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Abstract Let s be an integer greater than or equal to 2. A real number is simply
normal to base s if in its base-s expansion every digit 0, 1, . . . , s − 1 occurs with the
same frequency 1/s. Let S be the set of positive integers that are not perfect powers,
hence S is the set {2, 3, 5, 6, 7, 10, 11, . . .}. Let M be a function from S to sets of
positive integers such that, for each s in S, if m is in M(s) then each divisor of m is
in M(s) and if M(s) is infinite then it is equal to the set of all positive integers. These
conditions on M are necessary for there to be a real number which is simply normal
to exactly the bases sm such that s is in S and m is in M(s). We show these conditions
are also sufficient and further establish that the set of real numbers that satisfy them
has full Hausdorff dimension. This extends a result of W. M. Schmidt (1961/1962) on
normal numbers to different bases.

1 Introduction

In 1909 Émile Borel [2] introduced the notions of simple normality and of normality
to an integer base. Let s be an integer greater than or equal to 2. A real number x
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126 V. Becher et al.

whose expansion in base s is given by

x = �x� +
∑

j�1

a j s
− j ,

where a j ∈ {0, 1, . . . , s − 1} for j � 1, is said to be simply normal to base s if every
digit d ∈ {0, 1, . . . , s − 1} occurs in the sequence (a j ) j�1 with the same frequency
1/s. That is, for every such digit d,

lim
n→∞

#{ j : 1 � j � n and a j = d}
n

= 1

s
.

A number x is said to be normal to base s if it is simply normal to base sk for every
integer k � 1.1

Borel established that almost all real numbers, with respect to the Lebesgue mea-
sure, are normal to every integer base greater than or equal to 2. Several equivalent
definitions of normality are given in the monograph [3].

Are there numbers that are simply normal to arbitrarily different bases? This ques-
tion was implicit in the literature and hitherto only partially answered. Recall that two
positive integers are multiplicatively dependent when one is a rational power of the
other. It is already known that for any given set of bases closed under multiplicative
dependence there are uncountably many numbers that are simply normal to each base
in the given set and not simply normal to any base in its complement. The historical
trace of this result goes back first to a theorem ofMaxfield [12] showing that normality
to one base implies normality to another when the two are multiplicatively dependent.
Then Schmidt [15], improving a result by Cassels [5] and his previous result [14],
showed that for any set of bases closed under multiplicative dependence, the set of real
numbers that are normal to every base in the given set but not normal to any base in its
complement is uncountable. Lastly, Becher and Slaman [1] established the analogous
theorem denying simple normality instead of normality. These results, however, do
not settle the behavior of simple normality to bases within multiplicative-dependence
equivalence classes.

Already in 1957, Long [11] proved that if a real number is simply normal to base
sm for infinitely many exponentsm, then it is normal to base s, hence simply normal to
base sm for every positive integer m. A straightforward analysis, see [4, Lemma 4.3],
shows that for any base s and exponentm, simple normality to base sm implies simple
normality to base s. Hertling [9] investigated the converse and concluded that simple
normality to base r implies simple normality to base s if and only if r is a power of
s. This leaves open the question of whether for any given base s there are numbers
that are simply normal to bases sm for just finitely many positive integers m. In the
following theoremwe settle the characterization of simple normality to different bases
and considerably extend Schmidt’s result [15].

Theorem 1 Let S be the set of positive integers that are not perfect powers, hence
S is the set {2, 3, 5, 6, 7, 10, 11, . . .}. Let M be a function from S to sets of positive

1 To be accurate, the latter definition is not the one originally given by Borel, but equivalent to it.
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On simply normal numbers to different bases… 127

integers such that, for each s in S, if m is in M(s) then each divisor of m is in M(s)
and if M(s) is infinite then it is equal to the set of all positive integers. There is a real
number x such that, for every integer s in S and every positive integer m, x is simply
normal to base sm if and only if m is in M(s). Moreover, the set of real numbers x that
satisfy this condition has full Hausdorff dimension.

Observe that when M(s) is empty the real number x is not simply normal to base s.
The proof of Theorem 1 uses both combinatorial and analytic tools within a global

construction. First, consider the restricted problem, for each base s ∈ S, of ensuring
simple normality of the real number x to each of the finitely many numbers sm for
m ∈ M(s), ensuring simple normality for each of finitely many numbers r which are
multiplicatively independent to s, and ensuring a failure of simple normality for sn ,
where n does not divide any element of M(s). We construct an appropriate Cantor set
such that almost every element with respect to its uniform measure is simply normal
to each base sm , for m ∈ M(s), and is not simply normal to base sn . Then, we use
Fourier analysis to prove that almost all elements in this set are simply normal to every
base which is multiplicatively independent to s. The latter technique was used first
by Cassels [5] to prove that almost all elements of the middle-third Cantor set (with
respect to the Cantor measure) are normal to every base which is not a power of 3.
It was independently used by Schmidt [14] to address every pair of multiplicatively
independent integers, and then extended by Schmidt [15] and Pollington [13].

The main novelty in the proof of Theorem 1 is the determination of this appropriate
Cantor set. When its elements are viewed in base sm , form ∈ M(s), each digit should
occur with expected frequency 1/sm , and when viewed in base sn there should be a
bias for some digits over others. As in Bugeaud’s [4, Theorem 6.1] proof of Hertling’s
theorem, we work with base s�, where � is a large common multiple of n and the
elements of M(s). Among the numbers less than s�, we find one or two, depending
on the parity of s, which are balanced when written in any of the bases sm (that is, all
the digits in base sm appear with equal frequency), and which are unbalanced when
written in base sn . We obtain the appropriate Cantor set by working in base s� and
omitting these one or two digits. It takes a rather interesting combinatorial argument
in modular arithmetic to show that such numbers less than s� exist.

Given this solution to the restricted problem, we construct a nested sequence of
intervals by recursion with a unique real number x in their intersection. A step in
the recursion involves staying in one of the above Cantor sets long enough so that a
large initial segment of the expansion of x to base sn has that Cantor set’s bias while
also ensuring that the frequency of each digit in the expansion of x to any of the
other bases r being considered continues its convergence to 1/r , thus giving simple
normality to base r . Every base to which x is required to be simply normal is under
consideration from some point on in the construction and every base to which x is
required not to be simply normal is acted upon infinitely often. In case the function M
is computable (which means that for each s ∈ S, M(s) can be constructed by finitary
means), then so is x .

Regarding metric results, Pollington [13] established that, for any given set of
bases closed under multiplicative dependence, the set of real numbers that are normal
to every base in the given set but not normal to any base in its complement has full
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128 V. Becher et al.

Hausdorff dimension. More recently, it is proved in [4, Theorem6.1] that, for every
integer s greater than or equal to 2 and every coprime integers m and n with n greater
than or equal to 2, the set of real numbers which are simply normal to base sm but not
simply normal to base sn has full Hausdorff dimension. In fact, the proof applies in
the more general case in which n does not divide m. The last statement of Theorem 1
ensuring full Hausdorff dimension considerably extends both results.

Notation We denote by S the set of positive integers that are not perfect powers, so
S = {2, 3, 5, 6, 7, 10, 11, . . .}. A base is an integer greater than or equal to 2. For
a base s, let Bs = {0, 1, . . . , s − 1} denote the set of digits used to represent real
numbers in base s. For a finite set V of non-negative integers, we denote by L(�, V )

the sequences (v0, . . . , v�−1) of � many elements of V . We refer to such sequences
as blocks and denote the length of a block w by |w|. For w ∈ L(�, V ), we denote by
(w;m) the sequence of blocks of length m whose concatenation is the largest prefix
of w whose length is a multiple of m. We use repeatedly the observation that, for a
base s and positive integers � and n such that � is a multiple of n, a block of length � on
Bs can be seen as a block of length �/n on Bsn . Furthermore, we sometimes identify
the block b0 . . . b�−1 on Bs with the integer b0s�−1 + · · · + b�−2s + b�−1. We use the
convention that a set is finite if it is empty or it has finitely many elements.

