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Abstract

In an unpublished manuscript, Alan Turing gave a computable construction to show that absolutely normal real numbers
between 0 and 1 have Lebesgue measure 1; furthermore, he gave an algorithm for computing instances in this set. We complete
his manuscript by giving full proofs and correcting minor errors. While doing this, we recreate Turing’s ideas as accurately as
possible. One of his original lemmas remained unproved, but we have replaced it with a weaker lemma that still allows us to
maintain Turing’s proof idea and obtain his result.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we reconstruct Alan Turing’s manuscript entitled “A note on normal numbers” which remained
unpublished until 1992, when it was included in the “Collected works of Alan Turing” edited by J.L. Britton [15,
pp. 117–119, with the notes of the editor in pp. 263–265]. The original manuscript is in Turing’s archive in King’s
College, Cambridge, and a scanned version of it is available on the Web from http://www.turingarchive.org.

Our motivation for this work was to explore and make explicit the techniques used by Turing in relation to normal
numbers, especially because there are still no known general methods to prove normality of given real numbers; nor
there are fast algorithms to construct absolutely normal numbers (see [3,12,13]).

In his manuscript, Turing states two theorems here transcribed as Theorems 1 and 2. The first gives a computable
construction to show that almost all real numbers are absolutely normal. A non-constructive proof of this result was
given by Borel in 1909 [5]. A constructive, but not effectively based proof was given by Sierpiński in 1917 [14],
when computability theory was still undeveloped. Turing’s and Sierpiński’s constructions not only differ in terms of
computability, but they are based on different (though equivalent) definitions of absolute normality (see Definition 4).
In modern terms, Theorem 1 proves that the set of reals in (0, 1) that are not absolutely normal are included in an
effectively null set, and Turing gives an explicit convergence bound for this fact.
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We denote with µ (A) the Lebesgue measure of a set A ⊆ R and P(A) is the power set of A.

Theorem 1 (Turing’s First Theorem). There is a computable function c : N × N → P((0, 1)) such that

1. c(k, n) is a finite union of intervals with rational endpoints;
2. c(k, n + 1) ⊆ c(k, n);
3. µ (c(k, n)) > 1 − 1/k

and for each k, E(k) =
⋂

n c(k, n) has measure 1 − 1/k and consists entirely of absolutely normal reals.

The function c is computable in the sense that given k and n, we can compute a1 < b1 < a2 < b2 < · · · < am < bm
(m depending on k and n) such that ai , bi are rationals in (0, 1) and c(k, n) = (a1, b1) ∪ · · · ∪ (am, bm).1

Our proof of Theorem 1 is indeed a completion of Turing’s. But one of his original lemmas, a constructive version
of the Strong Law of Large Numbers (see Lemma 7), remained unproved. We substituted it with a weaker version
(Lemma 8) that still allows us to preserve Turing’s proof idea and obtain his result.

Turing’s second theorem gives an affirmative answer to the then outstanding question of whether there are
computable normal numbers.

Theorem 2 (Turing’s Second Theorem). There is an algorithm that, given k ∈ N and an infinite sequence θ ∈

{0, 1}
∞, produces an absolutely normal real number α ∈ (0, 1) in the scale of 2. For a fixed k, these numbers α

form a set of Lebesgue measure at least 1 − 2/k, and so that the first n digits of θ determine α to within 2−n .

The proof of Theorem 2 follows from the observation that there is a computable real outside the effectively null
set constructed in Theorem 1, and Turing gives an explicit algorithm to compute such a number. Although Turing’s
strategy is mainly correct,2 a literal interpretation would not lead to the stated aim. We reinforce Turing’s inductive
construction with a stronger inductive hypothesis, and provide the missing correctness proof.

Both, Turing’s intended algorithm and our reconstruction of it, have an explicit convergence to normality (see
Remark 23). The time complexity is double exponential in n, where n is the length of the initial segment of the real
number α ∈ (0, 1) output by the algorithm on input n (see Remark 24).

Although nowadays it is known that there are absolutely normal numbers with lower complexity, they are still not
feasible. A simple exponential complexity bound for computing an absolutely normal number follows from the work
of Ambos-Spies, Terwjin and Zheng [2] on reals that are random with respect to polynomial-time martingales (i.e.,
no polynomial-time computable martingale succeeds on such a real; for a survey see [1]). On the one hand, one can
formulate a quadratic-time computable martingale which succeeds on all reals in [0, 1] that are not absolutely normal.
Therefore, being n2-computably random already implies being absolutely normal. On the other hand, they show that
there exist n2-computably random sequences in E = Deterministic Time(2linear in n). Hence, one can conclude that
there are absolutely normal numbers in E.

In a strong sense, the problem of giving concrete examples of absolutely normal numbers, raised by Borel
in [5] as soon as he introduced the definition of normality, still remains open (see [12]). Existing examples are not
fully satisfactory from a definitional perspective in the sense of Borel [7], because they are defined just by some
construction, and we know no other singular properties of these numbers; we do not have any symbolic definition
other than their construction method (which, as we said before, is still not feasible).

