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A Note on Normal Numbers

Although it is known that almost all numbers are normal 1) no

example of a normal number has ever been given . I propose to shew
how normal numbers may be constructed and to prove that almost all
numbers are normal coﬁstructively

Consider the R -figure integers in the scale of (¢ ( £2Z).
It X is any sequence of figures in that scale we denote by N(f;x’
the number of thesein which Y occurs exactly 4 times, Then it can

be pboved without difficulty that

g h A//[‘/ Y)“, R)
Rs - -

= — =
. Eaaa = R 3
B8 , 7
2. - Mg R)
K=l
where 4(y) * ¥V is the lenght of the sequence : it is also
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A Note on Normal Numbers, Alan M. Turing

Written presumably in 1936.
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A Note on Normal Numbers, Alan M. Turing

Written presumably in 1936.

Unpublished until 1992, when included in the Collected Works
edited by J.L.Britton. An editorial note says that the proof of the
second theorem is inadequate and speculates that the theorem
could be false.
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A Note on Normal Numbers, Alan M. Turing

Written presumably in 1936.

Unpublished until 1992, when included in the Collected Works
edited by J.L.Britton. An editorial note says that the proof of the
second theorem is inadequate and speculates that the theorem
could be false.

Reconstructed, corrected and completed in 2007
Becher, Figueira, Picchi, Theoretical Computer Science 377, 126-138.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:

A real number is normal to a given integer base if its expansion in
that base is evenly balanced: every block of digits of the same
length occurs with the same limit frequency.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:

A real number is normal to a given integer base if its expansion in
that base is evenly balanced: every block of digits of the same
length occurs with the same limit frequency.

For instance, if a number is normal to base 2, each of the digits ‘0’
and ‘1’ occur in the limit, half of the times; each of the blocks ‘00,
‘01, ‘10" and ‘11" occur one fourth of the times, and so on.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:

A real number is normal to a given integer base if its expansion in
that base is evenly balanced: every block of digits of the same
length occurs with the same limit frequency.
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Normality, a form of randomness

Defined by Emile Borel in 1909, 1922:

A real number is normal to a given integer base if its expansion in
that base is evenly balanced: every block of digits of the same
length occurs with the same limit frequency.

A real number that is normal to every integer base is called
absolutely normal, or just normal.
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Counterexamples

0.1010010001000010000010000... not normal to base 2.
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Counterexamples

0.1010010001000010000010000... not normal to base 2.

0.1010101010101010101010101... not normal to base 2.
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Counterexamples

0.1010010001000010000010000... not normal to base 2.
0.1010101010101010101010101... not normal to base 2.

Rationals are not normal (for each g € Q there is a base b such that
the expansion of g ends with all zeros).
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Existence

Theorem (Borel 1909)

The set of normal numbers in the unit interval has Lebesgue measure 1.
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Existence

Theorem (Borel 1909)

The set of normal numbers in the unit interval has Lebesgue measure 1.

Borel asked for an explicit example.
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A Note on Normal Numbers

Although it is known that almost all numbers are normal 1) no
example of a normal number has ever been given . I propose to shew
how normal numbers may be constructed and to prove that almost all
numbers are normal coﬁstruetively

Consider the R -figure integers in tke scale of € ( £%Z).
iEq &/ is any sequence of figures in that scale we denote by N((;‘Y, G, R)
the number of thesein which Y occurs exactly #v times, Then it can

be pboved without difficulty that

_ e T
H=1q -

- = =9 v
T‘*- = 7— (—"
& N ® >
K=l

where {[ﬂ = ¥ is the lenght of the sequence b/ : it is also
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Turing’s Note on Normal Numbers

Turing's Theorem 1

Borel's theorem on the measure of normal numbers, constructively.
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Turing’s Note on Normal Numbers

Turing's Theorem 1

Borel's theorem on the measure of normal numbers, constructively.

Turing's Theorem 2

An algorithm to construct normal numbers.
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Turing’s Note on Normal Numbers

Turing's Theorem 1

Borel's theorem on the measure of normal numbers, constructively.

Turing's Theorem 2

An algorithm to construct normal numbers.

Turing's First Page of the Handwritten Manuscript

His own appraisal of his work.
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Turing's Theorem 1

Theorem 1
We can find a«ggngjc_z_‘@t:_lv_es) function ¢ (4, «)of two integral
variables, such that

= G =
Lc(M,u*l) = Lc[/\’,a)

= - i for each W
and b LC[M,k) > l /’f 1O 3
o
and k(“) : Al-ll kc (K ) consists entirely of normal numbers for

each H .
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.

For each k and n, let the set of real numbers E (, ) be the union of the
open intervals whose endpoints are the pairs given by c(k, n).
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.