2 Lemmas

We start with a collection of lemmas which deal with one single base s and its powers.
We may think of s as an element of S but the lemmas apply to any integer base.

2.1 Residue equivalence

Definition Let X , Y be sets of non-negative integers and let M be a set of positive
integers. Then X and Y are residue equivalent for M if and only if, for every m in
M and every integer r with 0 � r < m, the sets {x : x ∈ X and x ≡ r mod m}
and {y : y ∈ Y and y ≡ r mod m} have the same cardinality. When M = {m} is a
singleton, we say that X and Y are residue equivalent for m.

Instead of directly considering M as a set of positive integers, we first consider M
as a collection of residue classes modulo n, with multiplicity.

Definition A multiset M of residues mod n is fair if there is a positive integer k
such that M is the multiset in which each integer between 1 and n − 1 appears with
multiplicity k.

Observe that in case n is 1, the only fair multiset M of residues mod 1 is the empty
set. For a fair multiset M , we consider the collection of sums of elements of M .

Definition Let n, z, v, k be positive integers.We denote by p(n, z, v, k) the number of
ways that z can be written as a sum of v elements from the multiset {1, . . . , 1, . . . , n−
1, . . . , n − 1} in which every integer between 1 and n − 1 is repeated exactly k times.
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On simply normal numbers to different bases… 129

For example, a rapid check shows that p(3, 6, 4, 2) = 1 and p(2, 1, 1, k) = k
for k � 1. Let φ denote Euler’s totient function: φ(n) counts the number of positive
integers less than or equal to n that are relatively prime to n.

The following combinatorial theorem, kindly communicated to us byMarkHaiman,
is the key tool for the proof of Lemma 3 below.

Theorem 2 (Haiman [7]) For any n and k positive integers, we have

∑

z:n divides z
v:v even

p(n, z, v, k) −
∑

z:n divides z
v:v odd

p(n, z, v, k) = nk−1φ(n).

Proof The generating function for p(n, z, v, k) is given by

∑

s�1,v�1

p(n, z, v, k)xvqs =
n−1∏

j=1

(1 + xq j )k .

To calculate

d(n, k) =
∑

z:n divides z
v:v even

p(n, z, v, k) −
∑

z:n divides z
v:v odd

p(n, z, v, k),

set x = −1 and choose q to be an n-th root of unity. Then, averaging over all the n-th
roots of unity, we obtain

d(n, k) = 1

n

∑

wn=1

n−1∏

j=1

(1 − w j )k .

If w is not a primitive n-th root of unity, then w j = 1 for some positive integer j less
than n and the above product vanishes. If w is a primitive n-th root of unity, then the
above product is equal to the k-th power of

n−1∏

j=1

(1 − e2π i j/n).

Setting z = 1 in the equality

n−1∏

j=1

(z − e2π i j/n) = (zn − 1)/(z − 1) = 1 + z + z2 + · · · + zn−1,

we get that

n−1∏

j=1

(1 − e2π i j/n) = n.
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130 V. Becher et al.

It then follows that d(n, k) = nk−1φ(n). �	
The next lemma extends the following easy observation. Let m1,m2 and n be

positive integers such that n does not divide m1 nor m2. Then, the sets {0,m1 + m2}
and {m1,m2} are residue equivalent for m1 and for m2, but not for n.

Lemma 3 Let M be a non-empty finite set of positive integers and n be a positive
integer that does not divide any element of M. Then, there are sets X and Y of non-
negative integers which are residue equivalent for M and not residue equivalent for
n.

Proof Without loss of generality, we may assume that the multiset of residues of the
elements of M modulo n is fair. If necessary, M can be extended to a set with this
property and proving the lemma for this larger set also verifies it for M .

Let E(M) be the multiset of non-negative integers that can be expressed as sums
of evenly many elements of M , where the multiplicity of each element is the number
of ways that it can be expressed as such a sum. Here, we adopt the convention that
the empty sum is even and has value 0. Likewise, let O(M) be the analogous multiset
defined using sums of oddly many elements of M .

Write M = {m1,m2, . . . ,mk} and Mj = {mi : i � j} for j = 1, . . . , k, thus
M = Mk . Proceed by induction on j to show that E(Mj ) and O(Mj ) are residue
equivalent for Mj . Observe that E({m1}) = {0} and O({m1}) = {m1} are residue
equivalent for {m1}. Let j � k − 1 be such that E(Mj ) and O(Mj ) are residue
equivalent for Mj . Then we have

E(Mj+1) = E(Mj ) ∪ {m j+1 + o : o ∈ O(Mj )}
O(Mj+1) = O(Mj ) ∪ {m j+1 + e : e ∈ E(Mj )}.

Observe that E(Mj ) and O(Mj ) are residue equivalent for Mj , and {m j+1 + o :
o ∈ O(Mj )} and {m j+1 + e : e ∈ E(Mj )} are also residue equivalent for Mj .

Consequently, E(Mj+1) and O(Mj+1) are residue equivalent for Mj .

Observe that both E(Mj+1) and O(Mj+1) are residue equivalent to E(Mj ) ∪
O(Mj ) for m j+1, hence residue equivalent to each other for m j+1. This implies that
E(Mj+1) and O(Mj+1) are residue equivalent for Mj+1. By an immediate induction,
we get that E(M) and O(M) are residue equivalent for M .

Since the multiset M of residues modulo n is fair, we deduce from Theorem 2
that E(M) and O(M) have different counts for the residue 0 modulo n. Hence, the
multisets E(M) and O(M) are not residue equivalent for n. Define X and Y as the
sets consisting of the minimal non-negative integers such that X is residue equivalent
to E(M) for M ∪ {n} and Y is residue equivalent to O(M) for M ∪ {n}. �	

2.2 Block equivalence

Notation For a finite, non-empty set M of positive integers, lcm(M) denotes the least
common multiple of the elements of M . We set lcm(Ø) = 1.
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On simply normal numbers to different bases… 131

Definition Let s be a base and letM be a set of positive integers. Let u and v be blocks
in L(�, Bs), where � is a multiple of lcm(M). Then, u and v are block equivalent for
M if and only if, for each m ∈ M and for each block z of length m on Bs , the number
of occurrences of z in (u;m) is the same as the number of occurrences of z in (v;m).
When M = {m} is a singleton, we say that u and v are block equivalent for m.

Lemma 4 Let s be a base, M be a finite set of positive integers and n be a positive
integer that does not divide any element of M. There are blocks u and v of digits in
base s which are block equivalent for M and not block equivalent for n, and their
length is a multiple of each of the elements in M and n.

Proof The first possibility is that n is equal to 1 and hence M is empty. Then the two
blocks (0) and (1) of length 1 satisfy the conclusions of the lemma.

The second possibility is that n is greater than 1. As in the proof of Lemma 3,
enlarging M if necessary, we may assume that the multiset of residues of M modulo
n is fair, and hence not empty. By Lemma 3, let X and Y be sets of non-negative
integers that are residue equivalent for M but not for n. Use concatenations of #X
many blocks of length �, where � is a multiple of lcm(M ∪ {n}) and strictly greater
than the maximum of X and Y . We represent an element x ∈ X by the block wx

consisting of �−1 many 0s and a unique 1 at position x . Recall that the initial position
is numbered by 0 and the last position by � − 1. We concatenate these blocks in the
order of the elements of X , but any order would do.We define the block for Y similarly.

For each x in X and each m in M , the sequence (wx ;m) is composed of �/m
many blocks. All but one of these are the identically equal to 0 block. The remaining
element of (wx ;m) contains a 1 at position r , where r = x modm. Since X and Y are
residue equivalent for M , the blocks representing X and Y are block equivalent for
M . Similarly, the blocks representing X and Y are not block equivalent for n, by the
hypothesis that X and Y are not residue equivalent for n and the above argument. �	

We point out that the two blocks u and v defined in the proof of the Lemma 4 are
binary blocks, then a fortiori blocks of digits in any base s.