The problem of giving examples of numbers that are normal to a given scale has been more successfully tackled.
There are fast algorithms to produce particular instances, having suitable analytic formulations in terms of series.
For instance, Champernowne’s number [8] and its generalization given by Copeland and Erdös [9], the Stoneham
and the Korobov classes, and their recent generalization by Bailey and Crandall [3] in connection to pseudorandom
generators.

For an account and references to existing work on normal numbers see Kuipers and Niederreiter [13], Harman’s
book [11], or his more recent article [12].

1 Turing denotes this set by Ec(k,n).
2 For a different appraisal on this point see in [15] the editor’s note number 7 in p. 119, elaborated in p. 264.
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2. Definitions

Whenever possible, we keep the notation used by Turing. Let t be an integer greater than or equal to 2. The elements
in {0, . . . , t − 1} are referred to as digits in the scale of t . A word in the scale of t is a finite sequence of digits in the
scale of t . The set of all words of length r in the scale of t is denoted by {0, . . . , t − 1}

r . The length of a word w is
denoted by |w|. The digits of a word w are denoted by w(i) for 0 ≤ i < |w|. A word γ occurs in a word w at position
i , 0 ≤ i < |γ |, if w(i) w(i + 1) . . . w(i + |γ | − 1) = γ . A word γ occurs in w if it occurs at some position.

With bαc and dαe, we denote the floor and ceiling of a real α. For each real number α, we consider the unique
fractional expansion in the scale of t of the form

α = bαc +

∞∑
n=1

an t−n

where the integers an are in {0, . . . , t − 1}, and an < t − 1 infinitely many times. This last condition over an is
introduced to ensure a unique representation of very rational number.

We use #A for the number of elements of a set A.

Definition 3. Let α be any real in (0, 1). We denote by S(α, t, γ, R) the number of occurrences of the word γ in the
first R digits after the fractional point in the expansion of α written the scale of t :

S(α, t, γ, R) = #{i : α(i) α(i + 1) . . . α(i + |γ | − 1) = γ }.

Turing uses the following definition of normality given by Borel in [5,6] as a characterizing property of absolutely
normal numbers.

Definition 4. α is normal in the scale of t if for every word γ in the scale of t ,

lim
R→∞

S(α, t, γ, R)

R
=

1
t |γ |

.

α is absolutely normal if it is normal to every scale t ≥ 2.

In [5], Borel defines normality for real numbers as follows: α ∈ R is simply normal in the scale of t if for every
digit d ∈ {0, . . . , t − 1},

lim
R→∞

S(α, t, d, R)

R
=

1
t
.

α is absolutely normal if it is simply normal to every scale t ≥ 2. Based just on digits instead of words, this definition
of absolute normality seems weaker than that in Definition 4. A nice proof of their equivalence can be read in Harman’s
book [11, Theorem 1.3, pp. 5–7].

Throughout this paper, we will consistently use the following convention:

Convention 5. R ∈ N will be used for denoting the length of prefixes after the fractional point; n will be a natural
number, generally between 0 and R; t ∈ N, t ≥ 2 will denote a scale; γ will denote a word in the scale of t; r will be
the length of γ ; ε ∈ R will denote a (small) real used to bound certain deviations from expected values.

3. Turing’s first theorem

Given k ∈ N large enough, Turing gives a uniform method to construct a set E(k) of points in (0, 1) that are
absolutely normal such that µ(E(k)) = 1 − 1/k. E(k) is an infinite countable intersection of certain recursively
defined sets of intervals c(k, n) containing the reals that are candidates to be absolutely normal. Given k and n, a
real α is in the set c(k, n) if in the initial segment of the fractional expansion of α of length R expressed in each
scale up to T , every word with length up to L occurs the expected number of times plus or minus εR, where R, T ,
L , and ε are computable functions of k and n (see Definitions 17 and 20). The sets c(k, n) are defined as a finite
boolean combination of intervals with rational endpoints, and they are tailored to have Lebesgue measure equal to
1 − 1/k + 1/(k + n).



V. Becher et al. / Theoretical Computer Science 377 (2007) 126–138 129

In Turing’s manuscript, the proof that the sets c(k, n) have this desired measure depends on an unproven
constructive version of the Strong Law of Large Numbers,3 here transcribed as Turing’s Unproved Lemma 7. This
lemma gives an upper bound for the number of words of a given length for which a certain word occurs too often or too
seldom. We have not been able to prove Turing’s bound verbatim, but in Lemma 8 we provide an alternative bound,
less sharp than Turing’s but still allowing for the same construction. From his lemma, Turing derives some bounds on
the Lebesgue measures of some auxiliary sets of real numbers, necessary for his construction. In Propositions 14 and
16, we give our version of them.

3.1. Unproved Turing’s lemma

Definition 6. Let t , γ and r as in Convention 5.

