Nested perfect necklaces and normal numbers

Verónica Becher

Universidad de Buenos Aires

Moscow Seminar in Diophantine Analysis - March 23, 2021

A question asked by Korobov

A real x is normal to base b if the fractional parts of $x, b x, b^{2} x, \ldots$ are uniformly distributed in the unit interval. That is, if $\left(b^{n} x \bmod 1\right)_{n \geq 0}$ is u.d.

A sequence $\left(x_{n}\right)_{n \geq 1}$ of real numbes in $[0,1)$ is u.d. if the discrepancy $D_{N}\left(\left(x_{n}\right)_{n \geq 1}\right)=\sup _{\gamma \in[0,1)}\left|\frac{1}{N} \#\left\{n \leq N: x_{n}<\gamma\right\}-\gamma\right|$ goes to 0 as N to ∞.

Schmidt 1972 proved there is a constant C such that for every $\left(x_{n}\right)_{n \geq 1}$ there are infinitely many $N \mathrm{~s}, D_{N}\left(\left(x_{n}\right)_{n \geq 1}\right)>C \frac{\log N}{N}$. This is optimal
(the van der Corput, the Halton, the Sobol sequences have this discrepancy).

Korobov 1956 asked what is the optimal order of discrepancy achievable by $\left(b^{n} x \bmod 1\right)_{n \geq 0}$ for some real x. It is still unknown.

The lowest known $D_{N}\left(\left(b^{n} x \bmod 1\right)\right)_{n \geq 0}$ is $O\left((\log N)^{2} / N\right)$ for a real x constructed by M.Levin 1999 using Pascal triangle matrix modulo 2.

In this talk

Present nested perfect necklaces.
Theorem 1 (Becher and Carton 2019)
For every number x whose base-b expansion is the concatenation of nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces for $d=0,1,2 \ldots, D_{N}\left(\left(b^{n} x\right)_{n \geq 0}\right)$ is $O\left((\log N)^{2} / N\right)$.

Theorem 2 (Becher and Carton 2019)

The base b-expansion of the number defined by M. Levin 1999 for base b using Pascal triangle matrix modulo 2 is the concatenation of nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces for $d=0,1,2, \ldots$.

Theorem 3 (Becher and Carton 2019)
For each $d=0,1,2, \ldots$ there are $2^{2^{d+1}-1}$ binary nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces.

Our observation

Consider all blocks of length n, concatenated in lexicographical order, view it circularly. Each block of length n occurs exactly n times at positions with different modulo n.

For example, for alphabet $\{0,1\}$
$n=2 \quad$ position
$\begin{array}{llll}12 & 34 & 56 & 78\end{array}$
00011011
0001101100 occurs twice, at positions different modulo 2
00011011
0001101101 occurs twice, at positions different modulo 2
00011011
0001101110 occurs twice, at positions different modulo 2
00011011
$00011011 \quad 11$ occurs twice, at positions different modulo 2

Our observation

$$
n=3
$$

000001010011100101110111 000001010011100101110111 000001010011100101110111 000001010011100101110111 000001010011100101110111 000001010011100101110111

000 occurs three times, at positions different modulo 3

001 occurs three times at postions different modulo 3

Observation

Not every permutation of the blocks of length n has the property: 00101101

000101001010011100110111

Perfect necklaces

Definition (Alvarez, Becher, Ferrari and Yuhjtman 2016)
A necklace over a b-symbol alphabet is (n, k)-perfect if each block of length n occurs k times, at positions with different modulo k, for any convention of the starting point.

De Bruijn necklaces are exactly the ($n, 1$)-perfect necklaces.
The (n, k)-perfect necklaces have length $k b^{n}$.

Arithmetic progressions yield perfect necklaces

Identify the blocks of length n over a b-symbol alphabet with the set of non-negative integers modulo b^{n} according to representation in base b.

Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)
Let r coprime with b. The concatenation of blocks corresponding to the arithmetic sequence $0, r, 2 r, \ldots,\left(b^{n}-1\right) r$ yields an (n, n)-perfect necklace.

With $r=1$ we obtain the lexicographically ordered sequence.

Arithmetic progressions yield perfect necklaces

Lemma

Let $\sigma:\{0, . ., b-1\}^{n} \rightarrow\{0, . ., b-1\}^{n}$ be such that for any block v of length n $\left\{\sigma^{j}(v): j=0, \ldots, b^{n}-1\right\}$ is the set of all blocks of length n.
The necklace $\left[\sigma^{0}(v) \sigma^{1}(v) \ldots \sigma^{b^{n}-1}(v)\right]$ is (n, n)-perfect if and only if for every block u of length n, for every $\ell=0, \ldots, n-1$ there is a unique block v of length n such that $v(n-\ell-1 \ldots n)=u(1 \ldots \ell)$ and $(\sigma(v))(1 \ldots n-\ell)=u(\ell+1 \ldots n)$.

For every length- n block splitted in two parts, there is exactly one matching (a tail of a block and the head of next block).

Astute graphs

Fix b-symbol alphabet. The astute graph $G_{b, n, k}$ is directed, with $k b^{n}$ vertices.
The set of vertices is $\{0, . . b-1\}^{n} \times\{0, . ., . k-1\}$.
An edge $(w, m) \rightarrow\left(w^{\prime}, m^{\prime}\right)$ if $w(2,, n)=w^{\prime}(1 . . n-1)$ and $(m+1) \bmod k=m^{\prime}$
$G_{2,2,2}$

Astute graphs

Observation

$G_{b, n, k}$ is Eulerian because it is strongly regular and strongly connected.
Observation
$G_{b, n, 1}$ is the de Bruijn graph of blocks of length n over b-symbols.

Eulerian cycles in astute graphs

Each Eulerian cycle in $G_{b, n-1, k}$ gives one (n, k)-perfect necklace.
Each (n, k)-perfect necklace can come from many Eulerian cycles in $G_{b, n-1, k}$
Theorem (Alvarez, Becher, Ferrari and Yuhjtman 2016)
The number of (n, k)-perfect necklaces over a b-symbol alphabet is

$$
\frac{1}{k} \sum_{d_{b, k}|j| k} e(j) \varphi(k / j)
$$

where

- $d_{b, k}=\prod p_{i}^{\alpha_{i}}$, such that $\left\{p_{i}\right\}$ is the set of primes that divide both b and k, and α_{i} is the exponent of p_{i} in the factorization of k,
- $e(j)=(b!)^{j b^{n-1}} b^{-n}$ is the number of Eulerian cycles in $G_{b, n-1, j}$
- φ is Euler's totient function

Normal sequences as sequences of Eulerian cycles

Theorem (proved first by Ugalde 2000 for de Bruijn)

The concatenation of (n, k)-perfect necklaces over a b-symbol alphabet, for arithmetically increasing (n, k) is normal to the b-symbol alphabet.

The proof is a direct application of Piatetski-Shapiro theorem.

In worst case, $D_{N}\left(\left(b^{n} x\right)_{n \geq 0}\right)=\Theta(\sqrt{(\log \log N) / \log N})$, Cooper and Heitsch, 2010

Corollary

The concatenation of lexicografically ordered (n, n)-perfect necklaces for $n=1,2, \ldots$ is normal; Champernowne's sequence is normal.

Nested perfect necklaces

Definition

An (n, k)-perfect necklace over a b-symbol alphabet is nested if $n=1$ or it is the concatenation of b nested $(n-1, k)$ - perfect necklaces.