Definition Let V be a finite set and let w be a block in L(�, V ). For v ∈ V , let
occ(w, v) be the number of occurrences in w of v. The simple discrepancy of w for
the set V is

D(w, V ) = max

{∣∣∣∣
occ(w, v)

�
− 1

#V

∣∣∣∣ : v ∈ V

}
.

Definition A blockw of length � of digits in a finite set V is balanced for an integerm
and V if � is a multiple of m and D((w;m),L(m, V )) = 0. A block w is balanced
for a set M of integers and a finite set V if it is balanced for every integer in M and V .
A set W of blocks of length � is balanced for a set M of integers and a finite set V if �

is a multiple of each element of M and the concatenation of the blocks in W (in any
order) is balanced for M and V .

Suppose thatW is a subset ofL(�, Bs) and � is divisible bym. Consider the uniform
measure μW on the infinite sequences of elements of W . If W is balanced for m and
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132 V. Becher et al.

Bs , then μW -almost-every infinite sequence of elements from W is simply normal to
base sm , when parsed as an infinite sequence of elements in L(m, Bs),

Lemma 5 Let s be a base, M be a finite set of positive integers and n be a positive
integer that does not divide any element of M. There is a set U = U (s, M, n) and a
positive integer �U , which may be chosen arbitrarily large, such that

• U is balanced for M and not balanced for n,
• if s is odd, then U = L(�U , Bs)\{z} with z even,
• if s is even, then U = L(�U , Bs)\{z, z̃} with z even, z̃ odd and z < z̃.

Furthermore, �U and U are uniformly computable from of s, M and n.

The fact that U and �U may be chosen arbitrarily large is crucial in Sect. 4.

Proof If s is equal to 2 and n is equal to 1 then let u and v be the n-inequivalent
blocks (0, 1) and (1, 1). Otherwise, let u and v be blocks of digits in base s ensured by
Lemma 4 to be block equivalent for M but not for n. The length � of the blocks u and
v is a positive integer that is divisible by all of the elements of M and also by n. Fix
any positive integer c and let w0 be a block of length 2c�s� obtained by concatenating
2cmany instances of each of the s� elements ofL(�, Bs) in some order. By symmetry,
each element of s occurs inw0 exactly as often as any other element does. Similarly, if
k divides �, then (w0; k) can be obtained by concatenating the elements ofL(�/k, Bsk )

in the order naturally induced by w0 and so each digit in base sk appears in (w0; k)
exactly as often as any other digit does. Thus, for each k that divides �, the block w0
is balanced for k.

Now let W be the set of blocks in L(2c�s�, Bs) obtained by concatenation of 2c
many instances of u and 2c many instances of each of the elements in L(�, Bs)\{v}.
Observe that each element w in W consists of 4c instances of u and 2c instances of
each of the blocks in L(�, Bs)\{u, v}. No instances of v have been used. Since u and
v are block equivalent for M , w0 is block equivalent to every w ∈ W for M . Since
w0 is balanced for M , each w ∈ W is also balanced for M . Similarly, since u and v

are not block equivalent for n and w0 is balanced for n, each w ∈ W is not balanced
for n. In fact, all the elements in W are identically imbalanced for n. Then, there is a
block t ∈ L(n, Bs) and a positive rational constant γ such that for any two blocks w

and w̃ in W ,

occ((w; n), t)

|w|/n = occ((w̃; n), t)

|w̃|/n <
1

sn
− γ.

Let z and z̃ be the lexicographically least pair of blocks in W such that z ends with
an even digit, z̃ ends with an odd digit and z is less than z̃. The existence of these
blocks z and z̃ follows from the fact that the blocks u and v have length � greater than
or equal to 2. This is ensured by the choice of u and v in the special case of s = 2 and
n = 1, and by Lemma 4 in all the other cases.

If s is even, then z is even and z̃ is odd. If s is odd, then z is even, since the sum of
its digits is even (we have concatenated an even number of instances of each block).
Let the length �U be equal to 2c�s� (which is the length of z and z̃). If s is odd, let
U = L(�U , Bs)\{z}. If s is even, let U = L(�U , Bs)\{z, z̃}.
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On simply normal numbers to different bases… 133

We argue for the case s is even. Since U ∪ {z, z̃} is balanced for M and both z
and z̃ are also balanced for M , we deduce that U is also balanced for M . Similarly,
U ∪ {z, z̃} is balanced for n and z and z̃ are identically imbalanced for n, thusU is not
balanced for n. The case s is odd is similar.

Finally, the computability of U follows from the fact that z and z̃ are uniformly
computable in terms of s, M and n. �	

2.3 A lower bound for simple discrepancy in Cantor sets

Our next lemma is a classical statement saying that, for a finite set V , if � is large
enough then a large proportion of blocks of length � of digits from the set V have
small simple discrepancy.

Lemma 6 (See [8, Theorem 148]) For any finite set V , for any positive real numbers
ε and δ, there is a positive integer �0 such that for all � � �0,

# {v ∈ L(�, V ) : D(v, V ) < ε} > (1 − δ)(#V )�.

Furthermore, �0 is a computable function of V , ε and δ.

Our second lemma will be used to ensure simple normality with respect to bases
sm , with m in a finite set M .

Lemma 7 Let s be a base, M be a finite set of positive integers and n be a positive
integer that does not divide any element of M. Let U be as in Lemma 5 and let �U be
the length of the elements of U.

For any positive real numbers ε and δ, there is a positive integer �0 such that for
all � � �0,

# {u ∈ L(��U , Bs) : (u; �U ) ∈ L(�,U ) and ∀m ∈ M, D ((u;m),L(m, Bs)) < ε}
> (1 − δ)(#U ) �.

Furthermore, �0 is a computable function of s, M, n, ε and δ.

Keeping its notation, Lemma 7 asserts that, if � is large enough, then, an arbitrarily
large proportion of the (#U ) � blocks of length � of elements of the setU has, for each
m ∈ M , the property that, viewedas blocks of length ��U/m of digits in {0, 1, . . . , sm−
1}, they have arbitrarily small simple discrepancy for the base sm . This holds because
both, z and z̃, are balanced for m.

Proof Consider a block u ∈ L(��U , Bs) such that (u; �U ) ∈ L(�,U ). Letm ∈ M and
d ∈ L(m, Bs). We count the number of occurrences in (u;m) of d,

occ((u;m), d) =
∑

w∈U
occ((u; �U ), w)occ((w;m), d).

If D((u; �U ),U ) < ε1 then, by the definition of discrepancy D, for all w ∈ U ,

occ((u; �U ), w)

�
<

1

#U
+ ε1.
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134 V. Becher et al.

Then,

occ((u;m), d) < �

(
1

#U
+ ε1

) ∑

w∈U
occ((w;m), d).

Since U is balanced for M ,

∑

w∈U
occ((w;m), d) = #U (�U/m)

#L(m, Bs)
= #U (�U/m)

sm
.

Then,

occ((u;m), d) < �

(
1

#U
+ ε1

)
#U (�U/m)

sm

< �

(
1

sm
+ ε1#U

sm

)
�U

m
.

Since ��U/m is the length of (u;m), we deduce that

occ((u;m), d)

|(u;m)| <
1

sm
+ ε1s

�U .

Weobtain the analogous lower bound on occ((u;m),d)
|(u;m)| similarly. Thus, for any ε > 0 and

any u ∈ L(��U , Bs) satisfying D((u; �U ),U ) < εs−�U , we have D((u;m), Bs) < ε.
Now, let ε and δ be positive real numbers. By Lemma 6, there is an �0 such that for

all � � �0,

#
{
u ∈ L(�,U ) : D(u,U ) < εs−�U

}
> (1 − δ)(#U )�.

Equivalently,

#
{
u ∈ L(��U , Bs) : (u, �U ) ∈ L(�,U ) and D((u; �U ),U ) < εs−�U

}

> (1 − δ)(#U )�.

