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RANDOMNESS AND HALTING PROBABILITIES

VERÓNICA BECHER, SANTIAGO FIGUEIRA†,
SERGE GRIGORIEFF, AND JOSEPH S. MILLER

Abstract. We consider the question of randomness of the probability ΩU [X] that an

optimal Turing machine U halts and outputs a string in a fixed set X. The main results

are as follows:

• ΩU [X] is random whenever X is Σ0
n-complete or Π0

n-complete for some n ≥ 2.

• However, for n ≥ 2, ΩU [X] is not n-random when X is Σ0
n or Π0

n.

Nevertheless, there exists ∆0
n+1 sets such that ΩU [X] is n-random.

• There are ∆0
2 sets X such that ΩU [X] is rational. Also, for every n ≥ 1, there exists

a set X which is ∆0
n+1 and Σ0

n-hard such that ΩU [X] is not random.

We also look at the range of ΩU as an operator. We prove that the set {ΩU [X] : X ⊆ 2<ω}
is a finite union of closed intervals. It follows that for any optimal machine U and any

sufficiently small real r, there is a set X ⊆ 2<ω recursive in ∅′ ⊕ r, such that ΩU [X] = r.

The same questions are also considered in the context of infinite computations, and

lead to similar results.

§1. Introduction. The first example of a random real was Chaitin’s Ω [4],
which represents the probability that an optimal prefix Turing machine halts on
an arbitrary input. In fact there is no single Ω, but a whole class of Ω numbers,
one ΩU for each optimal machine U . It happens that such reals are exactly the
left computably enumerable (left-c.e.) random reals (Cf. [10]). Seeking for other
examples of significative random reals, possibly not left-c.e. nor right-c.e., we
consider the probability ΩU [X] that an optimal prefix Turing machine U halts
and outputs a string in a fixed non-empty set X. Grigorieff, 2002, conjectured
that such reals are random when X 6= ∅, and that the harder the set X, the more
random is ΩU [X]. As stated, the conjecture is false; we study related positive
and negative results in §2 and §3.

In §4 and §5 we consider the following question related to the converse of the
Conjecture: given a real r ∈ [0, 1], is there some optimal machine U and a set
X ⊆ 2<ω such that r = ΩU [X]? And if so, what are such pairs (U,X)?

Theorem 4.2 proves that for any optimal machine U , the range {ΩU [X] : X ⊆
2<ω} is a finite union of closed intervals. It also proves that for any sufficiently
small real r, there is a set X ⊆ 2<ω recursive in ∅′ ⊕ r, such that ΩU [X] = r. In
particular, this result asserts that for any optimal machine U there are ∆0

2 sets
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X such that ΩU [X] is a rational number, which implies ΩU [X] is computable
and hence not random.

Theorem 5.1 shows that for any given c.e. random real r, and for any given
recursively enumerable set X, there is an optimal machine U such that r =
ΩU [X].
§6 is devoted to the notion of optimal machine and introduces some particu-

larizations relevant to positive instances of the conjecture.
Finally in §7 we study the version of Conjecture 1.2 for infinite computations

on monotone machines, a landscape where more positive instances have been
obtained.

1.1. Notations. We denote by 2<ω the set of all finite words on the alphabet
{0, 1} and by 2≤n the set of all words up to size n. The empty word is denoted by
λ and the length of a word σ by |σ|. We denote by #X the number of elements
of the finite set X. P (X) denotes the power set of X and P<ω(X) is the set of
all finite subsets of X. We use µ(X ) to denote the Lebesgue measure of a subset
X of the Cantor space 2ω of all infinite binary words of length ω.

As usual, we commit to prefix Turing machines, which are exactly the par-
tial recursive functions with prefix-free domain. We assume Martin-Löf’s def-
inition of randomness (or its equivalent counterpart in terms of program-size
complexity). For n ≥ 1, n-randomness is randomness relative to oracle ∅(n−1).
1-randomness will be denoted randomness.

If M is a prefix Turing machine, we define KM (x) as the length of the shortest
description of x using machine M , i.e. KM (x) = min{|p| : M(p) = x} in case
x ∈ range(M) and KM (x) = +∞ in case x /∈ range(M).

1.2. A conjecture on randomness.

Definition 1.1. Let U : 2<ω → 2<ω denote any prefix Turing machine. For
X ⊆ 2<ω, let U−1(X) = {p ∈ 2<ω : U(p) ∈ X} and define

ΩU [X] =
∑

p∈U−1(X)

2−|p| = µ(U−1(X)2ω).

The third author has put forward the following conjecture on randomness, in
the spirit of Rice’s theorem for computability. It involves the notion of optimal
prefix Turing machine as defined in the theory of program-size complexity (Cf.
Definition 6.1).

Conjecture 1.2. For any nonempty X ⊆ 2<ω, the probability ΩU [X] that
an optimal prefix Turing machine U on an arbitrary input halts and gives an
output in X is random. Moreover, if X is Σ0

n-hard then this probability is
n-random.

It turns out that the conjecture is false as stated. The following two theorems
gather known negative and positive results about the conjecture with some of
the main results of this paper.

Theorem 1.3 (Negative results).
1. There are optimal machines U for which

i. ΩU [X] is rational (hence not random) for any finite set X.
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ii. ΩU [X] is not Borel normal (hence not random) for some infinite Π0
1

set X.
Cf. Proposition 2.1 and also [8], Corollary 2.2 and Remark 2.3.

2. For any optimal machine U ,
i. There is a ∆0

2 set X such that ΩU [X] is rational. Cf. Theorems 2.7
and 4.2.

ii. (There are hard sets not inducing randomness). For any A ⊆ N, there
is a ∆0,A

2 set X which is Σ0,A
1 -hard and such that ΩU [X] is not normal

(hence not random). In particular, if n ≥ 1 then there is a ∆0
n+1 set

which is Σ0
n-hard and such that ΩU [X] is not random. Cf. Theorem 2.8.

3. (For n ≥ 2, no Σ0
n set gives n-randomness). For any optimal machine U

and any A ⊆ N such that ∅′ ≤T A, if X is Σ0,A
1 or Π0,A

1 then ΩU [X] is not
random in A. In particular, if n ≥ 2 and X is Σ0

n or Π0
n then ΩU [X] is not

n-random. Cf. Theorem 2.9.

Nevertheless, the conjecture holds under some particular or some stronger
hypotheses. The first result supporting the conjecture is Chaitin’s [4] random
real Ω, and corresponds to the case ΩU [X] where X = 2<ω, and U is any optimal
prefix machine.

Theorem 1.4 (Positive results).
1. Let U be any optimal machine. If X ⊆ 2<ω is infinite and Σ0

1 then ΩU [X]
is random. Cf. [5]1.

2. If U is optimal by adjunction (see Def. 6.1) and X is finite not empty then
ΩU [X] is random. Cf. [2].

3. Let U be any optimal machine. If A ⊆ N is such that ∅′ ≤T A and X is
Σ0,A

1 -complete or Π0,A
1 -complete then ΩU [X] is random. In particular, if

n ≥ 2 and X is Σ0
n-complete or Π0

n-complete then ΩU [X] is random. Cf.
Theorem 3.2.

4. Let U be any optimal machine. If A ⊆ N is such that ∅′ ≤T A then there is
a ∆0,A

2 set X such that ΩU [X] is random in A. In particular, if n ≥ 1 then
there is a ∆0

n+1 set X such that ΩU [X] is n-random. Cf. Corollary 4.4.

1.3. Open questions. Is ΩU [X] random when X is co-r.e.? This rather
simple question remained unsolved. We know that the answer is no for finite
sets, but we might analyze what happens when X is infinite. In [8, Theorem 5]
there is a partial negative answer to this question when we can fix an optimal
machine. We do not know what happens when U is given (for example, for
optimal by adjunction machines). Is there always an infinite co-r.e. set X for
which ΩU [X] is not random, regardless the underlying U?

