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Normal numbers

Normality is the most basic form of randomness for real numbers.

It was defined by Émile Borel in 1909.

I will present some results obtained with tools of
Logic and Automata theory .
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Representation of real numbers

A base is an integer b greater than or equal to 2.

The expansion of a real number x in base b is a sequence a1a2a3 . . . of

integers from {0, . . . , b − 1} such that

x = bxc+
∑
k≥1

ak

bk
= bxc+ 0.a1a2a3 . . .

and the sequence a1a2a3 . . . does not end with a tail of b − 1.
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Normal numbers

Definition (Borel, 1909)

A real x is simply normal to base b if in the expansion of x in base b,

each digit 0, . . . , b − 1 occurs with limiting frequency equal to 1/b.

A real x is normal to base b if x is simply normal to bases b1, b2, b3, . . .

A real x is absolutely normal if x is normal to every base.
Hence, a real x is absolutely normal if it is simply normal to all bases b.
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Examples and counterexamples

0.010010001000010000 . . . is not simply normal to base 2.

0.01010101010101010101 . . . is simply normal to base 2 but not to base 4.

Each rational number is not simply normal to some base.

Each number in the Cantor middle third set is not simply normal to base 3.

Each number that is simply normal to bk is simply normal to base b.

0.123456789101112131415 . . . is normal to base 10 (Champernowne, 1933).

It is unknown if it simply normal to bases that are not powers of 10.
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Absolutely normal numbers

Theorem (Borel 1909)

The set of absolutely normal numbers in the unit interval has Lebesgue
measure one.

Borel asked for an explicit example .
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1Exhibit an absolutely normal number



1. Exhibit an absolutely normal number

Absolutely normal

π?
√

2?Lebesgue; Sierpinski 1917

Champernowne?Turing 1937

Schmidt 1961; Levin 1970

Ω-numbers
polynomial algorithms 2013

Lutz and Mayordomo 2013; Figuiera and Nies 2013

Becher, Heiber and Slaman 2013: 0.4031290542003809132371428380827059102765116777624189775110896366...

quasilinear, Lutz and Mayordomo 2016

Other properties (Liouville, fast convergence to normality).
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1. Exhibit an absolutely normal number

Definition (Turing 1936)

A real number x is computable is there is a program that produces the
expansion of x in some base.

Theorem (Turing 1937?)

There is a computable absolutely normal number.

Turing inductively defines a set that contains all non normal numbers,
and at the same time he inductively defines a number x outside this set.

To produce the n-th binary digit of x , Turing’s algorithm performs a
number of operations that is exponential in n.
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1. Exhibit an absolutely normal number

Conjecture (Borel 1951)

Irrational algebraic numbers are absolutely normal.
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2. Normality to different bases

Two positive integers are multiplicatively dependent if one is a rational
power of the other. For example 2 and 8 are multiplicatively dependent,
but 2 and 6 are not.

Theorem (Maxfield 1953)

Let b1 and b2 multiplicatively dependent. For any real number x, x is
normal to base b1 if and only if x is normal to base b2.

Norma` numbers, Logic and Automata 9 / 33 Verónica Becher



2. Normality to different bases

Bailey and Borwein (2012) proved that the Stoneham number α2,3,

α2,3 =
∑
k≥1

1

3k 23k

is normal to base 2 but not simply normal to base 6.

base 2 base 6 base 10
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2. Normality to different bases

Theorem (Cassels, 1959)

On the Cantor middle third set, almost every real number is normal to 2.

Theorem (Schmidt 1961/1962)

For any given set S of bases closed under multiplicative dependence, there
are real numbers normal to every base in S and not normal to any base in
its complement. Furthermore, there is a real x is computable from S.

Improved by Becher and Slaman 2014 to obtain lack of simple normality.

Becher, Bugeaud and Slaman, 2016, proved the analog of this theorem for simple normality.
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2. Normality to different bases

Asked first by Kechris 1994,
What is the descriptive complexity of the set of normal numbers?

Recall that the Borel hierarchy for subsets of the real numbers is the
stratification of the σ-algebra generated by the open sets with the usual
interval topology.

When we restrict to intervals with rational endpoints and computable
countable unions and intersections, we obtain the
effective Borel hierarchy .
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2. Normality to different bases (Kechris’s question)

A real x is simply normal to base b if

∀d ∈ {0, ..., b − 1} lim
n→∞

∣∣∣∣ |a1 . . . an|d
n

− 1

b

∣∣∣∣ = 0

where a1a2 . . . is the expansion of x in base b.