Hence,

# {u ∈ L(��U , Bs) : (u, �U ) ∈ L(�,U ) and D((u;m),L(m, Bs)) < ε}
> (1 − δ)(#U )�,

as required. �	
Our third lemma is the key ingredient to deny simple normality to the base sn .
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Lemma 8 Let s be a base, M be a finite set of positive integers and n be a positive
integer that does not divide any element of M. Let U be fixed as in Lemma 5 and let
�U be the length of the elements of U.

There is a positive real number ε and an element d in L(n, Bs) such that for any
positive real number δ, there is a positive integer �0 such that for all � � �0,

#

{
u ∈ L(��U , Bs) : (u; �U ) ∈ L(�,U ) and

occ((u; n), d)

|(u; n)| <
1

sn
− ε

}

> (1 − δ)(#U ) �,

Furthermore, ε, d and �0 are computable functions of s, M and n.

We point out that ε in Lemma 8 does not depend on δ.

Proof We argue as in Lemma 7. Consider a block u ∈ L(��U , Bs) and a positive real
number ε1 such that (u; �U ) ∈ L(�,U ) and D((u; �U ),U ) < ε1. As above, for any
d ∈ L(n, Bs), we have

occ((u; n), d) < �

(
1

#U
+ ε1

) ∑

w∈U
occ((w; n), d).

Since U is not balanced for n, there is some d ∈ L(n, Bs) and a positive constant c
such that

∑

w∈U
occ((w; n), d) = #U (�U/n)

#L(n, Bs)
− c = #U (�U/n)

sn
− c.

Thus,

occ((u; n), d) < �

(
1

#U
+ ε1

) (
#U (�U/n)

sn
− c

)
and

occ((u; n), d)

��U/n
<

1

sn
− c

#U�U/n
+ ε1s

�U .

If ε1 is sufficiently small, then

occ((u; n), d)

��U/n
<

1

sn
− c

2#U�U/n
.

Let ε equal c
2#U�U /n . The proof is completed by application of Lemma 6. �	

2.4 Exponential sums on Cantor sets

Notation We let e(x) denote e2π i x . We use 〈b; r〉 to denote �b/ log r�, where log
refers to logarithm in base e. We say that a rational number x in the unit interval is
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s-adic if x = ∑a
j=1 d j s− j for digits d j in {0, . . . , s − 1}. In this case, we say that x

has precision a.

Lemma 9 (Hilfssatz 5, [15]) Let r and s be multiplicatively independent bases. There
is a constant c, with 0 < c < 1/2, depending only on r and s, such that for all positive
integers k and l with l � sk and for every positive integer n,

n−1∑

p=0

∞∏

q=k+1

| cos(πr pl/sq)| � 2n1−c.

Furthermore, c is a computable function of r and s.2

Lemma 10 is our analytic tool to control discrepancy for multiplicatively indepen-
dent bases. It originates in Schmidt’s work [15]. Our proof adapts the version given
by Pollington [13].

Definition For integers a, �, sets R, T and a real number x , set

A(x, R, T, a, �) =
∑

t∈T

∑

r∈R

∣∣∣∣∣∣

〈a+�;r〉∑

j=〈a;r〉+1

e(r j t x)

∣∣∣∣∣∣

2

.

Lemma 10 Let s be a base greater than 2. If s is odd, then let U be Bs\{z} for some
z in Bs such that z even. Else, if s is even, then let U be Bs\{z, z̃} for some z and z̃
in Bs such that z is even and z̃ is odd. Let R be a finite set of bases multiplicatively
independent to s, T be a finite set of non-zero integers and a be a non-negative integer.
Let x be s-adic with precision 〈a; s〉.

For every positive real number δ there is a length �0 such that for all � � �0, there
are at least (1 − δ)(#U )k blocks v in L(k,U ) for k = 〈a + �; s〉 − 〈a; s〉 such that
A(xv, R, T, a, �) � � 2−c(R,s)/4, for xv = x + s−(〈a;s〉+1) ∑k−1

j=0 v j s− j and c(R, s)
the minimum of the constants c in Lemma 9 for pairs r, s with r ∈ R.

Furthermore, �0 is a computable function of s, U, R and T and thereby does not
depend on a nor on x.

Proof We abbreviate A(x, R, T, a, �) by A(x), abbreviate (a+�) by b andL(〈b; s〉−
〈a; s〉,U ) by L. To provide the needed �0 we estimate the mean value of A(x) on the
set of numbers xv . We need an upper bound for

∑

v∈L
A(xv) =

∑

v∈L

∑

t∈T

∑

r∈R

∣∣∣∣∣∣

〈b;r〉∑

j=〈a;r〉+1

e(r j t xv)

∣∣∣∣∣∣

2

=
∑

v∈L

∑

t∈T

∑

r∈R

〈b;r〉∑

g=〈a;r〉+1

〈b;r〉∑

j=〈a;r〉+1

e((r j − r g)t xv).

2 Actually, Schmidt asserts the computability of c in separate paragraph (page 309 in the same article):
“Wir stellen zunächst fest, daß man mit etwas mehr Mühe Konstanten a20(r, s) aus Hilfssatz 5 explizit
berechnen könnte, und daß dann x eine eindeutig definierte Zahl ist.”
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Our main tool is Lemma 9, but it does not apply to all the terms A(xv) in the sum. We
will split

∑
v∈L A(xv) into two smaller sums

∑
v∈L B(xv) and

∑
v∈L C(xv), so that

a straightforward analysis applies to the first, and Lemma 9 applies to the other. Let p
be the least integer satisfying r p−1 � 2|t | for every t ∈ T and r p � s2 + 1 for every
r ∈ R.

∑

v∈L
B(xv) =

∑

v∈L

∑

t∈T

∑

r∈R

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈b;r〉∑
g=〈b;r〉−p+1

〈b;r〉∑
j=〈a;r〉+1

e((r j − r g)t xv) +

〈b;r〉∑
g=〈a;r〉+1

〈b;r〉∑
j=〈b;r〉−p+1

e((r j − r g)t xv) +

〈b;r〉∑
g=〈a;r〉+1

〈b;r〉∑
j=〈a;r〉+1
|g− j |<p

e((r j − r g)t xv).

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We obtain the following bounds. The first inequality uses that each term in the explicit
definition of B(x) has norm less than or equal to 1. Recall, b = a + �.

∑

v∈L
|B(x)| �

∑

v∈L

∑

t∈T

∑

r∈R

4p(〈b; r〉 − 〈a; r〉)

�
∑

v∈L
#T #R 8p�

� #T #R 8p� (#U )〈b;s〉−〈a;s〉.

The other sum is as follows.

∑

v∈L
C(xv) =

∑

v∈L

∑

t∈T

∑

r∈R

〈b;r〉−p∑

g=〈a;r〉+1

〈b;r〉−p∑

j=〈a;r〉+1
| j−g|�p

e((r j − r g)t xv)

=
∑

t∈T

∑

r∈R

〈b;r〉−p∑

g=〈a;r〉+1

〈b;r〉−p∑

j=〈a;r〉+1
| j−g|�p

∑

v∈L
e((r j − r g)t xv).

For fixed j and g, we have the following identity:

∑

v∈L
e((r j − r g)t xv) = e((r j − r g)t x)

〈b;s〉∏

k=〈a;s〉+1

∑

d∈U
e

(
dt (r j − r g)

sk

)
.
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Since | ∑x∈X e(x)| = |∑x∈X e(−x)| holds for any finite set X of real numbers, we
can bound the sums over g and j as follows:

∣∣∣∣∣
∑

v∈L
C(xv)

∣∣∣∣∣ �
∑

t∈T

∑

r∈R

〈b;r〉−p∑

j=〈a;r〉+1

〈b;r〉−p∑

g=〈a;r〉+1
| j−g|�p

〈b;s〉∏

k=〈a;s〉+1

∣∣∣∣∣
∑

d∈U
e

(
dt (r j − r g)

sk

)∣∣∣∣∣

� 2
∑

t∈T

∑

r∈R

〈b;r〉−〈a;r〉−p∑

j=p

〈b;r〉−〈a;r〉−p− j∑

g=1

〈b;s〉∏

k=〈a;s〉+1

∣∣∣∣∣
∑

d∈U
e

(
dtr 〈a;r〉r g(r j − 1)

sk

)∣∣∣∣∣ .

