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Abstract

We show that, in an alphabet of n symbols, the number of words of length n whose
number of different symbols is away from (1− 1/e)n, which is the value expected by the
Poisson distribution, has exponential decay in n. We use Laplace’s method for sums and
known bounds of Stirling numbers of the second kind. We express our result in terms of
inequalities.
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1 Introduction and statement of results

Consider an alphabet of n symbols and let χ(i) be the number of symbols that appear exactly i
times in a word of length m. This can be seen as the allocation of m balls (the positions in a
word of length m) in n bins (the n symbols of the alphabet), which determines a total of nm

allocations. When m/n is a fixed constant λ,

1

n
χ(i) converges in probability to e−λ

λi

i!
,

which is the Poisson formula, the proof can be read from [6, Example III.10 and
Proposition V.11].

We are interested in the case when the alphabet size n equals the word length m, hence
λ = m/n = 1. The number of symbols that do not appear in a word of length n is χ(0)

and its expected value is n/e. Hence, the expected number of different symbols in a word of
length n is n− n/e = (1− 1/e)n. The probability that χ(0) is equal to j for j = 0, 1, . . . , n is
expressible in terms of Stirling numbers of the second kind: the number a(n, j) of words of
length n with exactly j different symbols is the number of ways to choose j out of n elements
times the number of surjective maps from a set of n positions to a set of j symbols. To make
such a surjective map, first partition the set of n elements into j nonempty subsets and, in
one of the j! many ways, assign one of these subsets to each element in the set of j elements,

a(n, j) =

(
n

j

)
j! S(j)

n ,

where

S(j)
n =

1

j!

j∑
i=0

(−1)i
(
j

i

)
(j − i)n.

Notice that
n∑
j=0

a(n, j) = nn.

Theorem 1 is the main result of this note and shows that in an alphabet of n symbols, the
number of words of length n with exactly j symbols, has exponential decay in n when j is
away from the value expected by the Poisson distribution. Precisely, Theorem 1 proves that
a(n, j), has exponential decay in n when j is away from (1− 1/e)n. And this implies that for
every positive ε < 1,

∑
n≥1

n−n

(1−1/e−ε)n∑
j=1

a(n, j) +
n∑

j=(1−1/e+ε)n

a(n, j)

 <∞.
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Figure 1: On the left, the graph of φ(x). On the right, the points are n
√
a(n, j)n−1 for n = 200

and j = 0, 5, 10, . . . , 195, 200 and the solid line is φ(j/n) with r = 0.1 and Λ ≈ 0.701.

Theorem 1. There is a function φ : (0, 1) 7→ R such that φ(x) < 1 for every x 6= 1 − 1/e,
positive reals r and Λ both less than 1, and positive constants c and C satisfying the following
condition: For every pair n, j of integers with 1 ≤ j ≤ n,

a(n, j) ≤

{
C
√
nΛnnn , if j/n ∈ [0, r] ∪ [1− r, 1]

C φ(j/n)nnn , if j/n ∈ [r, 1− r]
a(n, j) ≥ (c/

√
n)φ(j/n)nnn , if j/n ∈ [r, 1− r].

Precisely,

φ : (0, 1) 7→ R, φ(x) = (e ln(1 + e−δ(x))−1ϕ(x)e−xδ(x)

ϕ : [0, 1] 7→ R, ϕ(x) = x−x(1− x)−(1−x), ϕ(0) = ϕ(1) = 1

δ : (0, 1) 7→ R, δ−1(y) =
1

(1 + ey) ln(1 + e−y)
.

Each of the values c, C,Λ and r in the statement of Theorem 1 can be effectively computed.
Figure 1 plots the upper bound of n

√
a(n, j)n−1 with the function φ(j/n) given in Theorem 1.

As a straightforward application of Theorem 1 we obtain the following.

Corollary 2. For any positive real number ε there exist positive constants c and C and a
positive real number Λ strictly less than 1 such that for every positive integers n, `,

if |`/n− (1− 1/e)| ≥ ε then (c/
√
n) Λn ≤ n−n

∑̀
j=1

a(n, j) ≤ Cn
√
n Λn.

A tail estimate is a quantification of the rate of decrease of probabilities away from the
central part of a distribution. It is known that the tail of a given arbitrary discrete distribution
has exponential decay if its probability generating function is analytic on a disk centered on
zero and of radius greater than 1 [6, Theorem IX.3,page 627]. Theorem 1 gives, indeed, a tail
estimate with exponential decay, but our methods are not analytic.
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Our proof of Theorem 1 is elementary except for the estimates for Stirling numbers of
the second kind that we use as a black box. We follow the principles of Laplace’s method
for sums, which is useful for sums of positive terms which increase to a certain point and
then decrease. For a general explanation with examples we refer to Flajolet and Sedgewick’s
book [6, p.761], see [10] for a rigorous application to an hypergeometric-type series. However,
we do not use the exp-log transformation to build the approximation function.