Equivalently,

∀d ∈ {0, .., b − 1} ∀ ε ∃ n0 ∀ n ≥ n0

∣∣∣∣ |a1 . . . an|d
n

− 1

b

∣∣∣∣ < ε.

∀∃∀ yields a Π0
3 formula over the reals.

Simple normality, normality and absolute normality are defined by Π0
3

formula.
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2. Normality to different (Kechris’s question)

Theorem (Ki and Linton 1994)

For a fixed base b, the set of reals that are normal to base b is
Π0

3-complete and Π0
3-complete.

Theorem (Becher, Heiber and Slaman 2014)

The set absolutely normal reals is Π0
3-complete and Π0

3-complete.

Corollary

Since the set of Martin-Löf random reals is Σ0
2-complete, it is different

from the set of normal reals.
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2. Normality to different bases

We confirmed a conjecture by Achim Ditzen, 1994:

Theorem (Becher and Slaman 2014)

The set of real numbers that are normal to at least one base is
Σ0

4-complete and Σ0
4-complete.

Given a Σ0
4 sentence we produce a real x .
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2. Normality to different bases

A fixed point!

The given sentence can refer to the produced real.

Theorem (Becher and Slaman 2014)

For each Π0
3 formula ϕ in second order arithmetic there is a computable

real number x such that, for any non-perfect power b, x is normal to
base b if and only if ϕ(x , b) is true.

So, for each Π0
3 formula ϕ there is x such that normality of x to base b

has the same truth value as ϕ(x , b).

There is no logical dependence between normality between different bases,

other than multiplicatively dependence.
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2. Another result on descriptive complexity

Theorem (Airey, Jackson and Mance, 2016 )

Let Nb be the set of real numbers which are normal to a given base b.
The set of real numbers that are normal to base b and
preserve normality to base b under addition ,

{x : x ∈ Nb and ∀y ∈ Nb (x + y ∈ Nb)} ,

is Π0
3-complete.
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3Normality of infinite words:
unpredictability/incompressibility

by finite automata



3. Normality and finite automata

Theorem

normality iff no finite-state martingale success
(Schnorr and Stimm 1971)

no finite-state martingale success iff incompressibility
(Dai, Lathrop, Lutz and Mayordomo 2004)
(Bourke, Hitchcock and Vinodchandran 2005)

normality iff incompressibility (direct proof)
(Becher and Heiber 2013)

iff incompressibility by non-deterministic
iff incompressibility by one counter

(Becher, Carton and Heiber 2015)

iff incompressibility two-way transducers
(Carton and Heiber 2015)
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3. Normality as incompressibility by finite automata

Definition

A deterministic finite transducer is a tuple A = 〈Q,A, δ, q0〉, where

I Q is a finite set of states,

I A is the input and output alphabet

I δ : Q × A→ A∗ × Q is a transition function,
where a transition is written p a|v−−→ q.

I q0 is initial state.

A run with input x = a1a2 . . . is a sequence of consecutive transitions,

q0
a1|v1−−−→ q1

a2|v2−−−→ q2 · · · qn−1
an|vn−−−→ qn . . .

We write A(x) = v1v2 . . ..

A transducer A is one-to-one if the function x 7→ A(x) is one to one.
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3. Normality as incompressibility by finite automata

Example

A finite transducer that transforms blocks of 1s into a single 1.

q0 q10|0
1|1

0|0
1|λ

If x = 010011000111..., then A(x) = 01001000100...

Beware! It is not one-to-one.
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3. Normality as incompressibility by finite automata

Suppose the run in A with iput x = a1a2 . . . is

q0
a1|v1−−−→ q1

a2|v2−−−→ q2
a3|v3−−−→ q3 · · ·

Then, the compression ratio of x = a1a2 . . . in A is

ρA(x) = lim inf
n→∞

|v1v2 · · · vn|
n

The compression ratio of x = a1a2a3 · · · is

ρ(x) = inf {ρA(x) : A is one-to-one}

We say x is compressible if only if ρ(x) < 1.
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3. Normality as incompressibility by finite automata

Problem

Is there a deterministic push-down one-to-one transducer and a normal
word which is compressed by it?

Theorem (Boasson 2014)

There is a non-deterministic push-down one-to-one transducer and a
normal word which is compressed by it.

Proof.

0123456789 9876543210 00010203 ... 979899 999897...03020100 . . .
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4Independence of normal words



4. Independence of normal words

When are two normal words independent?
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4. Independence of normal words

First attempt of a definition of independence:
Two normal words are independent exactly when their join is normal.