Now, we use the properties of U to show that |∑d∈U e(dx)| � 1
2#U |1 + e(x)|. We

will also show that #U is even and thus 1
2#U is a positive integer. We consider the odd

and even cases for s separately.
Suppose that s is odd. By hypothesis U is {0, . . . , z − 1, z + 1, . . . , s − 1} and z is

even. Hence, #U = s − 1 and is even. We parse our sum in pairs:

∑

d∈U
e(dx) =

∑

d∈U
d<z

e(dx) +
∑

d∈U
z<d

e(dx)

=
∑

d∈U
d<z
d even

e(dx)(1 + e(x)) +
∑

d∈U
z<d
d odd

e(dx)(1 + e(x)).

We conclude that |∑d∈U e(dx)| � 1
2#U |1 + e(x)|.

Suppose that s is even. Then, z < z̃ and U is {0, . . . , z − 1, z + 1, . . . , z̃ − 1, z̃ +
1, . . . , s − 1}, where z is even and z̃ is odd. Hence, #U = s − 2 and is even. Again,
we parse our sum in pairs:

∑

d∈U
e(dx) =

∑

d∈U
d<z

e(dx)+
∑

d∈U
z<d<z̃

e(dx)+
∑

d∈U
z̃<d

e(dx)

=
∑

d∈U
d<z
d even

e(dx)(1 + e(x))+
∑

d∈U
z<d<z̃
d odd

e(dx)(1 + e(x)) +
∑

d∈U
z̃<d
d even

e(dx)(1 + e(x)).

Again, we conclude that |∑d∈U e(dx)| � 1
2#U |1 + e(x)|.

To simplify the expressions, let L denote (r j − 1)r 〈a;r〉t . Then,

∣∣∣∣∣
∑

v∈L
C(xv)

∣∣∣∣∣ � 2
∑

t∈T

∑

r∈R

〈b;r〉−〈a;r〉−p∑

j=p

〈b;r〉−〈a;r〉−p− j∑

g=1

〈b;s〉∏

k=〈a;s〉+1

∣∣∣∣∣
∑

d∈U
e(dLrgs−k)

∣∣∣∣∣

� 2
∑

t∈T

∑

r∈R

〈b;r〉−〈a;r〉−p∑

j=p

〈b;r〉−〈a;r〉−p− j∑

g=1

〈b;s〉∏

k=〈a;s〉+1

#U

2

∣∣∣ 1+e(Lrgs−k)

∣∣∣ .
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By the double angle identities,

∣∣∣∣∣
∑

v∈L
C(xv)

∣∣∣∣∣

�2(#U )〈b;s〉−〈a;s〉 ∑

t∈T

∑

r∈R

〈b;r〉−〈a;r〉−p∑

j=p

〈b;r〉−〈a;r〉−p− j∑

g=1

〈b;s〉∏

k=〈a;s〉+1

| cos(πLrgs−k)|.

The following upper bound on the value of L for r , j and t is ensured by the choice
of p. Let Tmax be the maximum of the absolute values of the elements of T .

Lrgs−〈b;s〉 � (r j − 1)r 〈a;r〉tr gs−〈b;s〉

� r jr 〈a;r〉tr 〈b;r〉−〈a;r〉−p− j s−〈b;s〉 = tr 〈b;r〉−ps−〈b;s〉

� Tmax r
�b/ log r� s−�b/ log s�r−p

� Tmax r
1−p

� 1/2 (an ensured condition on p).

Using this upper bound, for every r , j and t above, Lrgs−(〈b;s〉+k) � 2−(k+1). We
conclude that

∞∏

k=〈b;s〉+1

| cos(πLrgs−k)| �
∞∏

k=1

| cos(π2−(k+1))|,

where the right hand side is a positive constant. Then, for all r , j and t

〈b;s〉∏

k=〈a;s〉+1

| cos(πLrgs−k)|

=
∞∏

k=〈a;s〉+1

| cos(πLrgs−k)|
⎛

⎝
∞∏

k=〈b;s〉+1

| cos(πLrgs−k)|
⎞

⎠
−1

which, for an appropriate constant c̃, is at most c̃
∏∞

k=〈a;s〉+1 | cos(πLrgs−k)|.
Now, for r , j and t , we give a lower bound on the absolute value of L .

|L| � (r p − 1)r 〈a;r〉 = (r p − 1)r �a/ log r�

� (r p − 1)sa/ log s

� s2+a/ log s (an ensured condition on p)

� s〈a;s〉+1.
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140 V. Becher et al.

Using this lower bound, we can apply Lemma 9.

〈b;r〉−〈a;r〉−p− j∑

g=1

〈b;s〉∏

k=〈a;s〉+1

∣∣∣∣∣
∑

d∈U
e(dLrgs−k)

∣∣∣∣∣

�
〈b;r〉−〈a;r〉−p− j∑

g=1

c̃
∞∏

k=〈a;s〉+1

| cos(πLrgs−k)|

� 2c̃(〈b; r〉 − 〈a; r〉)1−c(R,s).

Then,

∣∣∣∣∣
∑

v∈L
C(xv)

∣∣∣∣∣ � 2(#U )〈b;s〉−〈a;s〉 ∑

t∈T

∑

r∈R

〈b;r〉−〈a;r〉−p∑

j=p

2c̃(〈b; r〉 − 〈a; r〉)1−c(R,s)

� 16c̃ #T #R �2−c(R,s) (#U )〈b;s〉−〈a;s〉.

Combining this with the estimate for |∑v∈L B(xv)| and using that c(R, s) is less than
1, we have

∑

v∈L
A(xv) � (8p + 16c̃)#T #R �2−c(R,s)(#U )〈b;s〉−〈a;s〉.

Therefore, the number of v ∈ L such that A(xv) > (8p + 16c̃)#T #R �2−c(R,s)/2 is at
most equal to �−c(R,s)/2 (#U )〈b;s〉−〈a;s〉. If � is greater than δ−2/c(R,s) then �−c(R,s)/2 <

δ. In this case, there are at least (1 − δ)(#U )(〈b;s〉−〈a;s〉) v ∈ L for which

A(xv) � (8p + 16c̃)#T #R�2−c(R,s)/2.

If � is also greater than ((8p + 16c̃)#T #R)4/c(R,s), then there are at least (1 −
δ)(#U )(〈b;s〉−〈a;s〉) v ∈ L for which

A(xv) � � 2−c(R,s)/4.

This proves the lemma for �0 equal to the least integer greater than δ−2/c(R,s) and
greater than ((8p + 16c̃)#T #R)4/c(R,s). �	

2.5 An upper bound for simple discrepancy in Cantor sets

We apply LeVeque’s Inequality, which we state for the special case of simple discrep-
ancy of the digits in the base s expansion of a real number.

Lemma 11 (LeVeque’s inequality, see Theorem 2.4 on page 111 in [10]) Let s be
a base, � be a positive integer, w be a block in L(�, Bs) and x be a s-adic rational
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number with precision a. Then, letting xw = x + s−a+1 ∑�−1
j=0 w j s− j ,

D(w, Bs) �

⎛

⎜⎝
6

π2

∞∑

t=1

1

t2

∣∣∣∣∣∣
1

�

a+�∑

j=a+1

e(ts j xw)

∣∣∣∣∣∣

2
⎞

⎟⎠

1
3

.