For example, for alphabet $\{0,1\}$, a nested (2,2)-perfect necklace

$$
\underbrace{0011}_{(1,2) \text {-perfect }} \underbrace{0110}_{(1,2) \text {-perfect }}
$$

The lexicographic order yields a perfect necklace but not nested,

$$
\underbrace{000102}_{\text {not }(1,2) \text {-perfect }} \underbrace{101112}_{\text {not }(1,2) \text {-perfect }} \underbrace{202122}_{\text {not }(1,2) \text {-perfect }}
$$

Nested perfect necklaces

These following 8 blocks are (1,4)-perfect necklaces:

00001111	01011010
00111100	01101001
00011110	01001011
00101101	01111000

The concatenation in each row is a $(2,4)$-perfect necklace.
The concatenation of the first two rows is a nested (3,4)-perfect necklace.
The concatenation of the last two rows is a nested (3,4)-perfect necklace.
The concatenation of all rows is a nested (4,4)-perfect necklace.

Proof sketch of Theorem 1

Theorem 1
For every number x whose base-b expansion is the concatenation of nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces for $d=0,1,2 \ldots, D_{N}\left(\left(b^{n} x\right)_{n \geq 0}\right)$ is $O\left((\log N)^{2} / N\right)$.

Proof sketch of Theorem 1

Observation

Assume a b-symbol alphabet. For a nested (n, n)-perfect necklace x,

- each block of length n occurs n times in x, at positions with different congruence modulo n.
- for every $i=1, \ldots n, x$ is the concatenation of b^{n-i} nested (i, n)-perfect necklaces. So, in every segment of length $n b^{i}$ starting at a position multiple of $n b^{i}$, each block of length i occurs $1 \pm 2 \varepsilon$ times, for $\varepsilon \leq 1$ at positions in each congruence class.

Proof sketch of Theorem 1

Given N, we need to bound $D_{N}\left(\left(b^{n} x\right)_{n \geq 1}\right)$. Let m and M be such that N is the sum of length of nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces, $i=0, . .2^{m}-1$, plus M,

$$
N=\left(\sum_{i=0}^{2^{m}-1} 2^{i} b^{2^{i}}\right)+M, \quad 0 \leq M<2^{m} b^{2^{m}}
$$

Since segment M is an incomplete nested perfect necklace, its discrepancy determines the discrepancy of segment N.
Since N is $O\left(2^{2^{m}}\right)$ then $O(\log N)=O\left(2^{m}\right)$.

Proof sketch of Theorem 1

Write M as the sum of length of n_{i} nested $\left(i, 2^{m}\right)$-perfect necklaces, $i=0, . ., 2^{m}-1$, plus M_{0}
$M=M_{0}+2^{m} \sum_{i=0}^{2^{m}-1} n_{i} b^{i}, \quad M_{0}<2^{m}$ and $n_{i} \in\{0, \ldots, b-1\}$

M	$=$	M_{0}	$n_{0} 2^{m} b^{0}$	$n_{1} 2^{m} b^{1}$	$n_{2} 2^{m} b^{2}$	$n_{2}{ }^{m}-12^{m} b^{2^{m}-1}$

In segment M,

- at most $b 2^{m}$ nested $\left(i, 2^{m}\right)$-perfect necklaces counting $i=0, . ., 2^{m}-1$
- in each, we consider positions in 2^{m} congruence classes
- for each $\left(i, 2^{m}\right)$-necklace and congruence class, difference between actual and expected number of occurrences of any block of length i is at most 2 . This is at most $b 2^{m} \times 2^{m} \times 2=O\left(2^{m} \times 2^{m}\right)$.
We conclude $D_{N}\left(\left(b^{n} x\right)_{n \geq 0}\right)=O\left((\log N)^{2} / N\right)$.

Proof sketch of Theorem 2

Theorem 2

The base b-expansion of the number defined by M. Levin 1999 for base b using the Pascal triangle matrix modulo 2 is the concatenation of nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces for $d=0,1,2, \ldots$.