1. S(w, γ ) is the number of occurrences of γ in w;
2. P(t, γ, n, R) = {w ∈ {0, . . . t − 1}

R
: S(w, γ ) = n};

3. N (t, γ, n, R) = #P(t, γ, n, R).

The symbolic expression of the function N is not a simple one because of the possible “overlapping” of different
occurrences of γ when |γ | > 1; for instance, the word γ = 00 occurs once in 1100, twice in 1000 and three times in
0000. However, in any scale t , the symbolic expression for the function N considering the exact number of occurrences
of a given digit is simple: the number of words of length R in the scale of t with exactly n occurrences of the digit d
in assigned places is (t − 1)R−n . Hence, the number of words of length R in the scale of t with exactly n occurrences
of the digit d in some place is:

N (t, d, n, R) =

(
R
n

)
(t − 1)R−n (1)

and of course∑
0≤n≤R

N (n, d, n, R) = t R . (2)

Unproved Turing’s Lemma 7. Let t , γ and r be as in Convention 5, and let δ ∈ R be such that δ tr

R < 0.3. Then,∑
|n−R/tr |>δ

N (t, γ, n, R) < 2t Re−
δ2tr
4R .

The rest of the present section is devoted to prove Lemma 8, our substitution of the Unproved Turing’s Lemma 7.
The auxiliary results, Lemmas 9 and 12, appear below in this section.

Lemma 8. Let t , γ and r be as in Convention 5 and let ε such that 6/bR/rc ≤ ε ≤ 1/tr . Then,∑
|n−R/tr |≥εR

N (t, γ, n, R) < 2t R+2r−2re−
tr ε2 R

6r .

Proof. We shall fix a bijection between words of length r in the scale of t , with digits in the scale of tr corresponding
to the change of scale. We write (γ )tr to denote the digit d corresponding to γ in the scale of tr .

Lemma 9 ensures that, for any digit p in the scale of t , whenever 6/R ≤ ε ≤ 1/t ,∑
n≥R/t+εR

N (t, p, n, R) < t Re−tε2 R/6. (3)

The idea is to use (3) with t̃ = tr , R̃ = R/r , and the digit d = (γ )t̃ . By the second part of Lemma 12, which relates
sums of N (t, γ, n, R) and sums of N (tr , d, n, bR/rc), we have∑

n≥R/tr +εR

N (t, γ, n, R) ≤ tr−1r
∑

n≥R̃/t̃+ε R̃

N (t̃, d, n, bR̃c).

3 There is a footnote in Turing’s manuscript but no text for this footnote.
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Since bR̃c = R̃ − x/r for some x ∈ {0, . . . , r − 1}, and since bR̃c ≤ R̃, applying (3) we obtain∑
n≥R/tr +εR

N (t, γ, n, R) ≤ tr−1r
∑

n≥bR̃c/t̃+εbR̃c

N (t̃, d, n, bR̃c)

≤ tr−1r t̃bR̃ce−t̃ε2
bR̃c/6

= tr−1r t̃ R̃−x/r e−ε2 t̃(R̃−x/r)/6

= t R+r−1r e
−ε2tr R

6r e
ε2tr x

6r t−x

≤ t R+r−1r e−
ε2tr R

6r . (4)

To check the last inequality, observe that, since ε ≤ 1/tr , the expression eε2tr x/(6r)t−x is at most 1 (indeed,
ε/(6r) ≤ ln t because ε is at most 1/2 and 6r ln t is at least 4).

The other sum is trickier. Lemma 9 ensures that for any digit p in the scale of t , whenever 6/R ≤ ε ≤ 1/t ,∑
n≤R/t−εR

N (t, p, n, R) < t Re−tε2 R/6. (5)

By the first part of Lemma 12 and the definitions of d , t̃ and R̃ used above, we know∑
n≤R/tr −εR

N (t, γ, n, R) ≤ tr−1r
∑

n≤R̃/t̃−ε R̃

N (t̃, d, n, bR̃c)

≤ tr−1r
∑

n≤R̃/t̃−ε R̃

N (t̃, d, n, dR̃e). (6)

Let R = bR̃cr + x where x ∈ {0, . . . , r − 1}. If x 6= 0, since dR̃e = R̃ + (r − x)/r there is y ∈ {1, . . . , r − 1} such
that dR̃e = R̃ + y/r , and if x = 0 then y = 0 also satisfies the condition. Thus

dR̃e

t̃
− εdR̃e =

R̃
t̃

+
y
t̃r

− ε R̃ −
εy
r

≥
R̃
t̃

− ε R̃, (7)

where the last inequality holds because y/(t̃r) ≥ εy/r when ε ≤ 1/tr . From (6), using (7) and (5), we get∑
n≤R/tr −εR

N (t, γ, n, R) ≤ tr−1r
∑

n≤dR̃e/t̃−εdR̃e

N (t̃, d, n, dR̃e)

≤ tr−1 t̃dR̃er e−t̃ε2
dR̃e/6

= t R+r−1r e−tr ε2
dR̃e/6 t y

≤ t R+2r−2r e−
tr ε2 R

6r . (8)

The last inequality follows from the fact that t y
≤ tr−1 and dR̃e ≥ R̃. Joining (4) and (8), we obtain the desired upper

bound. �

Lemma 9 (Adapted from Harman [11, p. 5, Lemma 1.1]). Let d be a digit in the scale of t , t ≥ 2. Assuming R > 6t
and with ε such that 6/R ≤ ε ≤ 1/t , both∑

n≥R/t+εR

N (t, d, n, R) and
∑

n≤R/t−εR

N (t, d, n, R) are at most t Re−tε2 R/6.