Lemma 12 Let s be a base, ε be a positive real number and x be a s-adic rational
number with precision a. There is a finite set T of positive integers and a positive real
number γ such that, for every positive integer � and every block w in L(�, Bs), letting
xw = x + s−a+1 ∑�−1

j=0 w j s− j ,

if for all t ∈ T,
1

�2

∣∣∣∣∣∣

a+�∑

j=a+1

e(ts j xw)

∣∣∣∣∣∣

2

< γ then D(w, Bs) < ε,

Proof Since

∣∣∣∣∣∣
1

�

a+�∑

j=a+1

e(ts j x)

∣∣∣∣∣∣

2

� 1,

we get, for each integer k,

∞∑

t=k+1

1

t2

∣∣∣∣∣∣
1

�

a+�∑

j=a+1

e(ts j x)

∣∣∣∣∣∣

2

�
∞∑

t=k+1

1

t2
�

∫ ∞

k+1
x−2dx � 1

k + 1
.

Set k = �12/(ε3π2)�. Assume that

1

�2

∣∣∣∣∣∣

a+�∑

j=a+1

e(ts j x)

∣∣∣∣∣∣

2

<
ε3

2

for all positive integers t less than or equal to k. Then,

k∑

t=1

1

t2

∣∣∣∣∣∣
1

�

�−1∑

j=0

e(ts j x)

∣∣∣∣∣∣

2

+
∞∑

t=k+1

1

t2

∣∣∣∣∣∣
1

�

�−1∑

j=0

e(ts j x)

∣∣∣∣∣∣

2

�
k∑

t=1

1

t2
· ε3

2
+ 1

k + 1
� ε3

π2

12
+ 1

k + 1
.
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Our choice of k guarantees that (6/π2((ε3π2/12)+1/(k+1)))
1
3 < ε. It then follows

from Lemma 11 that D(w, Bs) < ε. This proves the lemma with T = {1, . . . , k} and
γ = ε3/2. �	
Lemma 13 Let s be a base greater than 2. If s is odd, then let U be Bs\{z} for some
even z. Else, if s is even, then let U be Bs\{z, z̃} for some even z and some odd z̃ such
that z < z̃. Let R be a finite set of bases multiplicatively independent to s. Let x be
s-adic with precision 〈a; s〉.

For all positive real numbers ε and δ there is a length �0 such that for all � � �0,
there are at least (1 − δ)(#U )〈a+�;s〉−〈a;s〉 blocks v ∈ L(〈a + �; s〉 − 〈a; s〉,U ) such
that for each r ∈ R, the block u ∈ L(〈a + �; r〉 − 〈a; r〉, Br ) in the expansion of
x + s−(〈a;s〉+1) ∑〈a+�;s〉−〈a;s〉−1

j=0 v j s− j in base r satisfies D(u, Br ) < ε.
Furthermore, �0 is a computable function of s, U and R and thereby does not

depend on a nor on x.

Proof Assume given s,U, R, x and a as in the hypothesis. Fix ε and δ positive real
numbers greater than 0. For each base in r in R consider Lemma 12 with input values
the base r and the fixed ε. Fix a finite set of positive integers Tε and a positive real
number γε that satisfies the conclusion of Lemma 12 simultaneously for all bases r in
R and the fixed ε.

Apply Lemma 10 with input values s,U, R, Tε, x and a. Then there is an �0
such that for all � � �0, there are at least (1 − δ)(#U )k blocks v ∈ L(k,U )

such that A(xv, R, Tε, a, �) � � 2−c(R,s)/4, where k = 〈a + �; s〉 − 〈a; s〉, xv =
x+s−(〈a;s〉+1) ∑k−1

j=0 v j s− j and c(R, s) is the minimum of the constants c in Lemma 9
for pairs r, s with r ∈ R.

Fix � be such that � � �0 and �−c(R,s)/4 < γε . By definition,

A(xv, R, Tε, a, �) =
∑

t∈Tε

∑

r∈R

∣∣∣∣∣∣

〈a+�;r〉∑

j=〈a;r〉+1

e(r j t xv)

∣∣∣∣∣∣

2

.

Hence, for each t ∈ Tε and for each r ∈ R,

1

�2

∣∣∣∣∣∣

〈a+�;r〉∑

j=〈a;r〉
e(r j t xv)

∣∣∣∣∣∣

2

< γε.

Then, by Lemma 12, for each r ∈ R, D(u, Br ) < ε, where u is the block of digits
from position 〈a; r〉 + 1 to position 〈a + �; r〉 in the expansion of xv in base r . �	
Lemma 14 Let ε be a positive real number, s and r be bases and a and b be positive
integers such that a < b. Let q be an s-adic rational numberwith precision 〈b; s〉 and x
be a real number in the interval [q, q+s−〈b;s〉). Let u and v inL(〈b; r〉−〈a; r〉+1, Br )
be, respectively, the blocks in the expansions of q and x in base r between the positions
〈a; r〉 and 〈b; r〉. Let p be a positive integer and let ũ in L(〈b; r p〉− 〈a; r p〉+1, Br p )
be the block in the expansion of q in base r p between the positions 〈a; r p〉 and 〈b; r p〉.

If D(u, Br ), D(ũ, Br p ), 2/r p and 3p/|u| are all less than ε, then D(v, Br ) < 5ε.
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Proof Let ṽ in L(〈b; r p〉 − 〈a; r p〉 + 1, Br p ) be the block in the expansion of x in
base r p between the positions 〈a; r p〉 and 〈b; r p〉. Since 0 � x − q < s−〈b;s〉, then
0 � x −q � (r p)−〈b;r p〉+1. Any difference between ũ and ṽ other than in the last two
digits must come from a block of instances of the digit r p − 1 in the expansion of q
in base r p at positions preceding its last two.

Since D(ũ, Br p ) < ε, at most (1/r p + ε)|ũ| digits in ũ can be equal to r p − 1.
So, ũ and ṽ agree on all but the last (1/r p + ε)|ũ| + 2 digits. But then u and v agree
on all but the last (1/r p + ε)p|ũ| + 3p digits. Then, for any d in base r , the quantity
|occ(u, d) − occ(v, d)| is less than or equal to (1/r p + ε)p|ũ| + 3p. Thus,

occ(v, d)/|v| � occ(u, d)/|u| + ((1/r p + ε)p|ũ| + 3p)/|v|
� (1/r + ε) + ((1/r p + ε)p|ũ| + 3p)/|v|
� (1/r + ε) + 2(1/r p + ε) + 3p/|v|
� 1/r + 5ε, provided 2/r p and 3p/|v| are each less than ε.

The lemma follows. �	

In the next two lemmas, we denote by λ(I ) the length of a real interval I .

Lemma 15 For any real interval I and base s, there is a s-adic subinterval Is such
that λ(Is) � λ(I ) /(2s).

Proof Let m be least such that 1/sm < λ(I ). Note that 1/sm � λ(I ) /s, since
1/sm−1 � λ(I ). If there is a s-adic interval of length 1/sm strictly contained in I ,
then let Is be such an interval, and note that Is has length greater than or equal to
λ(I ) /s. Otherwise, there must be a non-negative integer a such that a/sm is in I
and neither (a − 1)/sm nor (a + 1)/sm belongs to I . Thus, 2/sm > λ(I ). However,
since 1/sm < λ(I ) and s � 2 then 2/sm+1 < λ(I ). So, at least one of the two inter-
vals [ sa−1

sm+1 , sa
sm+1 ) or [ sa

sm+1 ,
sa+1
sm+1 ) must be contained in I . Denote by Is one with this

property. Then, λ(Is) is 1
sm+1 = 1

2s
2
sm > λ(I ) /(2s). In either case, the length of Is

is greater than or equal to λ(I ) /(2s). �	

Lemma 16 Let s and t be bases and let I be an s-adic interval of length s−〈b;s〉. For
a = b + �log s + 3 log t�, there is an t-adic subinterval of I of length t−〈a;t〉.

