a prefix of the original input. This can 
be done for arbitrarily large prefixes, because we have the extra information infinitely often, which uniquely determines an 
input. In conclusion, if T is t-to-one, each Tm is also t-to-one.

We showed the existence of a bounded-to-one non-deterministic transducer that compresses a normal input x. This 
contradicts Theorem 4.1. Therefore, the assumption that x " X is not normal must be false. !
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7.3. Two-sided selection

We prove here that the simple selection rule “select symbols in between two zeroes” does not preserve normality.

Proof of Theorem 7.3. Let x = a1a2a3 · · · be a normal infinite word over {0, 1} and let y be the result of selecting all symbols 
between two zeroes, namely y = ap(1)ap(2)ap(3) · · · where p( j) is the j-th smallest integer in {i : ai−1 = ai+1 = 0}. We show 
that y is not normal. Let mn be the length of the shortest prefix of x that contains n instances of 000 or 010,

mn = min{m : |{i : 2 ≤ i ≤ m − 1,ai−1 = ai+1 = 0}| = n}.
By the normality of x, infinitely many symbols are selected. So, each mn is well defined. Let y = b1b2b3 · · · and kn = |{i : 1 ≤
i ≤ n − 1, bibi+1 = 00}|. By definition of mn and y,

kn ≥ |{i : 1 ≤ i ≤ mn − 3,aiai+1ai+2ai+3 = 0000}| +
|{i : 1 ≤ i ≤ mn − 7,aiai+1ai+2ai+3ai+4ai+5ai+6 = 0001000}|.

Therefore,

lim
n→∞

kn

n
≥ lim

n→∞
|{i : 1 ≤ i ≤ mn − 3,aiai+1ai+2ai+3 = 0000}|

n
+

|{i : 1 ≤ i ≤ mn − 7,aiai+1ai+2ai+3ai+4ai+5ai+6 = 0001000}|
n

> lim
n→∞

|{i : 1 ≤ i ≤ mn − 3,aiai+1ai+2ai+3 = 0000}|
n

> lim
n→∞

|{i : 1 ≤ i ≤ mn − 3,aiai+1ai+2ai+3 = 0000}|
mn

mn

n
.

By definition of normality and the properties of limit,

lim
n→∞

|{i : 1 ≤ i ≤ mn − 3,aiai+1ai+2ai+3 = 0000}|
mn

= 1
24 and lim

n→∞
mn

n
= 22.

This proves limn→∞ kn/n > 2−4 22 = 1/4, which implies that y is not normal. !

In the proof, we have just shown that the limit frequency of the word 00 in the output is not the expected 1/4. This 
suffices to prove that normality is not preserved by the selection rule. A longer and more precise calculation can show that 
the limit frequency is exactly 3/10. This theorem shows that preservation of normality by automata selection is limited only 
to prefix-selection and suffix-selection.
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