For each k and n, let the set of real numbers E (, ) be the union of the
open intervals whose endpoints are the pairs given by c(k, n).

c(k, n) is such that
> Ec(k,n) is included in Ec(k,n—l) and

> measure of Ec(, ) is greater than 1 —1/k.
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Turing's Theorem 1

There is a computable function c(k, n) of two integer arguments with values
in finite sets of pairs of rational numbers, with the following properties.

For each k and n, let the set of real numbers E (, ) be the union of the
open intervals whose endpoints are the pairs given by c(k, n).

c(k, n) is such that
> Ec(k,n) is included in Ec(k,n—l) and

> measure of Ec(, ) is greater than 1 —1/k.

Finally, for each k, E(k) =, Ec(k,n) has measure exactly 1 —1/k and
it consists entirely of normal numbers.
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Main idea in Turing's Theorem 1: finite approximations

The construction is uniform in the parameter k.
Prune the unit interval, by stages.

Stage 0: E (4 0) is the whole unit interval.

Stage n: E(x,p) results from removing from E.(, ,_1) the points
that are not candidates to be normal, according to the
inspection of an initial segment of their expansions.

Verénica Becher Turing’s Normal Numbers 14 /33



Main idea in Turing's Theorem 1: finite approximations

At the end, the construction discards

» all rational numbers, because of their periodic structure

Verénica Becher Turing’s Normal Numbers 15/33



Main idea in Turing's Theorem 1: finite approximations

At the end, the construction discards

» all rational numbers, because of their periodic structure

» all irrational numbers with an unbalanced expansion
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Main idea in Turing's Theorem 1: finite approximations

At the end, the construction discards

» all rational numbers, because of their periodic structure
» all irrational numbers with an unbalanced expansion

» all normal numbers whose convergence to normality is too slow

E(k) = m Ec(k,n) consists entirely of normal numbers.

Its measure is exactly 1 — 1/k (because F.( ) measures 1—  + ;).

Verdnica Becher Turing’s Normal Numbers
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Main idea in Turing's Theorem 1: finite approximations

Computable functions of the stage n,

initial segment size ....... linear

base ........ ... sublinear

block length ............. sublogarithmic

frequency discrepancy ...  the technically largest converging to 0

Ec(k,n), the set of reals not discarded up to stage n, is the union of
finitely many intervals, tailored to measure 1 — % + ﬁ
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Constructive Strong Law of Large Numbers

In most initial segments:

each single digit occurs about the expected number of times
each block of two digits occurs about the expected number of times

each block short-enough occurs about the expected number of times.

Lemma (extends Hardy & Wright 1938)

Fix b, w of length £ and N. For any real € such that §; <e < %,

ble2N

< bV 2 pe= "%

Z number of blocks of length N

with exactly i occurrences of w
=

Verdnica Becher Turing’s Normal Numbers
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Turing's Theorem 2

Theorem 2 o
infinite

There is a rule whereby given an integer K and ay/sequence
of figures 0 and 1 ( the ‘P th figure in the sequence being fljllj’) )
we can find a norgal number N(/{,J}in the interval (0,1) and in such
a way that for fixed /’] these numbers form a set of measure at least
I1- &/M , and so that the first n  figures of A3 determine N[/(’ 19)
to within & “ .
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Turing's Theorem 2

There is an algorithm that, given an integer k and an infinite
sequence v of zeros and ones, produces a normal number «a(k, )
in the unit interval, expressed in base two.
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Turing's Theorem 2

There is an algorithm that, given an integer k and an infinite
sequence v of zeros and ones, produces a normal number «a(k, )
in the unit interval, expressed in base two.

In order to write down the first n digits of a(k,v) the algorithm
requires at most the first n digits of v.
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Turing's Theorem 2

There is an algorithm that, given an integer k and an infinite
sequence v of zeros and ones, produces a normal number «a(k, )
in the unit interval, expressed in base two.

In order to write down the first n digits of a(k,v) the algorithm
requires at most the first n digits of v.

For a fixed k these numbers a(k, ) form a set of measure at
least 1 — 2/k.
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The idea in Theorem 2: “follow the measure”

It works by steps.
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The idea in Theorem 2: “follow the measure”

It works by steps.

Start with the unit interval.
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The idea in Theorem 2: “follow the measure”

It works by steps.
Start with the unit interval.

At each step, divide the current interval in two halves, and choose the
half that includes normal numbers in large-enough measure.

20/33
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The idea in Theorem 2: “follow the measure”

It works by steps.
Start with the unit interval.

At each step, divide the current interval in two halves, and choose the
half that includes normal numbers in large-enough measure.