Is it true that for n ≥ 2, if X is Σ0
n-complete then ΩU [X] is m-random, for

some m ∈ {2, . . . , n − 1}? Putting together Part 3 of Theorems 1.3 and 1.4 we
just know that for any n ≥ 2, if X is Σ0

n-complete then ΩU [X] is random but
not n-random. This leaves open the possibility that there is a shift in the second
part of Conjecture 1.2.

1Stated without proof in [5], last assertion of Note p. 141.
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§2. Negative results about the Conjecture.
2.1. Failure for finite sets with particular optimal machines.

Proposition 2.1. Every prefix Turing machine M has a restriction M ′ to
some recursively enumerable set such that KM = KM ′ (hence M ′ is optimal
whenever M is) and ΩM ′ [X] is rational (hence not random), for every finite set
X ⊆ 2<ω.

Proof. Let (pi, yi)i∈N be a recursive enumeration of the graph of M . Define a
total recursive function f : N→ N such that f(i) is the smallest j ≤ i satisfying

yj = yi , |pj | = min{|pk| : k ≤ i, yk = yi}.
Let M ′ be the prefix machine with graph {(pf(i), yf(i)) : i ∈ N}. Clearly, M ′ is
a restriction of M to some recursively enumerable set. Also, for every x ∈ 2<ω,
if j is least such that x = yj and |pj | = KM (x) then f(i) = j for all i ≥ j such
that yi = x. Therefore, M ′−1({x}) is finite, hence ΩM ′ [{x}] =

∑
q∈M ′−1(x) 2−|q|

is a finite sum of rational numbers, hence is rational. The same is true for finite
sets X ⊆ 2<ω. a

Applying the above Proposition to an optimal machine U , we get the following
straightforward corollary, first obtained in [8] with a different proof.

Corollary 2.2. There is an optimal Turing machine U such that for every
finite set X ⊆ 2<ω the real ΩU [X] is rational, hence not random.

Remark 2.3. Using Proposition 2.1 it is easy to construct an infinite Π0
1 set

X such that ΩU [X] is not normal, hence not random. In fact, in [8] it was proven
that there is an infinite Π0

1 set X such that ΩU [X] is neither c.e. nor random.

2.2. Failure for ∆0
2 sets with all optimal machines. We recall some

results of [4] which will be used in the proofs.

Lemma 2.4. Let U be optimal.
1. Coding Theorem: ∃c1 ∀σ 2−KU (σ) ≤ ΩU [{σ}] ≤ 2−KU (σ)+c1

2. Maximal complexity of finite strings:

∃c2 ∀σ KU (σ) < |σ|+KU (|σ|) + c2;

∃c3 #{σ ∈ 2m : KU (σ) < m+KU (m)− k} ≤ 2m−k+c3 .

The next lemma can be found in unpublished work of Solovay [12, IV-20]. We
include the proof because Solovay’s notes are not universally available.

Lemma 2.5. If U is optimal then ∃c4 ∀n ∃m ≤ n (n ≤ m+KU (m) ≤ n+ c4).

Proof. Choose c4 ∈ N such that c4 > KU (0) andKU (m+1) ≤ KU (m)+c4−1,
for all m ∈ N. Given n ∈ N, let m ∈ N be the least number satisfying n ≤ m+
KU (m), which clearly holds for some m ≤ n. We claim that m+KU (m) < n+c4.
This holds because 0 +KU (0) < c4 ≤ n+ c4 and, since m− 1 +KU (m− 1) < n,
then m+KU (m) ≤ m− 1 +KU (m− 1) + c4 < n+ c4. a

Putting these two lemmas together, we get the following result.

Lemma 2.6. If U is optimal then ∃d ∀n ∃σ (2−n−d ≤ ΩU [{σ}] ≤ 2−n+d). In
fact, for some constant d′ there are at least 2n/(d′ n2) strings σ ∈ 2<ω satisfying
the inequalities.
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Proof. Let c1, c2, c3, c4 be constants as in Lemma 2.4 and Lemma 2.5. Then
#{σ ∈ 2m : KU (σ) < m+KU (m)−(c3+1)} ≤ 2m−1, for allm ∈ N. For n+c3+1,
there is an m ≤ n+c3 +1 such that n+c3 +1 ≤ m+KU (m) ≤ n+c3 +1+c4. In
particular, all strings σ ∈ 2m satisfyKU (σ) ≤ m+KU (m)+c2 ≤ n+c2+c3+c4+1.

Now, there are at least 2m−1 strings σ ∈ 2m such that KU (σ) ≥ m+KU (m)−
(c3+1) hence such thatKU (σ) ≥ n+c3+1−(c3+1) = n. For such strings, we then
have n ≤ KU (σ) ≤ n+c2+c3+c4+1. Therefore, for d = max(c1, c2+c3+c4+1),
there are at least 2m−1 strings σ such that 2−n−d ≤ ΩU [{σ}] ≤ 2−n+d. Finally,
note that

m− 1 ≥ n+ c3 −KU (m) ≥ n− 2 log(m)−O(1).

Therefore, at least O(1)2n/n2 strings σ ∈ 2<ω satisfy 2−n−d ≤ ΩU [{σ}] ≤
2−n+d. a

With this lemma we can prove that Conjecture 1.2 fails for ∆0
2 sets.

Theorem 2.7. For every optimal U there is a ∆0
2 set X ⊆ 2<ω such that

ΩU [X] is not random.

Proof. Let d, d′ ∈ N be the constants from Lemma 2.6 and let k be such that
i < 2i/(d′ i2) for i ≥ k. Letting c = k + d, Lemma 2.6 insures the existence of
a sequence (σi)i∈N of distinct strings such that 2−i−c−1 < ΩU [{σi}] ≤ 2−i+c, for
all i ∈ N. Note that ∅′ can compute such a sequence (and even compute the
set of strings in the sequence). Indeed, denoting by Us the computable approx-
imation of U obtained with s computation steps, ΩUs

[{τ}] =
∑

Us(p)=τ 2−|p| is
nondecreasing in s and tends to ΩU [{τ}] when s→∞. Thus, for any rational r,
ΩU [{τ}] > r iff ∃s ΩUs

[{τ}] > r. Hence it is decidable in ∅′ whether ΩU [{τ}] > r
or not.

We build a ∆0
2 set X in stages {Xs}s∈N. At stage s+ 1 we decide whether or

not σs is in X in order to insure that the block of bits of ΩU [X] from s − c to
s+ c+ 1 is not all zeros.
Stage 0. Let X0 = ∅.
Stage s + 1. If s < c then Xs+1 = Xs. Else, using ∅′, decide if the 2c + 2
bits of ΩU [Xs] from s − c to s + c + 1 are all zero. If these bits are all zero,
let Xs+1 = Xs ∪ {σs}. Otherwise, let Xs+1 = Xs. Consider the first case.
Because ΩU [{σs}] > 2−s−c−1 there exists j ≤ s + c + 1 such that the j-th
bit of ΩU [{σs}] is 1. On the other hand, because ΩU [{σs}] ≤ 2−s+c, we have
ΩU [{σs}] � s− c− 1 = 0s−c−1. Then there is s− c ≤ j ≤ s+ c+ 1 such that the
j-th bit of ΩU [{σs}] is 1. Notice that if bit s− c is 1 then all the bits of positions
greater than s − c are 0. Hence, ΩU [Xs+1] � s − c − 1 = ΩU [Xs] � s − c − 1.
Therefore, the work of earlier stages has been preserved and also ΩU [Xs+1] is
not all zeros on the block of bits from s− c to s+ c+ 1.

It follows inductively that, for every s ≥ c, the block of bits of ΩU [X] from
s− c to s+ c+ 1 is not all zeros. Therefore, ΩU [X] is not normal and hence not
random.