Specifically, to prove Theorem 1 we give a smooth function φ so that φ(j/n)n bounds
a(n, j)n−n from above and below (up to multiplicative sequences that increase or decrease
slowly). We consider the ratio between j and n. When j is near to 0 or near to n we use the
classical upper bound of Stirling numbers of the second kind given by Rennie and Dobson [11].
When j is not near to 0 nor near to n we use Bender’s approximation of Stirling numbers of
the second kind [2] as a black box. This approximation comes from analytic combinatorics
methods and it was initially devised by Laplace, then proved by Moser and Wyman [9] and
later sharpened by Bender, see also [8]. Our two choices are motivated by the comparison
of bounds on Stirling numbers by Rennie-Dobson [11], Arratia and DeSalvo [1], and also a
trivial bound, given in Section 2.

The approach we use in the proof of Theorem 1 was previously used by one of the authors

in two different problems. In [3] it is used to estimate n!
k∏
i=1

pjisi /ji! where each pi is the

probability of the symbol i in an alphabet of k elements, s is a real number in (0, 1) and

the integers ji sum up n and
k∑
i=1

iji ≤ Mn for a fixed M > 1. In [4, Remark 4.3] the same

approach is used to obtain an upper bound for

(
n

j

)
/j! when n is fixed and j varies. Besides,

the asymptotic behavior of these quantities when n tends to infinity was studied using a
similar technique in [7].

We crossed the problem solved in the present note when studying the set S of infinite
binary sequences with too many of too few, with respect to the expected by the Poisson
distribution, different words of length blog nc, counted with no overlapping in their initial
segment of length nblog nc, for infinitely many ns. Corollary 2 allows us to prove that the
Lebesgue measure of this set S is zero, as follows. For simplicity, let n be a power of 2 and
let log be the logarithm in base 2. Identify the binary words of length log n with integers
from 0 to n− 1. Thus, each binary word of length n log n is identified with a with a word of
n integers from 0 to n − 1. Notice that there are 2n logn = nn many of these binary words.
Corollary 2 assumes an alphabet of n symbols and gives an upper bound for the proportion
of words of length n having a number of different symbols away from (1− 1/e)n, which is the
quantity expected by the Poisson distribution. By the identification we made, this yields an
upper bound of the proportion of binary words of length n log n having too many or too few
different binary blocks with respect to what is expected by the Poisson distribution. Since
this upper bound has exponential decay in n, we can apply Borel-Cantelli lemma to show that
the sum, for every n, of these bounds is finite. Consequently, the Lebesgue measure of the set
S is zero. A different proof of this result follows from the metric theorem given by Benjamin
Weiss and Yuval Peres in [13] where they show that the set of Poisson generic sequences on a
finite alphabet has Lebesgue measure 1. Their proof is probabilistic, with a randomized part
and a concentration part.
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2 On different bounds on Stirling numbers of second kind

We compare four estimates on Stirling numbers of the second kind S(j)
n . When j/n belongs

to (0, 1), we consider a trivial bound, Rennie and Dobson’s bound [11] and Arratia and
DeSalvo’s bounds [1]. When j/n belongs to a closed interval included in (0, 1), we consider
Bender’s estimate [2]. We start by giving bounds for the binomial coefficients.

2.1 Binomial coefficients

Consider the following bounds for the factorial which are consequence of the classical Stirling’s
formula for the factorial, see [12],

n! =
√

2πnn+1/2e−n+rn ,
1

12n+ 1
≤ rn ≤

1

12n
.

Then, for any n ≥ 1,

√
2πnn+1/2e−n ≤ n! ≤

√
2πe1/12nn+1/2e−n. (1)

In the sequel we write a ≈ b to indicate that the two numbers a and b coincide up to the
precision explicitly indicated, but they may differ in the fractional part that is not exhibited.
For example, π ≈ 3.14159. From this approximation of the factorial, we obtain bounds for
the binomial coefficient that involve the following functions,

ϕ : [0, 1] 7→ R, ϕ(x) = x−x(1− x)−(1−x), ϕ(0) = ϕ(1) = 1; (2)

γ : (0, 1) 7→ R, γ(x) = (x− x2)1/2

There exist constants c0 and C0 such that for any pair of integers n, j where n ≥ 2 and
1 ≤ j ≤ n− 1,

c0√
nγ(j/n)

ϕ(j/n)n ≤
(
n

j

)
≤ C0√

nγ(j/n)
ϕ(j/n)n .