Proof By the proof of Lemma 15, there is an t-adic subinterval of I of length
t−(�− logt (μ(I ))�+1):

�− logt (λ(I ))� + 1 = �− logt (s
−〈b;s〉)� + 1

= �〈b; s〉 log s/log t� + 1

� �b/ log t + log s/ log t� + 1

� 〈b; t〉 + �log s/ log t� + 1.
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Thus, there is an t-adic subinterval of I of length t−(〈b;t〉+�log s/ log t�+1). Consider
a = b + �log s + 3 log t�,

〈a; t〉 = �a/ log t�
= �b + �log s + 3 log t�/log t�
� b/ log t + (log s + 3 log t)/ log t

� 〈b; t〉 + �log s/ log t� + 1.

This inequality is sufficient to prove the lemma. �	
The next remark follows from direct substitution in Lemma 16 above.

Remark 17 Let r , s and t be bases. Let b be a positive integer and let a = b+�log s+
3 log t�. Then,

〈a; r〉 − 〈b; r〉 � �log s + 3 log t�/ log r + 1 � 2�log s + 3 log t�.

2.6 Simple discrepancy and concatenation

We record the next three observations without proof.

Lemma 18 Let ε be a positive real, r be a base, � a positive integer andw ∈ L(�, Br )
such that D(w, Br ) < ε. Then, for any positive integer k with k < ε� and any
u ∈ L(k, Br ), we have D(wu, Br ) < 2ε.

Lemma 19 Let ε be a positive real, r be a base, and (w j ) j�0 be an infinite sequence
of elements from {0, 1, . . . , r − 1}. Let (bt )t�0 be an increasing sequence of positive
integers. Suppose that there is an integer t0 such that, for all t > t0, we have bt+1−bt �
εbt and D((wbt+1, . . . , wbt+1), Br ) < ε. Then,

lim
k→∞ D((w0, . . . , wk), Br ) � 2ε.

Lemma 20 Let ε be a positive real, r be a base, d be a digit in base r and (w j ) j�0 be
an infinite sequence of elements from {0, 1, . . . , r − 1}. Let (bt )t�0 be an increasing
sequence of positive integers. Suppose that there is an integer t0 such that, for all
t > t0, we have

occ((wbt+1, . . . , wbt+1), d)

bt+1 − bt
<

1

r
− ε.

Then,

lim inf
t→∞

occ((w0, . . . , wbt ), d)

bt + 1
<

1

r
− ε

2
.
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3 Existence

Let s �→ M(s) be given as in the hypothesis of the theorem. If for every s ∈ S, the
set M(s) is infinite, then any absolutely normal number satisfies the conclusion of the
theorem. Thus, we assume that there is at least one s ∈ S for which M(s) is finite.
We construct a sequence of intervals by recursion so that the unique real number x in
their intersection has the properties stated in the conclusion of the theorem. We define
the following sequences indexed by j :

• Fix sequences ((s j , n j )) j�0 and (r j ) j�0 as follows. In the sequence ((s j , n j )) j�0,
the integer s j is an element of S such that M(s j ) is finite, n j is a positive integer
that does not belong to M(s j ) and every such pair appears infinitely often. The
sequence (r j ) j�0 is the enumeration of all of the numbers sm , for s ∈ S and
m ∈ M(s), in increasing order, including those for which M(s) is infinite.

• For j � 0, set s∗
j = s�U

j , where �U is as in Lemma 5 for s j , M(s j ) and n j .
• For j � 0 and the pair (s j , n j ), let d j and ε j be as guaranteed by the conclusion
of Lemma 8 for s j , M(s j ) and n j .

• For j � 0, let p j be the least positive integer such that for each k less than or
equal to j , we have r

p j
k � 2( j + 1).

The recursion uses two additional functions denoted by �( j) and x( j, a, y). Let
�( j) be the least positive integer such that the following hold:

• For all positive integers a and all k less than or equal to j , 〈a + �( j); rk〉− 〈a; rk〉
is greater than 2�log s∗

j−1 + 3 log s∗
j �( j + 2).

• For all positive integers a and all k less than or equal to j , 〈a + �( j); rk〉− 〈a; rk〉
is greater than 3pk( j + 2).

• For all positive integers a, the conclusion of Lemma 7 with input values s j , M(s j )
and n j applies to 〈a + �( j); s j 〉 − 〈a; s j 〉 for ε = 1/( j + 1) and δ = 1/4.

• For all positive integers a, the conclusion of Lemma 8 with input values s j , M(s j )
and n j applies to 〈a + �( j); s j 〉 − 〈a; s j 〉 − n j , for δ = 1/4.

• The conclusion of Lemma 13 with input values s∗
j , U (s j , M(s j ), n j ) as in

Lemma 5, and the set of bases ({rk : k � j} ∪ {r p j
k : k � j})\{smj : m ∈ M(s j )},

applies to �( j) for ε = 1/( j + 1) and δ = 1/4.

For y an s∗
j -adic rational number of precision (s∗

j )
〈a;s∗j 〉, let x( j, a, y) be the least

number such that there is a block w∗ of length 〈a + �( j); s∗
j 〉 − 〈a; s∗

j 〉 with elements
in U (s j , M(s j ), n j ) (as in Lemma 5) for which the following hold. Let w be the
sequence in base s j such that (w; �U ) = w∗:

• x( j, a, y) = y + (s∗
j )

−(〈a;s∗j 〉+1)
|w∗|−1∑

k=0

w∗
k (s

∗
j )

−k .

• For all m in M(s j ), D((w;m),L(m, s j )) < 1
j+1 .

• occ((w; n j ), d j )

|(w; n j )| <
1

sn j
− ε j .

• For all r in ({rk : k � j} ∪ {r p j
k : k � j})\{smj : m ∈ M(s j )} and for u the block

of digits from position 〈a; r〉+ 1 to position 〈a + �( j); r〉 in the base-r expansion
of x( j, a, y), we have D(u, Br ) < 1/( j + 1).
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We proceed by recursion on t to define sequences ( jt )t�0, (bt )t�0 and (xt )t�0. For
t � 0, jt and bt are positive integers and xt is a s∗

jt
-adic rational number of precision

〈bt ; s∗
jt
〉. The real x , which is the eventual result of our construction, will be an element

of [xt , xt + (s∗
jt
)
−〈bt ;s∗jt 〉).

Initial stage. Let j0 = 0, x0 = 0 and b0 = 0.
Stage t+1. Given jt , bt , xt . Consider the two conditions.

1. For all bases r ∈ {rk : k � jt + 1}\{smjt : m ∈ M(s jt )},

〈bt + �log s∗
jt + 3 log s∗

jt+1� + �( jt + 1); r〉 − 〈bt ; r〉 <
〈bt ; r〉
jt + 1

.

2. For the block w composed of the first 〈bt ; s jt 〉 digits in the base-s jt expansion of
xt ,

occ((w; n jt ), d jt )

|(w; n jt )|
<

1

sn jt
− ε jt

2
.

If both conditions hold, let jt+1 = jt + 1, let a = bt + �log s∗
jt

+ 3 log s∗
jt+1� and let

y be the left endpoint of the leftmost s∗
jt+1

-adic subinterval of [xt , xt + (s∗
jt
)
−〈bt ;s∗jt 〉)

of length (s∗
jt+1

)
−〈a;s∗jt+1

〉
. Otherwise, jt+1 = jt , a = bt , and y = xt . Finally define,

xt+1 = x( jt+1, a, y) and bt+1 = a + �( jt+1).

We check that the construction succeeds. By Lemmas 7, 8 and 13, the integer �( j)
is well defined. Indeed, in the definition of x( j, a, y), each of these lemmas is applied
so that at least 3/4 of the blocks being considered are suitable. Thus, at least 1/4 of
the blocks being considered are suitable in terms of all three of the lemmas. It follows
that x( j, a, y) is well defined and that the sequence xt converges to a limit x .