Notice that if ΩU [Xs] is a dyadic rational, then the construction can get hung
up at stage s. However, in this case ΩU [Xs] is not random for the finite set Xs,
so the theorem holds. Notice also that this construction works independently of
the optimal machine chosen. a
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The above result can be improved: Theorem 4.2 (Cf. §4) shows that there are
∆0

2 sets X such that ΩU [X] is a rational number. Another improvement shows
that hardness is not enough to get randomness.

Theorem 2.8. For every optimal U and any A ⊆ N, there is a ∆0,A
2 set

X ⊆ 2<ω which is Σ0,A
1 -hard and such that ΩU [X] is not random. In particular,

if n ≥ 1 there is a ∆0
n+1 set X ⊆ 2<ω which is Σ0

n-hard and such that ΩU [X] is
not random.

Proof. First observe that there is a constant b such that

2−bΩU [{0σ}] ≤ ΩU [{σ}] ≤ 2bΩU [{0σ}].

As in the proof of Theorem 2.7, let (σi)i∈N be the sequence of distinct strings
such that

2−i−c−1 < ΩU [{σi}] ≤ 2−i+c

for an appropriate constant c and such that all σi start with a 0. Let Y =
{10e : e ∈ A′} be a set which codes A′ with all strings starting with 1. So no σi

belongs to Y .
The construction of X̃ is similar to the construction of X in the proof of

Theorem 2.7, but now it is relative to A′: at stage s+ 1 we may or may not put
the string σs depending whether the block of bits of ΩU [Y ∪ X̃s] from s − c to
s+ c+ 1 are all zeroes. Observe that ΩU [Y ∪ X̃s] is A′-computable because

ΩU [Y ∪ X̃s] = ΩU [Y ] + ΩU [X̃s]

is a left-c.e. real relative to A. Define X = X̃ ∪ Y and note that by construction
X ≤T A′ and A′ many-one reduces to X. Thus, X is Σ0,A

1 hard. a
2.3. Failure of n-randomness for Σ0

n and Π0
n sets.

Theorem 2.9. Let A ⊂ N be such that ∅′ ≤T A (where ≤T is Turing reducibil-
ity). If U is any optimal machine and X ⊆ 2<ω is Σ0,A

1 or Π0,A
1 then ΩU [X] is

not random in A. In particular, if n ≥ 2 and X is Σ0
n or Π0

n then ΩU [X] is not
n-random.

Proof. The case X is finite is trivial since then ΩU [X] is ∆0
2 hence computable

in ∅′.
Case X is infinite Σ0,A

1 . Fix m ∈ N. With oracle ∅′, we can (uniformly in m)
find a finite subset Z ⊂ 2<ω such that ΩU [Z] > ΩU − 2−m−1 and compute ε > 0
such that ε < min{ΩU [{z}] : z ∈ Z}. Then∑

σ:ΩU [{σ}]≤ε

ΩU [{σ}] < 2−m−1.(1)

Let (xs)s∈N be an injective A-computable enumeration of X and set Xs = {xt :
t < s}. We build an A-Martin-Löf test (Tm)m∈N for ΩU [X]. The idea is to define
a Σ0,A

1 class Tm by laying down successive intervals to the right of ΩU [Xs]. Set
Tm =

⋃
s∈N Im,s where Im,s = (ΩU [Xs],ΩU [Xs] + δ) and δ = 2−m−1/(1 + 1/ε).

Observe that
{σ ∈ 2<ω : ΩU [Xs] < .σ < ΩU [Xs] + δ}
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is Σ0,∅′
1 (with index computable from A) because ΩU [Xs] is computable in ∅′.

Therefore Im,s and Tm are Σ0,A
1 . For s big enough, ΩU [Xs] < ΩU [X] < ΩU [Xs]+

δ, so that ΩU [X] ∈ Im,s. Thus, ΩU [X] ∈ Tm.
Since ΩU [Xs+1] = ΩU [Xs] + ΩU [{xs}], we have

ΩU [{xs}] ≥ δ⇒ Im,s and Im,s+1 are disjoint

⇒ µ(
⋃

t≤s+1

Im,t) = µ(
⋃
t≤s

Im,t) + δ.

Now, for all s, µ(
⋃

t≤s+1 Im,t) ≤ µ(
⋃

t≤s Im,t)+ΩU [{xs}]. Since ε ≥ δ, the above
properties yield

µ(Tm) ≤ (
∑

s:ΩU [{xs}]≤ε

ΩU [{xs}]) + δ (#{s : ΩU [{xs}] > ε}+ 1)

< 2−m−1 + δ(1 + 1/ε) = 2−m.

(use (1) and the fact that #{σ : ΩU [{σ}] ≥ ε} ≤ ΩU/ε ≤ 1/ε).
Thus, we have constructed an A-Martin-Löf test (Tm)m∈N such that ΩU [X] ∈⋂
m∈N Tm, proving that ΩU [X] is not random in A.

Case X is Π0,A
1 . Since ΩU [X] = ΩU − ΩU [2<ω \X], use the above case and the

fact that ΩU is A-computable. a

§3. Positive results about the Conjecture. In this section we give pos-
itive instances of Conjecture 1.2; in particular, the random numbers yielded by
Theorems 3.2 and 3.3 are not necessarily computably enumerable. The proof
method broadens the known proof techniques, which relied on the property that
the numbers be computably enumerable in their degree of randomness.

3.1. Completeness and computable choice. To prove randomness in The-
orems 3.2, 3.3, we use the following technical Lemma 3.1, which insures that some
computable reductions associated to complete sets can be used as computable
choice functions in a highly noncomputable environment.

Lemma 3.1. Let A ⊂ N be such that ∅′ ≤T A. Suppose X ⊆ N is Σ0,A
1 -

complete and R ⊆ 2<ω × P<ω(N) is Σ0,A
1 and satisfies

∀Z ∈ P<ω(N) {σ : R(σ,Z)} has at least #(Z) + 1 elements(2)

(in particular, this is the case if {σ : R(σ,Z)} is infinite for all Z). Then there
exists f : 2<ω → N injective total computable such that

∀σ ∈ 2<ω [(∃Z ⊂ X R(σ,Z)) ⇒ ∃Z ⊂ X (R(σ,Z) ∧ f(σ) ∈ X \ Z)].

Moreover, for such an f one can take some computable reduction of {σ : ∃Z ∈
P<ω(X) R(σ,Z)} to X.

Proof. 1. Let WA ⊂ N2 be universal for Σ0,A
1 subsets of N, i.e. W is Σ0,A

1

and every Σ0,A
1 subset of N is a section WA

e = {n : (e, n) ∈WA} of WA for some
e. Since X is Σ0,A

1 -complete, there exists a total computable injective reduction
F : N2 → N of WA to X, i.e. WA = F−1(X). Then, for every e, the map
Fe : N→ N such that Fe(n) = F (e, n) is a total computable injective reduction
of WA

e to X.
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2. Let S = {σ : ∃Z ∈ P<ω(X) R(σ,Z)}. Clearly, S is Σ0,A
1 . Property (2)

insures that S is infinite. Letting e be some integer (to be fixed by the recursion
theorem such that WA

e = range(θe) = S), uniformly in e, we inductively define
an injective total A-computable map θe : N → S (to be an enumerations of S).
Since Fe is computable, its range is computable with oracle ∅′, so that the set
X \ range(Fe) is Σ0,A

1 . Fix some A-computable enumeration ρ of R.

Stage s. Let (σ,Z) be the least pair (relative to ρ) such that

σ /∈ {θe(t) : t < s} ∧ Z ⊆ {Fe(θe(t)) : t < s} ∪ (X \ range(Fe))(3)

Property (2) insures that there is always such a σ. Set θe(s) = σ.

3. Let ξ : N → N be total computable such that range(θe) = WA
ξ(e). The

recursion theorem insures that there exists e so that WA
e = WA

ξ(e). Since Fe is
an injective total computable reduction of WA

e to X, the last equality insures
that Fe is a reduction of range(θe) to X. In particular,

range(Fe ◦ θe) = Fe(range(θe)) = Fe(WA
ξ(e)) = Fe(WA

e ) = range(Fe) ∩X.