The constants c0 and C0 can be chosen as c0 = (
√

2πe1/6)−1 ≈ 0.33 and
C0 = e1/12(

√
2π)−1 ≈ 0.43. From (1), it follows that(

n

j

)
≤ e1/12(

√
2π)−1

(
n

j(n− j)

)1/2 nn

jj(n− j)n−j
. (3)

First, notice that (
n

j(n− j)

)1/2

=
n1/2

n(j/n(1− j/n))1/2
=

1√
nγ(j/n)

.

Now, we deal with the last factor of (3). The following holds:

nn

jj(n− j)n−j
=

nn

nn(j/n)j(1− j/n)n−j
=
(

(j/n)−j/n(1− j/n)−(1−j/n)
)n

= ϕ(j/n)n.

This proves the upper bound on the binomial coefficient. The proof of the lower bound is
similar, except that the factor e1/12 appears twice in the denominator.
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Finally, we remark that for any pair of positive integers n, j such that n ≥ 2 and
1 ≤ j ≤ n − 1, we have min{j(n − j) : 1 ≤ j ≤ n − 1} = n − 1 (this value is attained
at j = 1 or j = n− 1). Also n− 1 ≥ n/2 for n ≥ 2. Hence,

γ(j/n) =

(
j(n− j)
n2

)1/2

≥
( n

2n2

)1/2
=

√
2

2
n−1/2, and

γ(j/n) ≤ max{γ(x) : x ∈ [0, 1]} = max{(x− x2)1/2 : x ∈ [0, 1]} ≤ 1/2.

Thus, multiplying by
√
n, √

2/2 ≤
√
nγ(j/n) ≤ (1/2)

√
n,

which implies
2√
n
≤ 1√

nγ(j/n)
≤
√

2.

We have that 2c0 ≈ 0.67 > 1/2 and
√

2C0 ≈ 0.61 < 1. This shows the following inequalities,
for every positive n ≥ 2 and every j such that 1 ≤ j ≤ n− 1,

1

2
√
n
ϕ(j/n)n ≤ 2c0√

n
ϕ(j/n)n ≤

(
n

j

)
≤
√

2C0ϕ(j/n)n ≤ ϕ(j/n)n. (4)

2.2 A trivial bound on Stirling numbers the second kind

The simplest upper bound takes just the first term of the alternating sum that defines S(j)
n ,

S(j)
n ≤ jn/j!.

This upper bound appears explicitly taking just one term in Bonferroni inequalities, see [5,
Section 4.7]. First remark that the upper bound given in (1) for the factorial yields

jn

j!
≤ jn√

2πjjje−j
=

1√
2πj

nn−j(j/n)nej

(j/n)j
=

1√
2πj

(
n1−j/n(j/n)1−j/nej/n

)n
. (5)

The same lines together with the lower bound for (1) give a lower bound for jn/j!.
Let θ : [0, 1] 7→ R,

θ(x) = x1−xex. (6)

It follows that

1

e1/12
√

2πj

(
n1−j/nθ(j/n)

)n
≤ jn/j! ≤ 1√

2πj

(
n1−j/nθ(j/n)

)n
.

Consequently,

S(j)
n ≤

1√
2πj

(
n1−j/nθ(j/n)

)n
. (7)

2.3 Rennie and Dobson’s bound

The following is the classsical upper bound of Stirling numbers of the second kind given by
Rennie and Dobson [11], which holds for every positive n and every j such that 1 ≤ j ≤ n−1,

S(j)
n ≤

1

2

(
n

j

)
jn−j . (8)
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Let η : [0, 1] 7→ R,
η(x) = x1−xϕ(x), (9)

where ϕ is defined in (2). Since jn−j = (n1−j/n(j/n)1−j/n)n, the bounds on the binomial
given in (4) imply

1

2
√
n

(
n1−j/nη(j/n)

)n
≤
(
n

j

)
jn−j ≤

(
n1−j/nη(j/n)

)n
. (10)

2.4 Arratia and DeSalvo’s bound

Arratia and DeSalvo [1, Theorems 5 and 6] give these bounds for n ≥ 3 and 1 ≤ j ≤ n− 2,

S(j)
n ≤A5(n, j)

S(j)
n ≤A6(n, j)

where

A5(n, j) :=

(
N

n− j

)
e−2µ5(n,j)

(
1 + e2µ5(n,j)D5(n, j)

)
A6(n, j) :=

Nn−j

(n− j)!
e−µ6(n,j)

(
1 + eµ6(n,j)D6(n, j)

)
N :=

(
n

2

)
µ5(n, j) :=

(
(n− j)