Proof. Since t , d and R are fixed, we write N (n) for N (t, d, n, R). Recalling from (1) the symbolic expression for
N (n), we have

N (n)

N (n + 1)
=

(n + 1)(t − 1)

R − n
. (9)

For all n ≤ R/t we have N (n) > N (n − 1) and for all n > R/t , N (n) ≤ N (n − 1). It is not difficult to see that the
quotients in (9) increase as n increases.
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Let a = R/t −εR and b = R/t +εR. The strategy is to “shift” the first sum to the right by m = bεR/2c positions,
and the second sum to the left by m + 1 positions.

Let us compute the stated upper bound for the first sum. For any n,

N (n) =
N (n)

N (n + 1)
·

N (n + 1)

N (n + 2)
· · · · ·

N (n + m − 1)

N (n + m)
· N (n + m) (10)

and for each i such that

i ≤ bac + m − 1 (11)

we have
N (i)

N (i + 1)
≤

N (bac + m − 1)

N (bac + m)

=
(bac + m)(t − 1)

R − bac − m + 1

<
(R/t − εR/2)(t − 1)

R − R/t + εR/2

= 1 −
εt/2

1 − 1/t + ε/2
.

Since ε ≤ 1/t , we conclude

N (i)
N (i + 1)

< 1 − εt/2 < e−tε/2. (12)

If n ≤ a, then n ≤ bac and hence i = n + m − 1 satisfies condition (11). Since the greatest quotient among the ones
which appear in Eq. (10) is the last one, we can apply (12) to each factor in (10) to obtain

N (n) < e−tεm/2 N (n + m)

≤ e−tε(εR/2−1)/2 N (n + m)

= e−tε2 R/4+tε/2 N (n + m)

≤ e−tε2 R/6 N (n + m) (13)

where we use the definition of m, and in the last inequality (13) we have ε2t R/6 ≤ ε2t R/4 − εt/2, since εR ≥ 6.
Hence, by (2) we have∑

n≤a
N (n) < e−tε2 R/6

∑
n≤a

N (n + m) ≤ t Re−tε2 R/6.

To bound the second sum we use the same strategy, but now we shift the sum to the left by m + 1 positions. For
any n,

N (n) =
N (n)

N (n − 1)
·

N (n − 1)

N (n − 2)
· · · · ·

N (n − m)

N (n − m − 1)
· N (n − m − 1) (14)

(with these ratios increasing as n − i decreases), and for each i such that

i ≥ dbe − m (15)

we have
N (i)

N (i − 1)
≤

N (dbe − m)

N (dbe − m − 1)

=
R − dbe + m + 1
(dbe − m)(t − 1)

≤
R − R/t − εR/2 + 1
(R/t + εR/2)(t − 1)

< 1 − εt/3.
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The last inequality is just equivalent to εt − 2/t − ε < 1 −
6

εt R , and since εt ≤ 1 and ε > 0 it is sufficient to prove
that 1 − 2/t < 1 −

6
εt R , which clearly holds for ε > 3/R. Therefore,

N (i)
N (i − 1)

< e−tε/3. (16)

If n ≥ b, then n ≥ dbe, and hence i = n − m satisfies condition (15). Since the greatest quotient among those which
appear in Eq. (14) is the last one, we can apply (16) to each factor in (14) to obtain, as in (13)

N (n) < e−tε(m+1)/3 N (n − m − 1) ≤ e−
tε2 R

6 N (n − m − 1)

and from this and (2),∑
n≥b

N (n) < t Re−tε2 R/6.

This completes the proof. �

Definition 10. Let t , γ and r be as in Convention 5. For j ∈ {0, . . . , r − 1}, we define

1. S j (w, γ ) as the number of occurrences of γ in w at positions of the form r · q + j (i.e. congruent to j modulo r );
2. Pj (t, γ, n, R) = {w ∈ {0 . . . t − 1}

R
: S j (w, γ ) = n}.

Lemma 11. Let t , γ and r be as in Convention 5 and let w ∈ P(t, γ, n, R). There is j ∈ {0, . . . , r − 1} such that
w ∈ Pj (t, γ, m, R) for some m ≤ n/r , and there is j ∈ {0, . . . , r − 1} such that w ∈ Pj (t, γ, m, R) for some
m ≥ n/r .

Proof. Suppose w ∈ P(t, γ, n, R), i.e., γ has n occurrences in w. For each j ∈ {0, . . . , r − 1} let n j ≥ 0 be
the number of occurrences of γ in w at positions congruent to j modulo r . Then, w ∈ Pj (t, γ, n j , R), and clearly∑

0≤n j ≤r−1 n j = n. This equality implies that n j ≤ n/r for some j , and not all n j s can be strictly smaller than n/r .

The next lemma relates sums of N (t, γ, n, R) and sums of N (tr , d, n, bR/rc), where d = (γ )tr .

Lemma 12. Let t , γ and r be as in Convention 5 and let d be the digit corresponding to the word γ in the scale of tr .
Then,∑

n≤a
N (t, γ, n, R) ≤ tr−1r

∑
m≤a/r

N (tr , d, m, bR/rc), and∑
n≥a

N (t, γ, n, R) ≤ tr−1r
∑

m≥a/r
N (tr , d, m, bR/rc).