Hence range(Fe◦θe)∪(X\range(Fe)) = X. Using (3), this insures that θe(s) ∈ S
for all s. This also yields that every finite subset of X is included in {Fe(θe(t)) :
t < s} ∪ (X \ range(Fe)) for s large enough. Using (3) again, we see that every
σ ∈ S is in the range of θe. Thus, S = range(θe).

4. Let f = Fe. Then f is injective total computable. Also, if σ = θe(s)
and Z is as in property (3), then R(σ,Z) holds and, since Fe ◦ θe is injective,
f(σ) = Fe(θe(s)) /∈ {Fe(θe(t)) : t < s}, hence f(σ) /∈ Z. a

3.2. Randomness of ΩU [X] when X is Σ0
n or Π0

n complete, n ≥ 2.
The above Lemma 3.1 allows us to extend to ΩU [X] Chaitin’s argument to prove
the randomness of ΩU .

Theorem 3.2. Let U be optimal. If X ⊆ 2<ω is Σ0,A
1 -complete for some

A ⊂ N such that ∅′ ≤T A then ΩU [X] is random. In particular, if n ≥ 2 and X
is Σ0

n complete then ΩU [X] is random.

Proof. 1. The relation R ⊂ 2<ω × P<ω(N). To apply Lemma 3.1 we set

R = {(λ, ∅)} ∪ {(σ,Z) : σ ∈ dom(U) ∧ ΩU [Z] > U(σ)}

where U(σ) is identified with a dyadic rational number. Observe that digits
of ΩU [Z] can be computed from the finite set Z using oracle ∅′, and the strict
inequality ΩU [Z] > U(σ) can be decided using oracle ∅′. Since ∅′ ≤T A, this
insures that R is A-computable. One easily checks that R satisfies property (2)
of Lemma 3.1 (in fact {σ : R(σ,Z)} is even infinite when Z 6= ∅).

2. A constant from the invariance theorem. Let f be given by Lemma 3.1.
Consider the restriction of f to dom(U). This is a partial computable function
with prefix-free domain. Hence there exists a constant c such that, for all σ ∈
dom(U),

KU (f(σ)) ≤ Kf�dom(U)(f(σ)) + c ≤ |σ|+ c.
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3. Chaitin’s argument pushed up to ΩU [X]. Consider the infinite binary ex-
pansion of ΩU [X] which, in case it is dyadic (which is not the case, in fact),
does end with 1ω. For m ∈ N, let σ be such that U(σ) = ΩU [X] � m. Since
ΩU [X] > ΩU [X] � m, we see that there exists a finite subset Z of X such that
ΩU [Z] > ΩU [X]� m, i.e. such that R(σ,Z). Clearly, Z must contain all elements
a ∈ X such that ΩU [{a}] > 2−m.

Using Lemma 3.1, we see that f(σ) ∈ X \ Z. Thus, ΩU [{f(σ)}] ≤ 2−m. In
particular, KU (f(σ)) ≥ m. Now, since σ ∈ dom(U), Point 2 yields KU (f(σ)) ≤
|σ|+ c. Hence |σ| ≥ m− c. Thus, every program σ such that U(σ) = ΩU [X]� m
has length ≥ m − c. This proves that KU (ΩU [X] � m) ≥ m − c and hence that
ΩU [X] is random. a

The case of Π0,A
1 -complete sets X is obtained with a similar argument.

Theorem 3.3. Let A ⊂ N be such that ∅′ ≤T A. If X is Π0,A
1 -complete then

ΩU [X] is random. In particular, if n ≥ 2 and X is Π0
n complete then ΩU [X] is

random.

Proof. 1. The relation R. We now let

R = {(σ,Z) : σ ∈ dom(U) ∧ ΩU − ΩU [Z] < U(σ) + 2−|U(σ)|+1}.

Now, R is Σ0,A
1 (express ΩU −ΩU [Z] < ... as ∃m ΩU � m−ΩU [Z] � m+2−m+1 <

(...) � m) and satisfies property (2) from Lemma 3.1.

2. Chaitin’s argument pushed up to ΩU [X]. For m ∈ N, let σ be such that
U(σ) = ΩU [X]� m. Observe that,

Ω− ΩU [N \X] = ΩU [X] < ΩU [X]� m+ 2−m+1

so that there exists a finite subset Z of N \X such that

Ω− ΩU [Z] < ΩU [X]� m+ 2−m+1

i.e. such that R(σ,Z). Observe that if z ∈ N \ (Z ∪X) then

Ω ≥ ΩU [Z] + ΩU [X] + ΩU [{z}]
ΩU [{z}] ≤ Ω− ΩU [Z]− ΩU [X]

≤ ΩU [X]� m+ 2−m+1 − ΩU [X]
≤ 2−m+1 since ΩU [X]� m− ΩU [X] ≤ 0.

Let f be as in Lemma 3.1. Then f(σ) ∈ (N \X) \ Z. Therefore ΩU [{f(σ)}] ≤
2−m+1. In particular, KU (f(σ)) ≥ m − 1. Now, since σ ∈ dom(U), Point 2 of
the proof of Theorem 3.2 yields KU (f(σ)) ≤ |σ| + c. Hence |σ| ≥ m − 1 − c.
Thus, every program σ such that U(σ) = ΩU [X] � m has length ≥ m − 1 − c.
This proves that ΩU [X] is random. a

§4. The set {ΩU [X] : X ⊆ 2<ω}.
4.1. A lemma about sums of subseries.

Lemma 4.1. Let (ai)i∈N be a sequence of strictly positive real numbers satis-
fying

1. limi→+∞ ai = 0;
2. ai ≤

∑
j>i aj for all i.
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Let α =
∑

i∈N ai (which may be +∞). Then

{
∑
i∈I

ai : I ⊆ N} = [0, α].

Furthermore, for every r ∈ [0, α] there exists I(r) ⊆ N such that
∑

i∈I(r) ai = r

and which is computable (non-uniformly) from r and (ai)i∈N.

Proof. Take r ∈ [0, α]. We define a monotone increasing sequence (It(r))t∈N
of finite subsets of N by the following induction:

I0(r) = ∅ , It+1(r) =

{
It(r) ∪ {t} if at +

∑
i∈It(r)

ai ≤ r;
It(r) otherwise.

Let I(r) =
⋃

t∈N It(r). Since inequality
∑

i∈It(r)
ai ≤ r is true for all t, we get∑

i∈I(r) ai ≤ r. We show that r =
∑

i∈I(r) ai.
Case r = α. Then I(r) = N and the equality is trivial.
Case r < α and there are only infinitely many t’s such that It+1(r) = It(r). For
such ts we have

∑
i∈It(r)

ai ≤ r < at +
∑

i∈It(r)
ai. Taking limits over such t’s

and using condition 1, we get equality
∑

i∈I(r) ai = r.
Case r < α and there are finitely many t’s such that It+1(r) = It(r). We
show that this case does not occur. Since r < α we have I(r) 6= N so that
there is at least one t such that It+1(r) = It(r). Let u be the largest such t.
Then,

∑
i∈Iu(r) ai ≤ r < au +

∑
i∈Iu(r) ai and, for all v > u, Iv+1 = Iv ∪ {v}.