2

)(
n

3

)
/

(
N

2

)
µ6(n, j) :=

(
(n− j)

2

)
n(n− 1)(4n− 5)

6N2

d5(n, j) := P +Q+ (1−Q)((n− j)− 2)(R+ S + T ) where

P :=
2
(
n
3

)(
N
2

)
Q :=

13− 12(n− j) + 3(n− j)2(
N
2

)
R :=

8
(
n
3

)(
N
2

)
S :=

6
(
n
4

)(
n
3

)
(N − 2)

T :=
1

(N − 2)

(
5n− 11

4

)
d6(n, j) := U + 2(V +W +X) where

U :=
n(n− 1)(4n− 5)

6N2

V := 4((n− j)− 2)
n(n− 1)(2n− 1)

6N2
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W :=
3((n− j)− 2)n(n− 1)

(4n− 5)N

Z :=
2((n− j)− 2)(2n− 1)(n+ 1)

(4n− 5)N

D5(n, j) := min{d5(n, j), 2µ5(n, j)d5(n, j), 1}
D6(n, j) := min{(d6(n, j), 2µ6(n, j)d6(n, j), 1}.

The goal of this section is to give bounds on A5(n, j) and A6(n, j) from below and above.
They are displayed in Proposition 5, and the proofs of these bounds rely on Lemma 3 and
Lemma 4. In the sequel when we write A5,6 we denote two statements, one about A5 and one
about A6. Similarly for D5,6 and µ5,6

Lemma 3. For any n ≥ 3 and 1 ≤ j ≤ n− 2,

1

2n2
≤ e−µ5,6(n,j)

(
1 + eµ5,6(n,j)D5,6(n, j)

)
≤ 2.

Proof. By definition, D5,6(n, j) ≤ 1, and clearly µ5,6(n, j) ≥ 0, then

e−µ5,6(n,j)
(

1 + eµ5,6(n,j)D5,6(n, j)
)

= e−µ5,6(n,j) +D5,6(n, j) ≤ 2.

To obtain a lower bound for e−µ5,6(n,j)+D5,6(n, j), it suffices to bound the quantitiesD5,6(n, j).

Lower bound for D5(n, j). First we consider µ5(n, j). The equality(
N

2

)
=

1

2

n(n− 1)

2

(
n(n− 1)

2
− 1

)
=

(n+ 1)n(n− 1)(n− 2)

8
(11)

yields

µ5(n, j) =
2

3

(n− j)(n− j − 1)

n+ 1
.

This quantity, µ5(n, j), takes its minimum when j = n− 2. It follows that

µ5(n, j) ≥
1

n
.

We claim that the quantity d5(n, j) = P +Q+ (1−Q)((n− j)− 2)(R+ S + T ) satisfies that

d5(n, j) ≥ P for any 1 ≤ j ≤ n− 2.

It is clear that Q and ((n − j) − 2)(R + S + T ) are nonnegative. It only remains to prove
that 1 − Q is nonnegative. In fact, Q ≤ 1/2 for the values of n and j under consideration.
To prove that, first, we complete squares and apply (11); then we take j = 1, and finally, we
maximize over over n to obtain the last inequality,

Q = 8
3((n− j)− 2)2 + 1

(n+ 1)n(n− 1)(n− 2)
≤ 8

3(n− 3)2 + 1

(n+ 1)n(n− 1)(n− 2)
≤ 1

2
.

Finally,

d5(n, j) ≥ P = 2

(
n
3

)(
N
2

) =
8

3(n+ 1)
≥ 1

n
.
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From the last lower bound and the bound µ5(n, j) ≥ 1/n, we get the following:

D5(n, j) := min (d5(n, j), 2µ5(n, j)d5(n, j), 1) ≥ min

(
1

n
,

2

n2
, 1

)
≥ 1

n2
.

Lower bound for D6(n, j). First we consider µ6(n, j). By definition, N =

(
n

2

)
.

It turns out that for every n ≥ 3 and j such that 1 ≤ j ≤ n− 2,

µ6(n, j) =

(
(n− j)

2

)
n(n− 1)(4n− 5)

6N2
=

1

3

(n− j)(n− j − 1)(4n− 5)

n(n− 1)
≥ 1

n
.

All the terms involved in the sum defining d6(n, j) are non-negative. Hence,

d6(n, j)≥ U =
n(n− 1)(4n− 5)

6N2
=

2

3

4n− 5

n(n− 1)
≥ 2

3n
.

Finally, the following holds and completes the proof of this lemma.

D6(n, j) := min (d6(n, j), 2µ6(n, j)d6(n, j), 1) ≥ min

(
2

3n
,

4

3n2
, 1

)
≥ 1

2n2
.