Levin's construction

- Levin's constant λ is the number whose base b-expansion is

$$
\lambda=0 . \lambda_{0} \lambda_{1} \lambda_{2} \ldots
$$

- For $d=0,1,2, \ldots$ define the matrix M_{d} in $\mathbb{F}_{2}^{2^{d} \times 2^{d}}$ and consider the elements of $\mathbb{F}_{b}^{2^{d}}$ in increasing order

$$
w_{0}, w_{1}, \ldots, w_{b^{2}}-1
$$

Identify vectors of \mathbb{F}_{b} with blocks of symbols in $\{0, . ., b-1\}$. Thus, each $\left(M_{d} w_{i}\right)$ is identified with a block of length 2^{d}.

- For $d=0,1,2, \ldots$ define λ_{d} as

$$
\lambda_{d}=\left(M_{d} w_{0}\right) \ldots\left(M_{d} w_{b^{2}-1}\right)
$$

Pascal triangle matrices modulo 2

Define a family of matrices using Pascal triangle modulo 2,

\ldots	1	1	1	1	1		\ldots	1	1	1	1	1
\ldots	5	4	3	2	1		\ldots	1	0	1	0	1
\ldots	15	10	6	3	1		\ldots	1	0	0	1	1
\ldots	35	20	10	4	1	\longrightarrow	\ldots	1	0	0	0	1
\ldots	70	35	15	5	1		\ldots	0	1	1	1	1
	\vdots	\vdots	\vdots	\vdots	\vdots			\vdots	\vdots	\vdots	\vdots	\vdots

Pascal triangle matrices modulo 2

Define a family of matrices using Pascal's triangle modulo 2 ,

| \ldots | 1 | 1 | 1 | 1 | 1 | | \ldots | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| \ldots | 5 | 4 | 3 | 2 | 1 | | \ldots | 1 | 0 | 1 | 0 | 1 |
| \ldots | 15 | 10 | 6 | 3 | 1 | | \ldots | 1 | 0 | 0 | 1 | 1 |
| \ldots | 35 | 20 | 10 | 4 | 1 | \longrightarrow | \ldots | 1 | 0 | 0 | 0 | 1 |
| \cdots | 70 | 35 | 15 | 5 | 1 | | \ldots | 0 | 1 | 1 | 1 | 1 |
| | \vdots | \vdots | \vdots | \vdots | \vdots | | | \vdots | \vdots | \vdots | \vdots | \vdots |

For $d=0, M_{d}$ has dimension $2^{0} \times 2^{0}$

$$
M_{0}=(1)
$$

Matrices de Pascal Módulo 2

Define a family of matrices using Pascal's triangle modulo 2 ,

| \ldots | 1 | 1 | 1 | 1 | 1 | | \ldots | 1 | 1 | 1 | 1 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| \ldots | 5 | 4 | 3 | 2 | 1 | | \ldots | 1 | 0 | 1 | 0 | 1 |
| \ldots | 15 | 10 | 6 | 3 | 1 | | \ldots | 1 | 0 | 0 | 1 | 1 |
| \ldots | 35 | 20 | 10 | 4 | 1 | \longrightarrow | \ldots | 1 | 0 | 0 | 0 | 1 |
| \ldots | 70 | 35 | 15 | 5 | 1 | | \ldots | 0 | 1 | 1 | 1 | 1 |
| | \vdots | \vdots | \vdots | \vdots | \vdots | | | \vdots | \vdots | \vdots | \vdots | \vdots |

For $d=1, M_{d}$ has dimension $2^{1} \times 2^{1}$

$$
M_{1}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Matrices de Pascal Módulo 2

Define a family of matrices using Pascal's triangle modulo 2,

$$
\begin{array}{lc|ccccllllllll}
\ldots & 1 & 1 & 1 & 1 & 1 & & \ldots & 1 & 1 & 1 & 1 & 1 \\
\ldots & 5 & 4 & 3 & 2 & 1 & & \ldots & 1 & 0 & 1 & 0 & 1 \\
\ldots & 15 & 10 & 6 & 3 & 1 \\
\ldots & 35 & 20 & 10 & 4 & 1 & & \cdots & 1 & 0 & 0 & 1 & 1 \\
\ldots & \ldots & 1 & 0 & 0 & 0 & 1 \\
\ldots & 70 & 35 & 15 & 5 & 1 & & \ldots & 0 & 1 & 1 & 1 & 1
\end{array}
$$