Therefore, I(r) = Iu(r) ∪ {i : i > u}. Since condition 2 insures au ≤
∑

i>u ai,
we get r <

∑
i>u ai +

∑
i∈Iu(r) ai =

∑
i∈I(r) ai, which contradicts inequality∑

i∈I(r) ai ≤ r.
The last assertion of the Lemma about the relative computability of I(r) is

trivial if I(r) is finite. Since the at’s are strictly positive, if I(r) is infinite then r 6=
at +

∑
i∈It(r)

ai for all t. Thus, enumerating the digits of r and at +
∑

i∈It(r)
ai,

we get at some finite time either r < at +
∑

i∈It(r)
ai or r > at +

∑
i∈It(r)

ai,
which proves that the test in the definition of It+1(r) can be done recursively in
r and (ai)i∈N. a

4.2. {ΩU [X] : X ⊆ 2<ω} is a finite union of closed intervals. Point 2
of the following theorem gives an alternative proof of Theorem 2.7 above.

Theorem 4.2. Let U be optimal.
1. The set {ΩU [X] : X ⊆ 2<ω} is the union of finitely many pairwise disjoint

closed intervals with positive lengths, i.e.

{ΩU [X] : X ⊆ 2<ω} = [a1, b1] ∪ [a2, b2] ∪ ... ∪ [an, bn],

where 0 = a1 < b1 < ... < an < bn = ΩU .
2. Every real s ∈ {ΩU [X] : X ⊆ 2<ω} is of the form ΩU [Y ] for some Y which

is recursive in s⊕∅′. In particular, there exists some ∆0
2 set X ⊆ 2<ω such

that ΩU [X] is rational, hence not random.

Proof. 1i. First, we get α > 0 such that {ΩU [X] : X ⊆ 2<ω} ⊇ [0, α]. Let
d, d′ ∈ N be the constants of Lemma 2.6 and let k be such that 22d+1(i + 1) ≤
2i/(d′i2) for i ≥ k. Using this inequality and Lemma 2.6, one can inductively
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define a sequence of pairwise disjoint sets of strings (Si)i≥k such that #Si =
22d+1 and 2−i−d−1 < ΩU [{σ}] ≤ 2−i+d for every σ ∈ Si. Notice that, as in
Theorem 2.7, the sequence (Si)i≥k is computable in ∅′.

We define an enumeration ψ of S =
⋃

i≥k Si: for j,m ∈ N and m < 22d+1, let
ψ(22d+1j +m) be the m-th element of Sk+j .

Set ai = ΩU [{ψ(i)}], it is clearly positive and limi→+∞ ai = 0. Observe that
for any m ∈ [0, 22d+1), and any j ≥ 0, 2−(k+j)−d−1 < a22d+1j+m ≤ 2−(k+j)+d

and it is computable in ∅′. Then, for any such m and j we have

∑
l>22d+1j+m

al ≥
∑
l>j

∑
s<22d+1

a22d+1l+s

>
∑
l>j

22d+12−(k+l)−d−1

= 2−(k+j)+d

≥ a22d+1j+m.

Thus, the conditions of Lemma 4.1 are satisfied: {ΩU [Y ] : Y ⊆ S} = [0, α] where∑
i∈N ai = α > 0.

1ii. Now,

{ΩU [X] : X ⊆ 2<ω} = {ΩU [Y ] + ΩU [Z] : Y ⊆ S, Z ∩ S = ∅}
= [0, α] + {ΩU [Z] : Z ∩ S = ∅}
=

⋃
r∈R

[r, r + α].

where R = {ΩU [Z] : Z ∩ S = ∅} and 0 ∈ R.
LetRi = R∩[iα, (i+1)α[. Observe that if r, r′ ∈ Ri then [r, r+α] and [r′, r′+α]

have non-empty intersection. Hence the union
⋃

r∈Ri
[r, r + α] is an interval Ji

(a priori not necessarily closed). Since Ri = ∅ for iα > 1, we see that R =
R1∪ ...∪R` where ` ≤ d 1

αe. Thus, {ΩU [X] : X ⊆ 2<ω} = J1∪ ...∪J`. Grouping
successive intervals Jis having non-empty intersection, we get the representation
{ΩU [X] : X ⊆ 2<ω} = I1 ∪ ... ∪ In where the Iis are pairwise disjoint intervals
in [0, 1].

1iii. Since the map X 7→ ΩU [X] is continuous from the compact space P (2<ω)
(with the Cantor topology) to [0, 1], its range {ΩU [X] : X ⊆ 2<ω} is compact.
In particular, the intervals Iis may be taken closed. This proves Point 1 of the
Theorem.

2. First, observe that if I ⊆ N is recursive in ∅′ then so is {ψ(n) : n ∈ I}.
Given σ ∈ 2<ω, using ∅′, one can check whether 2−j < ΩU [{σ}]. Hence one
can compute i and m such that σ is the m-th element of Sk+i, i.e. such that
σ = ψ(22d+1i+m), if such i and m exists (this can also be determined with ∅′).
In case there is no such i and m then σ /∈ {ψ(n) : n ∈ I}. Else σ ∈ {ψ(n) : n ∈ I}
if and only if 22d+1i+m ∈ I.
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Case s ∈ [0, α]. Lemma 4.1 insures that there is a set I(s) ⊆ N, computable
from s ⊕ ∅′, such that

∑
i∈I(s) ai = s. Let X = {ψ(n) : n ∈ I(s)}. Then X is

computable from s⊕ ∅′ and ΩU [X] = s.
Case s ∈ [r, r + α) for some r ∈ R. Let s = ΩU [Z] + β where r = ΩU [Z] and
Z∩S = ∅ and β < α. Let Z ′ be a finite subset of Z such that ΩU [Z \Z ′] < α−β.
Then the real ΩU [Z ′] is computable in ∅′ and ΩU [Z \ Z ′] + β = s − ΩU [Z ′] is
computable in s⊕∅′. Since ΩU [Z \Z ′] + β < α, Lemma 4.1 yields X ⊆ S which
is computable in s⊕∅′ such that ΩU [Z \Z ′] + β = ΩU [X]. Since Z ′ is finite, we
see that X ∪ Z ′ is computable in s⊕ ∅′. Finally, s = ΩU [X ∪ Z ′].
Case s ∈ [aj , bj) with 1 ≤ j ≤ n. Observe that

⋃
r∈Ri

[r, r + α) is equal to Ji

with the right endpoint removed. Suppose Ij = Ji ∪ ... ∪ Ji+m. Then

[aj , bj) =
⋃

i≤p≤i+m

⋃
r∈Rp

[r, r + α).

Thus, s ∈ [r, r + α) for some r ∈ R and the previous case applies.
Case s = bj with 1 ≤ j ≤ n. Let bj = ΩU [X]. If σ /∈ X then ΩU [X ∪ {σ}] > bj
hence ΩU [X ∪ {σ}] ≥ aj+1. In particular, ΩU [{σ}] ≥ aj+1 − bj . Which proves
that the complement of X contains at most d 1

aj+1−bj
e elements. Thus, X is

cofinite, hence recursive. a
In relation with Theorem 4.2, we consider the following question: how discon-

nected is {ΩU [X] : X ⊆ 2<ω}?

Proposition 4.3. Let U be optimal. For each n ≥ 1, there exists a finite
modification V of U which is still optimal and such that the set {ΩV [X] : X ⊆
2<ω} is not the union of less than n intervals.

Proof. Let (pi)i∈N be an enumeration of dom(U) and inductively define in-
tegers i0 < i1 < ... < in such that i0 = 0 and, for k = 0, ..., n − 1, letting
Hk =

∑
ik≤i<ik+1

2−|pi| and Tk =
∑

i≥ik
2−|pi|,

Hk >
Tk

2
.(4)

We define a first finite modification V̂ of U as follows:

V̂ (pi) =
{

0k if ik ≤ i < ik+1 and 0 ≤ k < n;
U(pi) if i ≥ in.

Clearly, for 0 ≤ k < n,

{ΩV̂ [X] : 0k ∈ X ∧ ∀` < k 0` /∈ X}; ⊆ [Hk, Tk];(5)

{ΩV̂ [X] : ∀` < n 0` /∈ X} ⊆ [0, Tn].(6)

Now, ΩU = T0 and inequalities (4) insure that Tk+1 = Tk − Hk < Hk for
0 ≤ k < n. Thus, the intervals [0, Tn], [Hn−1, Tn−1],..., [H0, T0] are pairwise
disjoint. Since the sets on the left in (5), (6) are non-empty, we see that {ΩV̂ [X] :
X ⊆ 2<ω} is not the union of less than n+ 1 intervals.