Let κ be the map from [0, 1] to R given by

κ(x) = (e/2)1−x(1− x)−(1−x), κ(1) = 1. (12)

Lemma 4. For any n ≥ 3 and j with 1 ≤ j ≤ n− 2, the following holds

e−2

2
√
n(n− 1)

(
n1−j/nκ(j/n)

)n
≤
(

N

n− j

)
≤
(
n1−j/nκ(j/n)

)n
, (13)

1

4
√

2π
√
n

(
n1−j/nκ(j/n)

)n
≤ Nn−j

(n− j)!
≤ 1√

2π

(
n1−j/nκ(j/n)

)n
. (14)

Proof. We start by proving inequality (13). With the bounds given for the binomial
coefficients in (4), the following holds

1

2
√
N
ϕ((n− j)/N)N ≤

(
N

n− j

)
≤ ϕ((n− j)/N)N (15)

with ϕ(x) = x−x(1−x)−(1−x), for any n ≥ 3 and 1 ≤ j ≤ n−2. The expression ϕ((n−j)/N)N

has two factors, the first one corresponds to x−x and the second one corresponds to (1−x)1−x.
We replace N by n(n − 1)/2 only in the first factor. The exponent of the second factor is

multiplied and divided by
N

n− j
. This leads to the following equality

ϕ

(
(n− j)
N

)N
= nn−j

(
1− 1

n

)n−j (
2

(
1− j

n

))−(n−j)((
1− n− j

N

) N
n−j

)−(n−j)+ (n−j)2

N

.
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The right side of this equality is the product of four factors. We leave the first and the third
as they are. We deal with the second and the fourth. We define b(n, j) and c(n, j) as follows

b(n, j) =

((
1− n− j

N

) N
n−j

)−(n−j)+ (n−j)2

N

and c(n, j) = (1− 1/n)n−jb(n, j). (16)

The factor (1− 1/n)n−j satisfies

e−1 ≤
(

1− 1

n

)n−1
≤
(

1− 1

n

)n−j
≤ 1. (17)

The right hand side inequality is due to the fact that 1−1/n ≤ 1. The left hand side inequality
is due to the fact that (1− 1/n)n−1 decreases towards its limit as n→∞.

We study b(n, j), defined in (16). First, we use the classical inequality

−x− x2 ≤ ln(1− x) ≤ −x (0 < x ≤ 2/3).

After multiplying by 1/x and taking powers, we get

e−1−x ≤ (1− x)1/x ≤ e−1 (0 < x ≤ 2/3). (18)

Observe that, for j ≥ 1,
n− j
N

=
2(n− j)
n(n− 1)

≤ 2

n
.

Notice that 0 < (n− j)/N ≤ 2/3 since n ≥ 3. This allows us to replace x by (n − j)/N
in (18). It turns out that

e−1−(
n−j
N

) ≤
(

1− n− j
N

) N
n−j

≤ e−1.

To obtain b(n, j), consider the previous expressions to the power −(n−j)+(n− j)2/N . With
our bound on (n− j)/N , the exponent of the left hand side satisfies(
−1− n− j

N

)(
−(n− j) +

(n− j)2

N

)
= (n−j)− (n− j)3

N2
≥ (n−j)− 4

n2
(n−1) ≥ (n−j)−1.

Finally,

e−1e(n−j) ≤ b(n, j) ≤ e(n−j)−
(n−j)2

N ≤ e(n−j). (19)

From inequalities (17) and (19), it follows that c(n, j)e−(n−j) takes values in [e−2, 1] for which

ϕ

(
(n− j)
N

)N
= c(n, j)nn−j

(
2

(
1− j

n

))−(n−j)
= c(n, j)e−(n−j)

(
n1−j/nκ(j/n)

)n
.

To end the proof of inequality (13) consider inequality (15) together with the fact that
N = n(n− 1)/2.

Proof of inequality(14). Approximating the factorial by (1); extracting n as a common
factor in (n− j)n−j , in (n− 1)n−j , and in (n− 1)n−j ; and writing the final expression as an
n-th power (similarly to what it is done in (5)), we get

Nn−j

(n− j)!
≤ nn−j(n− 1)n−j

2n−j
en−j√

2π(n− j)(n− j)n−j
=

(1− 1/n)n−j√
2π(n− j)

(
n1−j/nκ(j/n)

)n
.

10



We obtain the lower bound similarly,

Nn−j

(n− j)!
≥ e−1/12 (1− 1/n)n−j√

2π(n− j)

(
n1−j/nκ(j/n)

)n
.