Proof. For any j = 0, . . . , r − 1 we define a map f j which transforms words of length R written in the scale of t into
words of length bR/rc written in the scale of tr as follows: let w ∈ {0, . . . , t − 1}

R and let k = bR/rc. We split w

into k − 1 blocks of length r

b1 = w( j) . . . w( j + r − 1);

b2 = w( j + r) . . . w( j + 2r − 1);

...

bk−1 = w( j + r(k − 2)) . . . w( j + (k − 1)r − 1);

and complete the last segment w( j + r(k −1)) . . . w(l), where l = min( j + rk −1, R −1), into a block bk of length r
by adding a word u in the scale of t in such a way that if l < R − 1 (i.e., u is not the empty word), then bk is different
from γ (for example, take u to be the least such word in lexicographical order).

bk = w( j + r(k − 1)) . . . w(l) u.
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The blocks bi get transformed into single digits in the scale of tr ; set

f j (w) = (b1)tr . . . (bk)tr .

Let us now compute the cardinality of f −1
j [ f j (w)]. If v is another word of length R in the scale of t , then

f j (v) = f j (w) if and only if

v( j) . . . v( j + kr − 1) = b1 . . . bk .

Thus, v may differ from w in at most the positions 0, . . . , j−1 and j+kr, . . . , R−1; their number is R−kr−1 ≤ r−1.
Hence, there are at most tr−1 words in f −1

j [ f j (w)]. This implies that

#Pj (t, γ, m, R) ≤ tr−1 N (tr , d, m, k).

Suppose w has exactly n occurrences of γ . By the first part of Lemma 11, we know that for all n, there is
j ∈ {0, . . . , r − 1} and m ≤ bn/rc such that w ∈ Pj (t, γ, m, R). Therefore,

⋃
n≤a

P(t, γ, n, R) ⊆

⋃
0≤ j<r

⋃
m≤a/r

Pj (t, γ, m, R)∑
n≤a

N (t, γ, n, R) = #
⋃

0≤n≤a

P(t, γ, n, R)

≤

∑
j<r

∑
m≤a/r

#Pj (t, γ, m, R)

≤ tr−1r
∑

m≤a/r
N (tr , d, m, bR/rc).

This completes the proof of the first part. The second part is similar, applying the last assertion in Lemma 11. �

3.2. The sets c(k, n)

Definition 13. We denote by B(ε, γ, t, R) the set of reals α ∈ (0, 1) such that∣∣S(α, t, γ, R) − R/tr ∣∣ < εR.

Proposition 14. Let t , γ and r be as in Convention 5, and let ε and R be such that 6/bR/rc ≤ ε ≤ 1/tr . Then

µ (B(ε, γ, t, R)) > 1 − 2t2r−2r e−
tr ε2 R

6r .

Proof. Let B(ε, γ, t, R) = (0, 1) \ B(ε, γ, t, R). Observe that if a real α ∈ (0, 1) belongs to B(ε, γ, t, R) then every
real β ∈ (0, 1) such that the first R digits of α (written in the scale of t) coincide with the first R digits of β (written
in the scale of t) also belongs to B(ε, γ, t, R), which means that the interval

[0.α � R 000 . . . , 0.α � R (t − 1)(t − 1)(t − 1) . . . ]

of measure t−R is included in B(ε, γ, t, R). Here α � R denotes the first R digits of the fractional expansion of α in
the scale of t . Then

B(ε, γ, t, R) =

⋃
|n−R/tr |≥εR

⋃
w∈P(t,γ,n,R)

[0.w000 . . . , 0.w(t − 1)(t − 1)(t − 1) . . . ] .

Since the intervals on the right hand side are disjoint for different words w, we have

µ
(
B(ε, γ, t, R)

)
= t−R

∑
|n−R/tr |≥εR

N (t, γ, n, R) < 2 t2r−2r e−
tr ε2 R

6r . (17)

For the last equation, apply Lemma 8. The proof is completed by taking complements. �
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Definition 15. For any ε, T , L and R, let

A(ε, T, L , R) =

⋂
2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...,t−1}r

B(ε, γ, t, R).

Since each B(ε, γ, t, R) is a finite union of intervals with rational endpoints, so is each of the sets A(ε, T, L , R).

Proposition 16. For any ε, T , L and R, such that 6/bR/Lc ≤ ε ≤ 1/T L ,

µ (A(ε, T, L , R)) > 1 − 2 L T 3L−1 e−
ε2 R
3L .

Proof. Let A and B denote the complements of the sets A, B, respectively, in the interval (0, 1).

µ
(

A(ε, T, L , R)
)

≤

∑
2≤t≤T

∑
1≤r≤L

∑
γ∈{0,...,t−1}r

µ
(
B(ε, γ, t, R)

)
.

Observe that in the third summand there are tr many γ s and that∑
2≤t≤T

∑
1≤r≤L

tr
=

∑
2≤t≤T

t L+1
− 1

t − 1
≤ T L+1.