However, even though universal functions take each value infinitely many
times, an optimal function, such as U , may take some values only once. There-
fore, V̂ may be non-surjective, hence non-optimal. We have to insure that
U(p0), ..., U(pin−1) are indeed values of V . In that purpose, observe that there
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are infinitely strings x such that U−1(x) has at least two elements. Else, for
x large enough, KU (x) would be |p| where p is the unique element such that
U(p) = x, which would make KU computable, contradicting optimality of U .

Now, compute in many distinct indexes j, all≥ in, such that the outputs U(pj)
are distinct and each U−1(U(j)) has at least two elements. Let j0, ..., jin−1 be
such indexes and set

V (pi) =

 V̂ (pi) if i < in;
U(p`) if ` < in and i = j`;
U(pi) if i ≥ in and i is not among j0, ..., jin−1.

V is still a finite modification of U but has the same range as U , hence is
surjective. Being surjective and equal to the optimal U almost everywhere, V is
also optimal. Finally, observe that inclusions (5), (6) are still true for V since V
and V̂ coincide on pi for i < in. a

4.3. ΩU [X] is n-random for some ∆0
n+1 sets. As a corollary of Theorem

4.2, we get the following result which is in contrast with Theorems 2.7, 2.8 and
2.9.

Corollary 4.4. Let U be any optimal machine:
1. For any A ⊆ N there is a ∆0,A

2 set X such that ΩU [X] is random in A.
2. For every n ≥ 2 there is a ∆0

n+1 set X such that ΩU [X] is n-random. For
n = 1, there is a computable such X.

Proof. 1. Let b1 be as in Point 1 of Theorem 4.2, let r = ΩUA [2<ω] associated
to some optimal machine UA with oracle A and k ∈ N be such r2−k < b1. Then
r and r2−k are ∆0,A

2 and random in A. Theorem 4.2 insures that there exists
some set X which is computable in r2−k ⊕ ∅′ ≤T A′ such that r2−k = ΩU [X].

2. If n = 1, set X = 2<ω and apply Chaitin’s celebrated result. If n ≥ 2, apply
Point 1. a

§5. Varying U and X in ΩU [X]. From point 2 of Theorem 4.2, it follows
that, for any given optimal machine U , every c.e. random real small enough is
ΩU [X] for some X ⊆ 2<ω which is ∆0

2. We now show that X can be any Σ0
1 set

if we pick an appropriate optimal machine U .
To prove this, we need some well-known facts. In [3] Calude et al. showed

that for any c.e. real a there exists an r.e. prefix-free set R ⊆ 2<ω such that
a = µ(R2ω).

Let us recall the definition of Solovay’s domination between c.e. reals: Let a
and b be c.e. reals. We say that a dominates b, and write b ≤S a iff there is
a constant c and a partial computable function f : Q → Q such that for each
rational q < a, f(q) is defined and f(q) < b and b− f(q) ≤ c(a− q).

In [7], Downey et al. proved that if a and b are c.e. reals such that b ≤S a,
then there is a c.e. real d and constant c ∈ N such that ca = b+ d. Note that c
can be taken as large as we like.

Using these results, we can prove the following:

Theorem 5.1. Let X ⊆ 2<ω be Σ0
1, X 6= ∅, and let a ∈ (0, 1) be c.e. random

real. There is an optimal machine V such that a = ΩV [X].
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Proof. Let U be the usual optimal machine such that

U(0e−11p) = Me(p).

By Chaitin’s Theorem (Cf. Point 1 of Theorem 1.4), ΩU [X] is a c.e. random real
and following [10] we know that a ≡S ΩU [X] (this just means a ≤S ΩU [X] and
ΩU [X] ≤S a). Hence, from [7] there is a c large enough such that 2−cΩU <
min{a, 1− a} and a− 2−cΩU [X] is a c.e. real in (0, 1). From [3] there is an r.e.
prefix-free set R such that a− 2−cΩU [X] = µ(R2ω).

We define the Kraft-Chaitin list for V with the axioms {(|r|, y) : r ∈ R}
and {(|p| + c, U(p)) : U(p) ↓}, where y ∈ X. Since for any p, if U(p) ↓ then
U(p) = V (q), for some q with |q| = |p| + c, we conclude that V is optimal. By
construction, we have ΩV [X] = µ(R2ω) + 2−cΩU [X] = a. a

§6. On the notion of optimality. Conjecture 1.2 is valid for finite sets
for machines that are optimal by adjunction (Cf. Part 2 of Theorem 1.4). This
refinement of the notion of optimality corresponds to the most natural use of
optimal machines.

Let (Me)e∈N be a recursive enumeration of all prefix Turing machines.

Definition 6.1 (Optimality and optimality by adjunction). Let U : 2<ω →
2<ω be a prefix Turing machine.

1. U is optimal if and only if

∀e ∃ce ∀p ∃σe,p (U(σe,p) = Me(p) ∧ |σe,p| ≤ |p|+ ce).

U is effectively optimal if there is a total recursive function c : N× 2<ω →
2<ω such that we can take σe,p = c(e, p).

2. U is optimal by adjunction if and only if

∀e ∃σe ∀p U(σep) = Me(p).

Hence, in this case, ce = |σe| and σe,p = σep (concatenation of words σe

and p).

Clearly, U is optimal if and only if it satisfies the Invariance Theorem (of
program-size complexity) which states that for all e there is a constant ce such
that KU (y) ≤ KMe

(y) + ce for all y.
Optimality by adjunction can be obtained from effective optimality plus some

extra conditions on the coding function c.

Proposition 6.2. Let V be effectively optimal such that the associated c : N×
2<ω → 2<ω is injective and has recursive range. Then there exists a machine U
optimal by adjunction such that

(∀σ ∈ 2<ω) ΩU [{σ}] = ΩV [{σ}].(7)

Proof. Since V is optimal, ΩV [2<ω] is random, hence less than 1 and so there
exists k such that ΩV [2<ω] < 1 − 2−k. Fix such a k. The idea of the proof
is as follows: first, define U on a prefix-free subset of 0k+12<ω in a way that
insures that U is optimal by adjunction. Then define U on a prefix-free subset
of 0≤k12<ω to get condition (7).
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For (e, p) such that c(e, p) ∈ dom(V ), and n ∈ N such that |c(e, p)| ≤ |p|+ n,
we set

U(0k+1+n 1e+1 0 p) = V (c(e, p)).(8)

Since V (c(e, p)) = Me(p) we see that U(0k+1+n1e+10p) = Me(p) for all n ≥
|c(e, p)|−|p|. The optimality of V insures that there exists ce such that |c(e, p)| ≤
|p|+ ce for all p. Then U(0k+1+ce1e+10p) = Me(p) for all p. This proves that U
is optimal by adjunction with σe = 0k+1+ce1e+10.

Observe that for given e and p,∑
n≥m

2−|0
k+1+n1e+10p| = 2−(k+e+3)

∑
n≥m

2−(n+|p|)

= 2−(k+2+e+max(|p|,|c(e,p)|)).

where m = max(0, |c(e, p)| − |p|). Let Qe,p be the finite subset of N such that∑
j∈Qe,p

2−j = 2−|c(e,p)| − 2−(k+2+e+max(|p|,|c(e,p)|)).

To define U on
⋃

n≤k 0n12<ω, we introduce the following Kraft-Chaitin set

W = {(j, V (c(e, p))) : (e, p) ∈ dom(V ◦ c), j ∈ Qe,p}
∪ {(|q|, V (q)) : q ∈ dom(V ) \ range(c)}.