Finally, with inequality (17), and since 1 ≤ n− j ≤ n, we obtain the bounds

1

4
√

2πn
≤ e−1−1/12√

2πn
≤ (1− 1/n)n−j√

2π(n− j)
≤ 1√

2π

that prove the estimates on Nn−j/(n− j)!.

The next Proposition 5 is a direct consequence of Lemmas 3 and 4. Recall that
κ : [0, 1]→ R defined in (12), κ(x) = (e/2)1−x(1− x)−(1−x), κ(1) = 1.

Proposition 5. For any n ≥ 3 and 1 ≤ j ≤ n− 2,

e−2

4n3

(
n1−j/nκ(j/n)

)n
≤ A5,6(n, j) ≤ 2

(
n1−j/nκ(j/n)

)n
. (20)

Proof. Lemma 3 proves that, for any n ≥ 3 and 1 ≤ j ≤ n− 2,

1

2n2
≤ e−µ5,6(n,j)

(
1 + eµ5,6(n,j)D5,6(n, j)

)
≤ 2.

Then,

1

2n2

(
N

n− j

)
≤ A5(n, j) ≤ 2

(
N

n− j

)
,

1

2n2
Nn−j

(n− j)!
≤ A6(n, j) ≤ 2

Nn−j

(n− j)!
.

Lemma 4 provides us bounds on the terms involving combinatorials and factorials and gives

e−2

2
√
n(n− 1)

(
n1−j/nκ(j/n)

)n
≤
(

N

n− j

)
≤
(
n1−j/nκ(j/n)

)n
,

1

4
√

2π
√
n

(
n1−j/nκ(j/n)

)n
≤ Nn−j

(n− j)!
≤ 1√

2π

(
n1−j/nκ(j/n)

)n
.

Finally,

e−2

4n3

(
n1−j/nκ(j/n)

)n
≤ A5(n, j) ≤ 2

(
n1−j/nκ(j/n)

)n
,

1

8
√

2πn2
√
n

(
n1−j/nκ(j/n)

)n
≤ A6(n, j) ≤

2√
2π

(
n1−j/nκ(j/n)

)n
.

Combining both inequalities, Proposition 5 follows.

11



2.5 Bender’s estimate

The notation rn ∼ sn indicates that lim
n→∞

rn/sn = 1 when n→∞. Bender [2] establishes that

for any real number r such that 0 < r < 1/2, then

S(j)
n ∼

n!e−αj

j!ρn+1(1 + eα)σ
√

2πn

uniformly for j/n ∈ [r, 1− r], where α is such that

n

j
= (1 + eα) ln(1 + e−α)

and

ρ = ln(1 + e−α),

σ2 =

(
j

n

)2 (
1− eα ln(1 + e−α)

)
.

We introduce two functions to describe the behavior of S(j)
n in terms of j/n,

ψ : (0, 1) 7→ R, ψ(x) =
e−((1−x)+xδ(x))

xx ln(1 + e−δ(x))
(21)

µ : (0, 1) 7→ R, µ(x) =
(
x(1− eδ(x) ln(1 + e−δ(x)))

)1/2
where δ : (0, 1) 7→ R is defined by

δ−1(y) =
1

(1 + ey) ln(1 + e−y)
. (22)

The next lemma rephrases Bender’s estimate using ψ(j/n) and µ(j/n).

Lemma 6. For any positive real number r such that 0 < r < 1/2 and for any real number
C > 1 there exists an integer n0 = n0(r, C) ≥ 2 such that for every integer n ≥ n0 and for
every integer j with 1 ≤ j ≤ n− 1 and j/n ∈ [r, 1− r].

e−1/12
1

C
√

2πnµ(j/n)

(
n1−j/nψ(j/n)

)n
≤ S(j)

n ≤ e1/12
C√

2πnµ(j/n)

(
n1−j/nψ(j/n)

)n
.

Proof. Observe that

(1 + eα)ρσ =
(
1− eα ln(1 + e−α)

)1/2
.

Thus, Bender’s estimate implies that for any r with 0 < r < 1/2 and for any C > 1 there exists
n0 = n0(r, C) such that for any pair of positive integers n, j, with n ≥ n0 and j/n ∈ [r, 1− r],

1

C
Tα(n, j) ≤ S(j)

n ≤ CTα(n, j) (23)

where

Tα(n, j) =
n!

j!

e−αj

ρn(1− eα ln(1 + e−α))1/2
√

2πn
.

12
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x
1
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µ(x)

Figure 2: Graphs of ψ(x) and µ(x).

Using (1) we have

e−1/12ej−n
√
n√
j

nn

jj
≤ n!

j!
≤ e1/12ej−n

√
n√
j

nn

jj
.