We show that ( jt )t�0 tends to infinity with t . Clearly, the function t �→ jt is non-
decreasing. Suppose that limt→∞ jt = h < ∞ and let t0 be such that jt0 = h. By the
first condition in the definition of the function �, we have bt+1 > bt for t � 0. Thus,
since the value of �( jt ) does not depend on that of bt , there is a stage t1 > t0 such that
for all t > t1 and all r ∈ {rk : k � jt }, the quantity

〈bt + �log s∗
h + 3 log s∗

h� + �(h); r〉 − 〈bt ; r〉

is less than 〈bt ;r〉
jt+1 . Similarly, for all stages t > t0, we have xt+1 = x(h, bt , xt ). Then,

by Lemma 20 forw equal to the expansion of x in base snhh and the sequence of integers
(ct )t�t0 = (〈bt ; s∗

h 〉(�U/nh))t�t0 ,

lim inf
t→∞

occ((w0, . . . , wct ), dh)

ct + 1
<

1

snhh
− εh

2
.
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Then, there must be a t > t1 such that

occ((w0, . . . , wct ), dh)

ct + 1
<

1

snhh
− εh

2
.

For such a t , the criteria for defining jt+1 = jt + 1 are satisfied, contradicting the
supposition that limt→∞ jt = h. Thus, limt→∞ jt = ∞.

Suppose that s ∈ S and n /∈ M(s). Then, there are infinitely many j such that
(s j , n j ) = (s, n). Fix d and ε as guaranteed by the conclusion of Lemma 8 for s,
M(s) and n. By the previous paragraph, there are infinitely many stages t such that
s = s jt , n = n jt , d = d jt , ε = ε jt and

occ((w0, . . . , w〈bt ;s∗jt 〉(�U /n)), d)

〈bt ; s∗
jt
〉(�U/n) + 1

<
1

sn
− ε

2
,

where (w0, . . . , w〈bt ;s∗jt 〉(�U /n)) is the sequence of digits in the base-sn expansion of
xt . By construction, these are also the sequence of digits in the base-sn expansion of
x . Consequently, x is not simply normal to base sn .

Now, suppose that s ∈ S andm ∈ M(s). By the definition of the sequence (r j ) j�0,
fix the integer h such that sm = rh . Since limt→∞ jt = ∞ we can fix t0 such that
jt � h for all t > t0. We consider the construction during stages t + 1 > t0.
There are two possibilities for sm during stage t+1, depending onwhether s jt+1 = s

or not. Suppose first that s jt+1 �= s. Then, xt+1 was chosen so that for the block u
of digits from position 〈a; sm〉 + 1 to position 〈a + �( jt+1); sm〉 = 〈bt+1; sm〉 in the
base-sm expansion of xt+1, we have D(u, Bsm ) < 1/( jt+1 + 1), where a is bt or
bt + �log s∗

jt
+ 3 log s∗

jt+1�. In the latter case, by the first condition in the definition
of �( jt+1), we deduce that 〈a + �( jt+1); sm〉 − 〈a; sm〉 is greater than 2�log s∗

jt
+

3 log s∗
jt+1

�( jt+1 + 2). It then follows from Remark 17 that

〈a; sm〉 − 〈bt ; sm〉 < 2�log s∗
jt + 3 log s∗

jt+1
�.

By Lemma 18, for the block v of digits in the base-sm expansion of xt+1 between posi-
tions 〈bt ; sm〉+1 and 〈bt+1; sm〉, we have D(v, Bsm ) < 2/( jt+1+1). By construction,
we treat the base (sm)

p jt+1 similarly during stage t+1 and the same conclusion applies.
Alternatively, suppose that s = s jt . Again, for the block v of digits in the base-sm

expansion of xt+1 between positions 〈bt ; sm〉+1 and 〈bt+1; sm〉, we have D(v, Bsm ) <

2/( jt+1 + 1) by virtue of the second condition in the definition of x( j, a, y) and the
above observations. Similarly, this conclusion holds for base (sm)p jt . (Note, to keep
the discussion simple, we have chosen to ignore the possibility of a difference between
〈bt+1; sm〉 and 〈bt+1; s�

U 〉(�U/m), where U is as is defined during stage t + 1.)
Now, we consider the expansion of x in base sm . For each t > t0, by the definition

of the function �, Lemma 14 applies to the digits in this expansion from position
〈bt ; sm〉+1 to 〈bt+1; sm〉. Thus, for each of these blocks in the expansion of x in base
sm , the simple discrepancy is less than 10/( jt+1 + 1). Since jt tends to infinity as t
increases, by Lemma 19, x is simply normal to base sm .
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4 Hausdorff dimension

Like in [13], the key tool for estimating the Hausdorff dimension of the set defined in
Theorem 1 is the following result of Eggleston [6, Theorem 5].

Lemma 21 Suppose that, for k � 1, the set Kk is a linear set consisting of Nk closed
intervals each of length δk and such that each interval of Kk contains Nk+1/Nk disjoint
intervals of Kk+1. If v0 ∈ (0, 1] is such that for every v < v0 the sum

∑

k�2

δk−1

δk
(Nk(δk)

v)−1

converges, then the Hausdorff dimension of the set
⋂

k�1 Kk is greater than or equal
to v0.

We analyze the construction of Sect. 3. We keep the notation from that section.
We introduce a positive real number η such that

log(s∗
j − 2)

log s∗
j

� η

for j � 0. In view of Lemma 5 the bases s∗
j may be taken arbitrarily large, thus η can

be taken arbitrarily close to 1. For convenience, we assume that the sequence (s∗
j ) j�0

is non-decreasing and that s∗
0 � 4.

Let t � 2 be an integer. At stage t , by Lemmas 7, 8 and 13, the number of suitable
blocks w∗ is at least equal to

νt = 1

4
(s∗

jt − 2)〈a+�( jt );s∗jt 〉−〈a;s∗jt 〉,

since #U � s∗
jt

− 2. Furthermore, the length of each interval is

δt = (s∗
jt )

−〈bt ;s∗jt 〉.

Observe that

νt � 1

4
(s∗

jt )
−1 eη�( jt ) � (s∗

jt )
−2 eη�( jt )

and

(s∗
jt )

−1 e−bt � δt � e−bt .

If jt+1 = jt + 1, we have in particular that

〈bt+1; r0〉 − 〈bt ; r0〉 <
〈bt ; r0〉
jt+1

.
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This gives

ebt+1−bt < r20 e
bt/jt+1

and
δt

δt+1
� s∗

jt+1
r20 e

bt/jt+1 . (4.1)

If jt+1 = jt , then we know that

〈bu+1 + �( jt ); r0〉 − 〈bu+1; r0〉 <
〈bu+1; r0〉

jt
,

where u is the largest integer such that ju = jt − 1. As seen above, this implies that

e� < r20 e
bu+1/jt+1 ,

so, for b � bu+1,

eb+�−b < r20 e
b/jt+1,

hence we get the same upper bound on δt/δt+1 as in (4.1).
Furthermore, it is clear from the construction that

�( j0) + �( j1) + · · · + �( jt ) � bt � log

⎛

⎝
jt∏

h=0

(s∗
h )

5

⎞

⎠ + �( j0) + �( j1) + · · · + �( jt ).

Also, putting Nt = ν1 . . . νt , we have

Nt �

⎛

⎝
jt∏

h=0

(s∗
h )

−7

⎞

⎠ eηbt .

Since the construction also ensures

〈1 + �( jt ); r0〉 − 〈1; r0〉 � 2�log s∗
jt−1 + 3 log s∗

jt �( jt + 2),

we get

s∗
jt � e�( jt )/2 jt � ebt/jt .

Consequently, for any positive real number v and any integer t � 2, we obtain

δt−1

δt
(Nt (δt )

v)−1 � (s∗
jt+1

)8 ebt/jt+1 e(v−η)bt � e9bt/jt+1 e(v−η)bt .
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Since jt tends to infinity as t increases and (bt )t�0 is a strictly increasing sequence
of integers, the corresponding series converges for every v < η. It then follows from
Lemma 21 that the dimension of the set into consideration is not less than η. Recalling
that η can be taken arbitrarily close to 1, this proves the last assertion of Theorem 1.
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