The upper bound for µ
(
B(ε, γ, t, R)

)
in (17) yields the following uniform upper bound in terms of the present

parameters ε, T, R, L:

µ
(
B(ε, γ, t, R)

)
< 2 T 2L−2L e−

2ε2 R
3L

valid for all 2 ≤ t ≤ T , 1 ≤ r ≤ L and γ ∈ {0, . . . , t − 1}
r . Indeed, from 1 ≤ r ≤ L , we get 2r/L ≤ 2 ≤ tr ; hence,

ε2 R/(3L) ≤ ε2 Rtr/(6r), which gives

µ
(
B(ε, γ, t, R)

)
< 2 t2r−2r e−

tr ε2 R
6r < 2 T 2L−2 e−

ε2 R
3L .

Hence we obtain,

µ
(

A(ε, T, L , R)
)

< 2 L T 3L−1 e−
ε2 R
3L .

The proof is completed by taking complements. �

We now define A(ε, T, L , R) for specific values of its parameters.

Definition 17. Let Ak = A(ε, T, L , R) for R = k, L =
√

ln k/4, T = eL and ε = 1/T L .

Proposition 18. There is k0 such that for all k ≥ k0, µ (Ak) ≥ 1 −
1

k(k−1)
.

Proof. Let R, T , L and ε be the functions of k given in Definition 17. Observe that T L
=

16√k. Since ε ≥ 6/bR/Lc

for all k ≥ 2, the hypothesis of Proposition 16 is satisfied. We now prove that

2LT 3L−1 e−
ε2 R
3L ≤

1
k(k − 1)

for large enough k. It suffices to prove T 3Lk2
≤ e

ε2 R
3L , because 2L ≤ T . This is equivalent to

1/ε2
· (9L2 ln T + 6L ln k) ≤ k.

Since 1/ε2
= T 2L

=
8√k, 9L2 ln T = (9/64)(ln k)3/2 and 6L ln k = (3/2)(ln k)3/2, (17) reduces to

(105/64)
8√k(ln k)3/2

≤ k

which can be proved to hold for any k ≥ 1. �
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Remark 19. Observe that the assignment of Definition 17 gives initial values of T smaller than 2, and initial values
of L smaller than 1. This implies that the initial intersections in

Ak = A(ε, T, L , R) =

⋂
2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...,t−1}r

B(ε, γ, t, R)

will have an empty range. However, as k increases, these variables will take greater and greater values.
One can give different assignments for L = L(k), T = T (k) and ε = ε(k), where limk L(k) = ∞, limk T (k) = ∞

and limk ε(k) = 0, and such that L ≥ 1, T ≥ 2 and Proposition 18 is verified for suitable large k.

From now on let k0 be the value determined in Proposition 18 (or Remark 19).
Turing defines c(k, n) sets as the intersections of finitely many Aks and he restricts these sets so that they have

measure exactly 1 − 1/k + 1/(k + n).

Definition 20. The computable function c : N × N → P((0, 1)), is defined as follows. For any k ≥ k0 let
c(k, 0) = (0, 1) and

c(k, n + 1) = Ak+n+1 ∩ c(k, n) ∩ (βn, 1)

where (βn, 1) is an interval so that µ (c(k, n + 1)) = 1 − 1/k + 1/(k + n + 1).

Remark 21. It is worth noting that some interval (βn, 1) as above always exists, and it is unique. This is because

µ (Ak+n+1 ∩ c(k, n)) ≥ 1 − 1/k + 1/(k + n + 1).

Since c(k, n) and Ak+n+1 are finite unions of intervals with rational endpoints, their respective measures are effectively
computable; βn is rational and it can be determined effectively. Hence c(k, n) may be represented by a finite union
of disjoint intervals (a1, b1) ∪ · · · ∪ (am, bm) such that ai , bi ∈ Q ∩ (0, 1), ai < bi < ai+1 and such that
(a1, b1, a2, b2, . . . , am, bm) is computable from k and n.

3.3. Proof of Turing’s first theorem

Proof (Proof of Theorem 1). We first prove that the set
⋂

k≥k0
Ak contains only absolutely normal numbers. Assume

α ∈
⋂

k≥k0
Ak and α is not normal to the scale of t . This means that

lim
R→∞

S(α, t, γ, R)

R
6=

1
tr

for some word γ of length r in the scale of t . Hence, there is δ > 0 and there are infinitely many Rs such that∣∣S(α, t, γ, R) − R/tr ∣∣ > Rδ. (18)

Let T (k), L(k) and ε(k) be the assignments of Definition 17 or Remark 19. Now fix k1 ≥ k0 large enough such that
T (k1) ≥ t , L(k1) ≥ r and ε(k1) ≤ δ. This is always possible because T (k) → ∞, L(k) → ∞ ε(k) → 0 when
k → ∞. For any k ≥ k1, α ∈ Ak , and by Definition 15, α ∈ B(ε(k), γ, t, k). By Definition 13, we have∣∣S(α, t, γ, k) − k/tr ∣∣ < kε(k) ≤ kδ

for any k ≥ k1. Now, any R ≥ k1 satisfying (18) leads to a contradiction.
Clearly, conditions 1, 2 and 3 of Theorem 1 follow from the definition of c(k, n) (see Definition 20). Since

E(k) ⊆
⋂

i≥k Ai , by the argument given above, we conclude that if k ≥ k0, any real number in E(k) is absolutely
normal. By condition 1 and the fact that µ (c(k, n)) = 1 − 1/k + 1/(k + n), we get

µ (E(k)) = lim
n→∞

µ (c(k, n)) = 1 − 1/k.