We remark that

ej−n
nn

jj
=
(
e−(1−j/n) (j/n)−j/n

)n
.

Then, using the expressions for ψ(n/j) and µ(j/n),

e−1/12
1√

2πnµ(j/n)

(
n(n−j)/nψ(j/n)

)n
≤ Tα(n, j) ≤ e1/12 1√

2πnµ(j/n)

(
n(n−j)/nψ(j/n)

)n
.

Combining these inequalities with (23) we obtain the wanted result.

The functions ψ(x) and µ(x) are smooth and concave in the open interval (0, 1). The
function δ−1(y) is increasing and

lim
x→0+

δ(x) = −∞ and lim
x→1−

δ(x) = +∞.

From this, it is clear that lim
x→0+

ψ(x) = 0, lim
x→1−

ψ(x) = 1, and lim
x→0+

µ(x) = lim
x→1−

µ(x) = 0.

Then, the bounds given in Lemma 6 become indeterminate when j/n is near 0 or 1. This is
why j/n must be in a central interval in (0, 1).

The next corollary is a straightforward consequence of Lemma 6 and the fact that µ(x)
is uniformly bounded on any closed interval included in (0, 1). The constants c1 and C1

in the statement of Corollary 7 can be chosen as the minimum and maximum values of
{µ(x) : x ∈ [r, 1− r]}.

Corollary 7. For any positive real number r such that 0 < r < 1/2, there exist c1 and C1

such that for every pair of positive integers n, j with j/n ∈ [r, 1− r] we have

e−1/12
c1√
2πn

(
n1−j/nψ(j/n)

)n
≤ S(j)

n ≤ e1/12
C1√
2πn

(
n1−j/nψ(j/n)

)n
. (24)

13



2.6 A plot

The four upper bounds given in (7), (10), (20) and (24) are of the form

S(j)
n ≤ nn−jbound

In order to visualize them we divide both sides by nn−j and we take n-th root in both sides.(
S(j)
n /nn−j

)1/n
≤ bound1/n

In the four cases bound1/n is of the form

expression1/n (fn)1/n ,

where expression1/n goes to 1 as n goes to infinity and f is either θ, η, κ or ψ. Thus, we
ignore expression1/n. Figure 3 plots the following:

In dotted blue, the exact value

Ŝ(j)
n = (S(j)

n /nn−j)1/n.

In red, the trivial bound

Ŝ(j)
n ≤

1

(
√

2πj)1/n
θ(j/n), where θ(x) is given in (6).

In green, Rennie and Dobson’s bound

Ŝ(j)
n ≤

1

21/n
η(j/n), where η(x) is given in (9).

In blue, Arratia and DeSalvo’s bound

Ŝ(j)
n ≤ 21/nκ(j/n), where κ(x) is given in (12).

In black, Bender’s estimate

Ŝ(j)
n ≤

(
e1/12

C1√
2πn

)1/n

ψ(j/n), where ψ(x) is given in (21) and C1 in Corollary 7,

with j/n ∈ [r, 1− r] for any real r such that 0 < r < 1/2.
The constant C1 depends on r. In the plot of Figure 3, r = 0.1.

3 Application to our problem

For the proof of Theorem 1 we must give an upper bounds of a(n, j), which is always a positive

term. Since a(n, j) =

(
n

j

)
j! S(j)

n , we can use upper bounds for the Stirling numbers of the

second kind. We choose Rennie and Dobson’s bound in the case j/n is near 0 or 1, and the
bound originated in Bender’s estimate when j/n is in [1/r, 1− 1/r], for r > 0.

3.1 When the ratio j/n is near 0 or 1

The next lemma expresses this bound in terms of the ratio j/n with the help of the function

ν : [0, 1]→ R, ν(x) = x e−xϕ(x)2, (25)

where ϕ(x) is defined in (2).

14



Figure 3: Comparison of four estimates for the normalized Stirling numbers of the second
kind, normalized, Ŝ(j)

n = (S(j)
n /nn−j)1/n for n = 100 and j = 1, .., 100.

Lemma 8. For any pair of positive integers n, j such that n ≥ 1 and 1 ≤ j ≤ n− 1,

a(n, j)n−n ≤
√
j ν(j/n)n.

Proof. Recall that a(n, j) =

(
n

j

)
j! S(j)

n . Rennie and Dobson’s upper bound (8) for S(j)
n yields

a(n, j) ≤ 1

2

(
n

j

)2

j!jn−j .

We apply the estimates (1) for the factorial. Then we use the upper bound for the binomial
coefficient given in (4) that involves the constant C0 = e1/12(

√
2π)−1, which yields

1

2

(
n

j

)2

j!jn−j ≤1

2
(
√

2C0)
2e1/12

√
2π
√
jϕ(j/n)2e−jjn

≤ e
1/4

√
2π

√
j ν(j/n)n

≤
√
j ν(j/n)n.