Since the range of c is recursive, there is a recursive enumeration (ln, σn)n∈N of
W . Let us show that W is indeed a Kraft-Chaitin set.∑

(l,σ)∈W

2−l =
∑

(e,p)∈dom(V ◦c)

∑
j∈Qe,p

2−j +
∑

q∈dom(V )\range(c)

2−|q|

≤
∑

(e,p)∈dom(V ◦c)

2−|c(e,p)| +
∑

q∈dom(V )\range(c)

2−|q|

≤
∑

q∈dom(V )∩range(c)

2−|q| +
∑

q∈dom(V )\range(c)

2−|q|

< 1− 2−k.

A straightforward extension of the Kraft-Chaitin theorem shows that there is a
r.e. set {pn : n ∈ N} which is a prefix-free subset of 0≤k12<ω and |pn| = ln for
all n. We complete the definition of U on 0≤k12<ω by setting for all n

U(pn) = σn.(9)

Observe that U , as defined by (8) and (9), has prefix-free domain. Also, for
σ ∈ 2<ω, we have

ΩV [{σ}] =
∑

{2−|q| : q ∈ dom(V ) ∩ range(c) ∧ V (q) = σ}(10)

+
∑

{2−|q| : q ∈ dom(V ) \ range(c) ∧ V (q) = σ}.(11)

Take q as in (10). Since c is injective, there is a unique pair (e, p) such that
q = c(e, p). Thus, the sum (10) is exactly∑

V (c(e,p))=σ

2−|c(e,p)|.
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The U -descriptions of type (8) of σ add 2−(k+2+e+max(|p|,|c(e,p)|)) to ΩU [{σ}], for
any (e, p) such that V (c(e, p)) = σ; the U -descriptions of type (9) add 2−|c(e,p)|−
2−(k+2+e+max(|p|,|c(e,p)|)) to ΩU [{σ}] for any (e, p) such that V (c(e, p)) = σ. So,
in total, for every (e, p) such that V (c(e, p)) = σ contributes 2−|c(e,p)| to ΩU [{σ}].

For q ∈ dom(V ) \ range(c) we have (|q|, V (q)) ∈ W so there are additional
U -descriptions that contribute to ΩU [{σ}] exactly the amount in (11). Thus,
ΩU [{σ}] = ΩV [{σ}]. a

Remark 6.3. In the proposition above, the condition that c has recursive im-
age is used to see that W is r.e. This condition can be replaced by the assumption
that dom(V ) \ range(c) is r.e.

§7. Conjecture for infinite computations. For infinite computations we
are going to consider monotone Turing machines with infinite inputs. Such a
machine has a one-way and write-only output tape (no erasing nor overwriting
is possible). Thus, the sequence of symbols written on the output tape increases
monotonically with respect to the prefix ordering as the number of computation
steps grows. The input/output behavior of a monotone Turing machine is a map
M∞ : 2ω → 2≤ω, where 2≤ω = 2<ω ∪ 2ω, such that

M∞(Z) = lim
t→∞

Mt(Z � t)

where Mt : 2<ω → 2<ω is total recursive monotone increasing with respect to
the prefix ordering on words. For more details on infinite computations, Cf. [2].

For any optimal machine U , and for X ⊆ 2≤ω we define

Ω∞U [X ] = µ((U∞)−1(X )).

i.e. Ω∞U [X ] is the probability that U∞ gives an output in X .
An analog of Conjecture 1.2 can be stated for infinite computations.

Conjecture 7.1. For any X  2≤ω, the probability Ω∞U [X ] that an arbitrary
infinite input to an optimal monotone machine performing infinite computations
gives an output in X is random. And the harder the set X , the more random
Ω∞U [X ].

Relatively to monotone Turing machines which are optimal by adjunction (Cf.
Def.6.1), this conjecture has been proved in [2, 1] for many X ⊆ 2≤ω, considering
the effective levels of the Borel hierarchy on 2≤ω with a spectral topology (for
which the basic open sets are of the form s2≤ω, for s ∈ 2<ω).

Theorem 7.2 ([2, 1]). Let X ⊆ 2≤ω be Σ0
n(spectral) and hard for the class

Σ0
n(2ω) with respect to effective Wadge reductions, for any n ≥ 1. Then, Ω∞U [X ]

is n-random.

However, the conjecture is not always true. The proof uses an adequate version
of Lemma 2.6.

Lemma 7.3. Let U be a monotone prefix Turing machine which is optimal by
adjunction. Then ∃d ∀n ∃σ 2−n−d ≤ Ω∞U [{σ}] ≤ 2−n+d. In fact, for some con-
stant d′, there are at least 2n/(d′ n2) strings σ ∈ 2<ω satisfying the inequalities.
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Proof. Fix some total recursive injective function θ : 2<ω → 2<ω with recur-
sive prefix-free range. Thanks to Lemma 2.6, it suffices to prove that there exists
k such that for any σ ∈ 2<ω,

2−kΩU [{σ}] ≤ Ω∞U [{θ(σ)}] ≤ 2kΩU [{σ}],

Consider the relation R ⊂ 2<ω × 2<ω such that (p, u) ∈ R if and only if the
computation of U∞ on any infinite extension of p has current output u. Let
M : 2<ω → 2<ω be the machine such that M(p) halts and outputs σ if and only
if (p, θ(σ)) ∈ R but (q, θ(σ)) /∈ R for any proper prefix of p. Clearly, M is partial
recursive and has prefix-free domain.

Using optimality by adjunction, let τ ∈ 2<ω be such that M(p) = U(τp) for
all p. Thus, for any Z ∈ 2ω if U∞(Z) = θ(σ), then there exists n such that
U(τ(Z � n)) halts and U(τ(Z � n)) = σ. Hence,

Ω∞U [{θ(σ)}] ≤ µ({Z ∈ 2ω : ∃n U(τ(Z � n)) = σ})
=

∑
U(τp)=σ

2−|p|

≤ 2|τ | ΩU [{σ}].

For the other inequality, let N : 2<ω → 2<ω be the machine such that N(p) =
θ(U(p)) and let ρ be such that U(ρp) = N(p) = θ(U(p)). Then

ΩU [{θ(σ)}] ≥ 2−|ρ|
∑

U(ρp)=θ(σ)

2−|p|

= 2−|ρ|
∑

U(p)=σ

2−|p|

= 2−|ρ| ΩU [{σ}].

To conclude, observe that Ω∞U [{θ(σ)}] ≥ ΩU [{θ(σ)}] and take k = max(|τ |, |ρ|).
a

From Lemma 7.3, the proofs of Theorems 2.7 and 2.8 adapt easily to Ω∞U ,
giving counterexamples which are included in the subset 2<ω of 2≤ω. However,
oracle ∅′′ is needed to check inequalities Ω∞U [{σ}] > τ and check if a given bit of
Ω∞U [X] is zero for finite subsets X of 2<ω. Which gives a shift to ∆0

3. We state
the analog of Theorem 2.8.

Theorem 7.4. For every optimal U and any A ⊆ N, there is a ∆0,A
3 set

X ⊆ 2<ω which is Σ0,A
1 -hard and such that Ω∞U [X] is not random. In particular,

if n ≥ 1 there is a ∆0
n+2 set X ⊆ 2<ω which is Σ0

n-hard and such that Ω∞U [X] is
not random.

The counterparts of Theorem 4.2 and Proposition 4.3 are as follows.

Theorem 7.5. Let U be a monotone Turing machine optimal by adjunction.

1. The set {Ω∞U [X] : X ⊆ 2<ω} is the union of finitely many pairwise disjoint
closed intervals. For every real s in the above set there exists X ⊆ 2<ω

recursive in s⊕ ∅′′ such that s = Ω∞U [X].
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2. {Ω∞U [X ] : X ⊆ 2≤ω ∧ (U∞)−1(X ) is measurable} = {Ω∞U [X ] : X ⊆ 2≤ω ∧
X is a Borel set in 2≤ω} and this set is equal to the union of finitely many
pairwise disjoint closed intervals.