This completes the proof. �
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4. Turing’s second theorem

The idea of Turing’s algorithm is to recursively select, for each integer n > 0, an interval In with dyadic rational
endpoints such that

1. In+1 ⊂ In
2. µ (In) = 2−(n+1)

3. µ (E(k) ∩ In) > 0.

The intersection of these intervals,
⋂

n
In , contains exactly one number which must be absolutely normal. The

correctness of the algorithm relies on the fact that at each stage n, the measure µ (E(k) ∩ In) is big enough to allow
one to proceed with the stage n + 1 and never run out of measure (i.e. keeping µ (E(k) ∩ In) > 0). If we can do this
forever, that is for all n, then we have an effective procedure to determine every digit of an absolutely normal number.

A literal reading of the algorithm that appears in Turing’s manuscript does not give a correct algorithm. We
reconstruct it by introducing suitable changes, but keeping the strategy. Turing uses exactly the same sets c(k, n)

that appear in Theorem 1 (see Definition 20), where µ (c(k, n)) = 1 − 1/k + 1/(k + n + 1). We refine them to have
Lebesgue measure 1 − 1/k + 1/k22n+1 (see Definition 22). This modification respects the strategy, since for each k,

lim
n→∞

1 − 1/k + 1/(k + n + 1) = lim
n→∞

1 − 1/k + 1/k22n+1
= 1 − 1/k,

and it still holds that E(k) =

⋂
n≥0

c(k, n).

Let k0 be as determined in Proposition 18 (or Remark 19).

Definition 22. We redefine the computable function c : N × N → P((0, 1)), as follows. For any k ≥ k0 let
c(k, 0) = (0, 1) and for n > 0

c(k, n) = Ak22n+1 ∩ c(k, n − 1) ∩ (βn, 1);

where (βn, 1) is an interval so that µ (c(k, n)) = 1 − 1/k + 1/k22n+1.

The reader may verify that it is always possible to find such a βn for k ≥ k0, because µ
(

Ak22n+1
)

≥ 1 −

1/(k22n+1)(k22n+1
− 1), and hence µ

(
Ak22n+1 ∩ c(k, n − 1)

)
> 1 − 1/k + 1/k22n+1.

Proof (Proof of Theorem 2). The following algorithm constructs a real α in (0, 1) in the scale of 2. It depends on an
infinite sequence θ ∈ {0, 1}

∞ used as oracle to possibly determine some digits of α, and on a fixed parameter k that is
large enough (k ≥ k0 and k ≥ 4).

Start with I−1 = (0, 1).
At stage n ≥ 0:
· Split the interval In−1 into two halves, I 0

n and I 1
n . That is, say In−1 = (an−1, bn−1), then let

I 0
n =

(
an−1,

an−1 + bn−1

2

)
and I 1

n =

(
an−1 + bn−1

2
, bn−1

)
.

· If µ
(
c(k, n) ∩ I 0

n
)

> 1/k22n and µ
(
c(k, n) ∩ I 1

n
)

> 1/k22n then
Let α(n) = θ(n).

Let In =

{
I 0
n if θ(n) = 0;

I 1
n otherwise.

· Else, if µ
(
c(k, n) ∩ I 1

n
)

≤ 1/k22n then
Let In = I 0

n .
Let α(n) = 0.

· Else
Let In = I 1

n .
Let α(n) = 1.
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At each stage n, In is either the left half of In−1 (denoted I 0
n ) or the right half of it (denoted I 1

n ). As we mentioned
in Remark 21, c(k, n) is computable. Therefore we can compute its measure, and also compute the measures of both
c(k, n) ∩ I 0

n and c(k, n) ∩ I 1
n . All these measures are rational numbers in (0, 1).

The above algorithm defines α =

⋂
n

In bit by bit, i.e. at stage n, the n-th bit of α is defined. To prove that α is

absolutely normal, we show α ∈ E(k) =

⋂
n

c(k, n). We prove, by induction on n, that for every n ≥ 0,

µ (c(k, n) ∩ In) > 1/k22n . (19)

For n = 0, observe that by Definition 22, c(k, 0) = (0, 1) and then

µ (c(k, 0) ∩ I0) = 1/2 > 1/k.

For the induction, assume (19) holds. Since c(k, n + 1) ⊆ c(k, n) we have

c(k, n + 1) ∩ In = (c(k, n) ∩ In) \ ((c(k, n) \ c(k, n + 1)) ∩ In)

µ (c(k, n + 1) ∩ In) = µ (c(k, n) ∩ In) − µ ((c(k, n) \ c(k, n + 1)) ∩ In)

≥ µ (c(k, n) ∩ In) − µ (c(k, n) \ c(k, n + 1)) . (20)

Using (19) and that µ (c(k, n) \ c(k, n + 1)) = 1/k22n+1
− 1/k22(n+1)+1, from (20) we obtain

µ (c(k, n + 1) ∩ In) > 1/k22n
− (1/k22n+1

− 1/k22n+3) > 2/k22(n+1).