The function ν(x) is smooth and concave, ν(0) = 0, and ν(1) = e−1. The bound given in
Lemma 8 is tight when j/n is near 0 or 1. However, it is not good when j/n takes values in
middle of the interval [0, 1]. In fact, this bound satisfies

√
j(ν(1/2))n ≥

√
j(1.1)n > 1 but we

know that n−na(n, j) ≤ 1 for any choice of j and n. This leads us to consider the only two
real numbers x0 and x1 in [0, 1] for which ν(x0) = ν(x1) = 1 and x0 < x1. These numbers
are x0 ≈ 0.387 and x1 ≈ 0.790. Figure 4 displays the graphs of ν(x) and ϕ(x).
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Figure 4: Graphs of functions ν(x) and ϕ(x).

Lemma 9. Let x0 and x1 be such that 0 < x0 < x1 < 1 and ν(x0) = ν(x1) = 1. For any pair
of real numbers r0 and r1 such that 0 < r0 < x0 and x1 < r1 < 1 there exists a real number
Λ less than 1, such that for every positive integer n,

n−na(n, j) ≤
√
nΛn, if j/n ∈ [0, r0] ∪ [r1, 1].

Proof. Lemma 8 says that a(n, j)n−n ≤
√
jν(j/n)n. The function ν(x) is smooth and concave

with ν(0) = 0, and ν(1) = e−1. This implies the existence of unique points x0 and x1 such
that 0 < x0 < x1 < 1 and ν(x0) = ν(x1) = 1. Fix r0 and r1 such that 0 < r0 < x0 and
x1 < r1 < 1. Necessarily, ν(r0) < 1 and ν(r1) < 1. Let Λ0 = ν(r0) and Λ1 = ν(r1). If
j/n ∈ [0, r0] then

ν(j/n) ≤ max{ν(x) : x ∈ [0, r0]} ≤ Λ0.

Similarly, if j/n ∈ [r1, 1], we have ν(j/n) ≤ Λ1. Taking Λ = max{Λ0,Λ1}, the lemma is
proved.

Example: The choice r0 = 0.1 yields Λ0 ≈ 0.173, and r1 = 0.9 yields Λ1 ≈ 0.701. In
Figure 1, the value of Λ equals the maximum between the approximations of Λ0 and Λ1.

3.2 When the ratio j/n is not near 0 nor 1

We introduce the function

φ : (0, 1) 7→ R, φ(x) = (e ln(1 + e−δ(x)))−1ϕ(x)e−xδ(x) (26)

where ϕ(x) is defined in (2) and δ(x) is defined in (22).

Lemma 10. Consider the constants c1 and C1 in Corollary 7. For any real number r such
that 0 < r < 1/2, and for any pair of positive integers n, j such that j/n ∈ [r, 1− r]

e−1/6c1√
2π(n− j)

φ(j/n)n ≤ n−na(n, j) ≤ e1/6C1√
2π(n− j)

φ(j/n)n.
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Proof. Write a(n, j) = S(j)
n n!/(n− j)!, then use Stirling estimates (1) for the factorial, apply

Corollary 7 and use the definition of ϕ(x) given in (2).

The function φ(x) is displayed in Figure 1. It is smooth, concave, φ(0) = 0 and φ(1) = e−1.
The auxiliary function δ(x) takes the value − ln(e−1) at x = 1−1/e and then, φ(1−1/e) = 1.
This value is the maximum of φ(x) because the lower bound given in Lemma 10 implies that
φ(x) ≤ 1 for x ∈ (0, 1).

3.3 Proofs of Theorem 1 and Corollary 2

Theorem 1 considers the ratio between j and n. The proof combines the two cases we just
studied: when j/n is near 0 or 1, and when j/n is in a central interval away from 0 and 1.

Proof of Theorem 1. Consider the function ν given in (25). Pick numbers x0 and x1 such that
0 < x0 < x1 < 1 and ν(x0) = ν(x1) = 1. Take any r ∈ (0, 1/2) so that r ≤ max{x0, 1− x1}.
If j/n ∈ [r, 1− r] apply Lemma 10. Otherwise, apply Lemma 9.

The proof of Corollary 2 is immediate from the statement of Theorem 1.

Proof of Corollary 2. The result is a direct application of Theorem 1 because

max{n−na(n, j), 1 ≤ j ≤ `} ≤ n−n
∑̀
j=1

a(n, j) ≤ nmax{n−na(n, j), 1 ≤ j ≤ `}.
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