Proof. 1. Points 1i, 1ii of the proof of Theorem 4.2 adapt easily. To adapt
point 1iii, we show that Ω∞U yields a continuous map P (2<ω) → [0, 1] where
P (2<ω) is endowed with the compact Cantor topology. Observe that, for all
s ∈ 2<ω, the set (U∞)−1({s}) is a Borel subset of 2ω. In fact it is the difference
of two open sets since U∞(α) = s if and only if at all times t, the current output
is a prefix of s and at some time it is s. Now, Ω∞U [X] =

∑
x∈X µ((U∞)−1({x})

proves that X 7→ Ω∞U [X] yields a continuous map P (2<ω) → [0, 1].

2. The proof uses an argument in the spirit of the Radon-Nikodym theorem.
First, observe that

(†) (U∞)−1(2ω) and (U∞)−1({ξ}) are Borel subsets of 2ω, ∀ξ ∈ 2≤ω

The case ξ ∈ 2<ω has been checked above. If ξ ∈ 2ω then U∞(α) = ξ (resp.
U∞(α) ∈ 2ω) if and only if for all n there is some time at which the current
output is ξ � n (resp. has length n). Which shows that (U∞)−1({ξ}) (resp.
(U∞)−1(2ω)) are Gδ Borel sets. Now, let

A = 2<ω ∪ {α ∈ 2ω : µ((U∞)−1({α})) > 0};
B = {α ∈ 2ω : µ((U∞)−1({α})) = 0}.

Clearly, A is countable. We prove that for some finite sequence 0 = a1 < b1 <
... < an < bn,

(∗) {Ω∞U [X ] : X ⊆ A} = [a1, b1] ∪ ... ∪ [an, bn]
(∗∗) {Ω∞U [X ] : X ⊆ B ∧ (U∞)−1(X ) is measurable}

= {Ω∞U [X ] : X ⊆ B ∧ X is a Gδ Borel set in 2≤ω}
= a closed interval.

Point 2 then follows: if X ⊆ 2≤ω is such that (U∞)−1(X ) is measurable, then,
for some Y ⊆ B which is Gδ in 2≤ω,

Ω∞U [X ] = Ω∞U [X ∩A] + Ω∞U [X ∩ B]
= Ω∞U [X ∩A] + Ω∞U [Y]
= Ω∞U [(X ∩A) ∪ Y]).

But X ∩A is countable and Y is Gδ, so that their union is Borel in 2≤ω.
The proof of (*) is an easy adaptation of that of Theorem 4.2 since Ω∞U yields

a continuous map P (A) → [0, 1] with the compact Cantor topology on P (A).
Let us prove (**). Consider the lexicographic ordering ≺ on 2ω, which is a

total ordering, and let f : 2ω → [0, 1] be the map such that

f(α) = µ((U∞)−1(B ∩ {β : β � α})).
Let us see that this map is well defined. Since A ∩ 2ω and B partition 2ω, we
have (U∞)−1(B) = (U∞)−1(2ω) \ (U∞)−1(A ∩ 2ω). Since A is countable, (†)
shows that (U∞)−1(B) is Borel. Also, U∞(γ) ∈ 2ω ∧ U∞(γ) � α if and only if
for all n there is some time at which the current output has length n and is � α.
Thus, (U∞)−1({β : β � α}) is Gδ. This shows that (U∞)−1(B ∩ {β : β � α}) is
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Borel, so that f(α) is the measure of a Borel set, hence is well defined. Facts 1
and 2 below prove that the range of f is a closed interval [0, c]. To conclude the
proof of (∗∗), observe that

- If X ⊆ B and (U∞)−1(X ) is measurable then Ω∞U [X ] ≤ Ω∞U [B] = f(1ω) = c.
Thus, there is some α such that Ω∞U [X ] = f(α) = Ω∞U [B ∩ {β : β � α}].

- The set B ∩ {β : β � α} is Gδ in 2ω, hence also Gδ in 2≤ω. In fact, B is
Gδ in 2ω as the complement of the countable set A ∩ 2ω, and {β : β � α}
is closed in 2ω.

Fact 1.
1. f is monotone increasing with respect to ≺.
2. f(α) is also equal to µ((U∞)−1(B ∩ {β : β ≺ α})).
3. f(1ω) = µ((U∞)−1(B)), f(0ω) = 0, and f(u01ω) = f(u10ω) for all u ∈

2<ω.
4. f is continuous.
Proof Fact 1. Point 1 is obvious.

2. Observe that f(α) − µ((U∞)−1(B ∩ {β : β ≺ α})) = µ((U∞)−1(B ∩ {α})).
Now, 2 is obvious if α /∈ B. Else, use the definition of B.
3. The assertion about f(1ω) is obvious. For f(0ω), use 2. Finally, using 2 again,
and the fact that u01ω is the predecessor of u10ω, we get

f(u10ω) = µ((U∞)−1(B ∩ {β : β ≺ u10ω}))
= µ((U∞)−1(B ∩ {β : β � u01ω}))
= f(u01ω).

4. It is sufficient to show that if (αn)n∈N is a monotone increasing or de-
creasing sequence in 2ω with limit α and every αn is different from α then
f(α) = limn f(αn). If (αn)n∈N is increasing with limit α, we have β ≺ α if and
only if β � αn for some n. Thus,

f(α) = µ((U∞)−1(B ∩ {β : β ≺ α}))
= µ((U∞)−1(B ∩

⋃
n∈N

{β : β � αn}))

= sup
n∈N

µ((U∞)−1(B ∩ {β : β � αn}))

= sup
n∈N

f(αn).

In the case where (αn)n∈N is decreasing, we argue similarly, using the fact that
β � α if and only if β � αn for all n. a
Fact 2. Suppose g : 2ω → [0, 1] is a continuous map such that

g(u01ω) = g(u10ω) for all u ∈ 2<ω.(12)

Then the range of g is a closed interval.
Proof of Fact 2. Let θ : [0, 1] → (2ω \ 2<ω0ω) ∪ {0ω} be the bijective map

such that θ(0) = 0ω and, for 0 < r ≤ 1, θ(r) is the sequence of dyadic digits of r
which lies in 2ω \ 2<ω0ω. Using (12), we see that range(g) = range(g ◦ θ). Since
the range of a continuous map [0, 1] → [0, 1] is always a closed interval, it suffices
to prove that g ◦ θ is continuous. I.e. to prove that if (rn)n∈N is a monotone
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increasing (resp. decreasing) sequence of reals in [0, 1] with limit r > 0 (resp.
r < 1) and such that every rn is different from r, then g(θ(r)) = limn g(θ(rn)).
Case r is not dyadic rational. Then θ(r) is the limit of θ(rn) and we can apply
the continuity of g.
Case r is dyadic rational and (rn)n∈N is increasing. Then the limit of θ(rn) is
the dyadic expansion of r of the form u01ω where u ∈ 2<ω, which is exactly θ(r).
Again, we apply the continuity of g.
Case r is dyadic rational and (rn)n∈N is decreasing. Then the limit of θ(rn)
is the dyadic expansion of r of the form u10ω where u ∈ 2<ω. Applying the
continuity of g, we see that the limn g(θ(rn)) = g(u10ω). To conclude, observe
that u01ω = θ(r) and that (12) insures g(u10ω) = g(u01ω). a
This completes the proof of the whole result. a

As in the case of finite computations, one can force that {Ω∞U [X ] : X ⊆ 2≤ω}
has arbitrarily many disjoint sections.

Proposition 7.6. Let U be optimal. For each n ≥ 1, there exists a finite
modification V of U which is still optimal and such that neither of the sets
{Ω∞U [X] : X ⊆ 2<ω} and {Ω∞U [X ] : X ⊆ 2≤ω} is the union of less than n
intervals.
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