It is impossible that both µ
(
c(k, n + 1) ∩ I 0

n+1
)

and µ
(
c(k, n + 1) ∩ I 1

n+1
)

be less than or equal to 1/k22(n+1). It
follows that at least one of the sets c(k, n + 1) ∩ I i

n+1, i ∈ {0, 1}, has measure greater than 1/k22(n+1). The algorithm
picks as In+1 the set I i

n+1 which fulfils this condition, with the oracle used to decide in case both sets verify it.
Hence, at every stage n, c(k, n) ∩ In is non-empty, so there are absolutely normal numbers in it; furthermore, by our
construction all reals in c(k, n) ∩ In have a fractional expansion starting with α(0) α(1) . . . α(n).

We now prove that, for a fixed k, these real numbers α form a set of Lebesgue measure at least 1−1/k. Consider the
inductively defined set M(k, n + 1) consisting of all possible intervals

(
m

2n+1 , m+1
2n+1

)
, with m = 0, 1, . . . 2n+1

− 1, as
we allow the first n + 1 digits of θ to run through all possibilities, i.e., having deleted those intervals that would
be discarded by the algorithm up to stage n. Notice that the algorithm discards the interval

(
m

2n+1 , m+1
2n+1

)
when

µ
(

c(k, n) ∩

(
m

2n+1 , m+1
2n+1

))
≤ 1/k22n .

Let M : N × N → P((0, 1)). M(k, 0) = (0, 1), and for n ≥ 0,

M(k, n + 1) =

⋃
Im ⊆ M(k, n)

µ (c(k, n) ∩ Im ) > 1/k22n

Im

where Im =

(
m

2n+1 , m+1
2n+1

)
, for m = 0, 1, . . . , 2n+1

− 1.

Then, µ (E(k) ∩ M(k, n + 1)) = µ (E(k) ∩ M(k, n)) −

2n
−1∑

m=0

µ
(

E(k) ∩ (M(k, n) \ M(k, n + 1)) ∩

(
m
2n , m+1

2n

))
.

Since it is impossible that both halves of
(

m
2n , m+1

2n

)
are included in M(k, n + 1), we have µ

(
E(k) ∩ (M(k, n)\

M(k, n + 1)) ∩

(
m
2n , m+1

2n

))
≤ 1/k22n , so that

µ (E(k) ∩ M(k, n + 1)) ≥ µ (E(k) ∩ M(k, n)) − 1/k2n

≥ µ (E(k) ∩ M(k, n − 1)) − 1/k2n−1
− 1/k2n

...

≥ µ (E(k) ∩ M(k, 1)) − 1/k
n∑

i=1

1/2i

> µ (E(k)) − 1/k = 1 − 2/k
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where the last inequality follows because c(k, 0) = (0, 1) and k > 2, so M(k, 1) = (0, 1
2 ) ∪ ( 1

2 , 1); henceforth,

E(k) ∩ M(k, 1) = E(k). We conclude µ

(
E(k) ∩

⋂
n

M(k, n)

)
≥ 1 − 2/k. This completes the proof. �

Remark 23 (Convergence to Normality). The algorithm outputs the real α ∈
⋂

n≥0 c(k, n). By Definitions 22 and
17, c(k, n) ⊆ Ak22n+1 and

Ak22n+1 =

⋂
2≤t≤T

⋂
1≤r≤L

⋂
γ∈{0,...t−1}r

{α ∈ (0, 1) :
∣∣S(α, t, γ, R) − R/tr ∣∣ < εR}

with, R = k22n+1, L =
√

ln R/4, T = eL , ε = T −L . This gives an explicit convergence to absolute normality of α:
for each initial segment of α of length R = k22n+1 expressed in each scale up to T = eL , all words of length up to
L =

√
ln R/4 occur with the expected frequency plus or minus e−L2

.

Remark 24 (Complexity of the Algorithm). The algorithmic complexity of computing the n-th digit of α comes
exclusively from the computation of µ

(
c(k, n) ∩ I i

n
)
, i = 0, 1. The naive way to obtain this is by constructing

c(k, n) = Ak22n+1 ∩ c(k, n − 1) ∩ (βn, 1), and leads to a double exponential time algorithm. In Turing’s manuscript,
there are no properties that would allow for a faster computation, like exploring the relation between the sets Ak22n+1

and Ak22n+2 .

Remark 25 (Absolutely Normal Reals in Every Turing Degree). It follows from the algorithm that, for a fixed k ∈ N,
by taking particular sequences θ ∈ {0, 1}

∞, one obtains particular absolutely normal numbers, computable in θ .
In [10], we use a variation of Turing’s algorithm that queries the oracle infinitely many times in a controlled way:
the algorithm intercalates the oracle digits in fixed positions of the absolutely normal number being constructed. One
obtains absolutely normal numbers in each Turing degree (in fact, in each 1-degree). This result can be based either
in the reconstruction of Turing’s idea presented here, or in our algorithm [4] inspired by Sierpiński’s work [14].
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