Theorem (Becher, Carton and Heiber 2016)

There are two normal words x and y such that x join y = x.

Here x = even(x) and y = odd(x), hence they are obviously dependent.

Theorem (Shen 2016)

Let x1, x3, x5, . . . be uniformly distributed independent symbols and for
every odd n, let xn = x2n = x4n = . . .. Then, with probability 1 the
resulting word x1x2x3 . . . is normal.
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4. Independence of normal numbers

Two normal words are independent exactly when one does not help to
compress the other.

Definition

A deterministic finite transducer 2 input tapes and 1 output tape is a

tuple A = 〈Q,A, δ, q0〉, where

I Q is the finite state set,

I A is the alphabet,

I δ : Q × (A ∪ {λ})× (A ∪ {λ})→ A∗ × Q is the transition function
where a transition is written p α,β|γ−−−→ q,

I q0 is the initial state.

A run with inputs x and y is a sequence of consecutive transitions

q0
α1,β1|γ1−−−−−→ q1

α2,β2|γ2−−−−−→ q2 · · ·

We write A(x , y) = γ1γ2γ3 · · · .
We say A is one-to-one if for each y fixed, x → A(x , y) is one-to-one.
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4. Independence of normal numbers

Definition

Let A be a finite transducer with two input tapes, deterministic and
one-to-one. Suppose inputs x and y and the run in A

q0
α1,β2|γ1−−−−−→ q1

α2,β2|γ2−−−−−→ q2
α3,β3|γ3−−−−−→ q3 · · ·

where x = α1α2 . . . and y = β1β2 . . .

The conditional compression ratio of x with respect to y in A is

ρA(x/y) = lim inf
n→∞

|γ1 . . . γn|
|α1 . . . αn|

.

Notice that the number of symbols read from y , namely |β1 . . . βn|, is not
taken into account in the value of ρA(x/y).

The conditional compression ratio of x given y , ρ(x/y), is the infimum

of ρA(x/y) for all A deterministic one-to-one.
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4. Independence of normal numbers

Definition

Two words x and y are independent if their compression ratios are not 0
and y does not help to compress x and x does not help to compress y ,

ρ(x) = ρ(x/y) > 0 and ρ(y) = ρ(y/x) > 0.
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4. Independence of normal numbers

Theorem (Becher and Carton 2016)

The set {(x , y) : x and y are independent} has Lebesgue measure 1.

Lemma

The set of words that are compressible with the help of a given normal
word has Lebesgue measure 0.

Norma` numbers, Logic and Automata 28 / 33 Verónica Becher



4. Independence of normal numbers

Theorem (Becher and Carton 2016)

The set {(x , y) : x and y are independent} has Lebesgue measure 1.

Lemma

The set of words that are compressible with the help of a given normal
word has Lebesgue measure 0.

Norma` numbers, Logic and Automata 28 / 33 Verónica Becher



4. Independence of normal numbers

Definition

A shuffler S = 〈Q,A, δ, q0〉 is a finite transducer with two input tapes
and one output tape. The transition function is
δ : Q × A ∪ {λ} × A ∪ {λ} → Q × A, transitions have the form

p
a,λ|a−−−→ q or p

λ,a|a−−−→ q.

For each state q, all incoming transitions have the same type.

Whether the next digit is taken from the first or the second input word
only depends the current state.
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4. Independence of normal numbers

Example of a Shuffler that computes the join

q0 q1

0, λ|0
1, λ|1

λ, 0|0
λ, 1|1

x = 0011010001...

y = 0100011000...

x join y = 00011010001101000010...
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4. Independence of normal numbers

Example of another shuffler. It alternates (possibly empty) blocks of 0s
followed by a 1, from each input word.

q0 q10, λ|0
1, λ|1

λ, 1|1
λ, 0|0

x = 001 1 01 0001 ...

y = 01 0001 1 0001 ...

z = 001011000101100010001...

Input words

Output word
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4. Independence of normal numbers

Theorem (Alvarez, Becher and Carton 2016)

Two normal words are independent if and only if every shuffling is normal.

Theorem (Alvarez, Becher and Carton 2016)

There is an algorithm that computes two normal independent words.
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4. Independence of normal numbers

Problem

Give combinatorial characterization of finite-state independence.

Problem

Construct x = a1a2 . . . normal such that for all n, a2n = an and a3n = an.

Problem

Construct a normal word that is independent of Champernowne.
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Concluding remark

Little is known about the interplay between combinatorial, computational
and number theoretic properties of real numbers.

These investigations on normal numbers aim to make progress in this
direction.

The End
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