If both halves do, use the current bit of the oracle to decide
(this will happen infinitely often)

The output a(k, ) is the trace of the left/right selection at each step.
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Algorithm

With each integer 4 we agsociate an interval of the form

2 M +7 ‘ whose intersection with ,,” is of positive measure ,

L s 1}
and glvsn m we obtain M - as follows, Put
""A ZVH £1 }
[ a
. C(/”{ /4) 1 k Z“ 21411 J hybn
i~ [ 2m 41 m, ]
Lc(/{/ af AL g b e ): ’6‘-, b
z ~ &

=2
and let V Dbe the smallest it for which either at“u‘< Kl

=14 ot P et
or bh,»»,(i/‘ J ™ or both al‘/h?/’ﬁfffu;l and bh,ui'> //1(14"“‘“1)

There exists such an V‘ for & and 61‘ decrease either to O
( /

or to some positive number, In tle oase where Q“ V.. < A ,Z we
~de
- - it
put i dm, +1 ¢ if a K but b“/’/}. 4
we put M, > L, , and in the third case we put #1,,, ~ -2‘«,\
or M‘nl = 2;,1 +7 eaccording as Lg(k)' 0 or 1. For each &1 the
My a1

) includes normal numbers in positive measure.

interval (—Z_‘" =
The intersection of thESe intervals contains only one numbers

which must be normal.
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Correctness of the algorithm

> Invariant: I, N E(k) has positive measure.
» Threshold: M(k, n) is a lower bound of zi(Ec(k,ny N In) verifying
M(k, n) = M(k, n— 1)/2 - (HEc(k,n) - MEc(k,,H_l))/Q.

» Output: a(k,n) =, I, with explicit convergence to normality.
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Turing’s normal numbers

By taking particular instances of the input sequence v the set of numbers
that can be output has measure at least 1 — 2/k.

When v is computable (Turing puts all zeros), the algorithm yields a
computable normal number.

The algorithm can be adapted to intercalate the bits of v at fixed
positions of the output sequence.

Theorem (Figueira PhD Thesis 2006)

There is a normal number in each Turing degree.
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Computational Complexity of Turing's algorithm

The number of operations to produce a next digit in the output

» simple-exponentially many (literal reading)

» double-exponentially many (our reconstruction)

Theorem (Strauss 1997)

There exist normal numbers computable in simple-exponential time
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Turing's First Page of the Handwritten Manuscript

Not transcribed.

His own appraisal of his work.
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne's 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers”
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne's 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers”

He was aware of the algorithm's computational complexity.
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne's 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers”
He was aware of the algorithm's computational complexity.
“...but rather, to counter [...] that the existence proof of normal numbers

provides no example of them. The arguments in the note, in fact,
follow the existence proof fairly closely.”
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Turing's First Page of the Handwritten Manuscript

“No example of a normal number has ever been given.”

Turing cites Champernowne's 0.123456789101112131415...
as an example of a normal number in base ten.

“It may also be natural that an example of a normal number be
demonstrated as such and written down. This note cannot, therefore,

be considered as providing convenient examples of normal numbers”
He was aware of the algorithm's computational complexity.
“...but rather, to counter [...] that the existence proof of normal numbers

provides no example of them. The arguments in the note, in fact,
follow the existence proof fairly closely.”
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Letter exchange between Turing and Hardy (AMT/D/5)
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G.H. Hardy was right

Henri Lebesgue in 1909
Waclaw Sierpinski in 1916

independently, each gave a non-finitary based construction:

Bulletin de la Société Mathématique de France 45:127-132 and 132-144, 1917
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.

Gave the best answer hitherto known to Borel’s question: an algorithm!
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.
Gave the best answer hitherto known to Borel’s question: an algorithm!

Started effective mathematics: concepts specified by finitely definable
approximations could be made computational.
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Turing’s Note on Normal Numbers

A story of unrecognized scientific priority

Proved the existence of computable normal numbers.
Gave the best answer hitherto known to Borel’s question: an algorithm!

Started effective mathematics: concepts specified by finitely definable
approximations could be made computational.

In particular, Turing pioneered the theory of algorithmic randomness.
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Turing’s Normal Numbers: Towards Randomness

A real is random if it exhibits the almost-everywhere behavior of all reals.
A random real must pass every test of these properties; for instance,
its expansion must be evenly balanced.
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Turing’s Normal Numbers: Towards Randomness
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Turing’s Normal Numbers: Towards Randomness

Definition (Martin-Lof 1966)

A test for randomness is a uniformly computably enumerable sequence of
sets of intervals with rational endpoints whose measure is upper-bounded
by a computable function and converges to zero.

A real number is random if it is covered by no such test.
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Turing’s Normal Numbers: Towards Randomness

Definition (Martin-Lof 1966)

A test for randomness is a uniformly computably enumerable sequence of
sets of intervals with rational endpoints whose measure is upper-bounded
by a computable function and converges to zero.

A real number is random if it is covered by no such test.

Corollary (Randomness Implies Normality)

The sequence ((0,1) \ E(k))k>0 is a ML-test.
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