For $d=2, M_{d}$ has dimension $2^{2} \times 2^{2}$

$$
M_{2}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Alternative formulation Pascal triangle matrices modulo 2

$$
M_{0}=(1), \quad M_{d+1}=\left(\begin{array}{cc}
M_{d} & M_{d} \\
0 & M_{d}
\end{array}\right)
$$

- M_{d} in $\mathbb{F}_{2}^{2^{d} \times 2^{d}}$.
- M_{d} is invertible.
- The first row of M_{d} is the vector of 1 s
- The last column of M_{d} is the vector of 1 s

Invertible submatrices

$$
M_{d}=\binom{\square}{k} \quad M_{d}=\binom{\square}{k}
$$

Lemma (Levin 1999 from Bicknell and Hoggart 1978)

For $d \geq 0$, the following submatrices of M_{d} are invertible

- k rows and the last k columns
- the first k rows and k columns

Levin's number

Observation

For every $d \geq 0, \lambda_{d}$ is the concatenation of all blocks of length 2^{d} in some order.
$\lambda=0 . \underbrace{01}_{\lambda_{0}}$

$\underbrace{0000111110100101110000110110100110000111001011010100101111100001}_{\lambda_{2}}$

Levin's number

Observation

Assume $b=2$. For every d and for every even $n, M_{d} w_{n}$ and $M_{d} w_{n+1}$ are complementary blocks.

$$
\lambda=0.01
$$

$$
00111001
$$

$$
0000111110100101110000110110100110000111001011010100101111100001
$$

Sketch of proof of Theorem 3

Theorem 3
For each $d=0,1,2, \ldots$ there are $2^{2^{d+1}-1}$ binary nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces.

Matrices like Levin's

Definition

For $d=0,1,2, \ldots$, a tuple $\nu=\left(\nu_{1}, \ldots, \nu_{2^{d}}\right)$ of 2^{d} non-negative numbers is suitable if $\nu_{2^{d}}=0$ and for every i, ν_{i+1} is equal to ν_{i} or $\nu_{i}-1$.

- $(1,1,1,0)$ is suitable;
- $(4,3,1,0)$ is not suitable;
- $(3,2,1,0)$ is suitable.

Observation

For each $d=0,1,2, \ldots$ there are $2^{2^{d}-1}$ suitable tuples.

Matrices like Levin's

Assume σ is the rotation operation.
If $\nu=\left(\nu_{1}, \ldots, \nu_{2^{d}}\right)$ is suitable and $C_{1}, \ldots, C_{2^{d}}$ are columns of M_{d},

$$
M_{d}^{\nu}=\left(\sigma^{\nu_{1}}\left(C_{1}\right), \ldots, \sigma^{\nu_{2^{d}}}\left(C_{2^{d}}\right)\right)
$$

Matrices like Levin's

For $d=2$ there are $2^{2^{d}-1}=8$ suitable tuples, hence 8 matrices,

$$
\begin{aligned}
& M_{2}^{(0,0,0,0)} \quad M_{2}^{(1,0,0,0)} \quad M_{2}^{(1,1,0,0)} \quad M_{2}^{(2,1,0,0)} \\
& \left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \\
& \begin{array}{c}
M_{2}^{(1,1,1,0)} \\
\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1
\end{array}\right) \quad M_{2}^{(2,2,1,0)} \\
\end{array}
\end{aligned}
$$

The number of binary perfect necklaces

For each suitable ν and for each vector $z \in \mathbb{F}_{2}^{2^{d}}$,

$$
\left(M_{d}^{\nu} w_{0} \oplus z\right) \ldots\left(M_{d}^{\nu} w_{2^{2 d}-1} \oplus z\right) .
$$

is a nested $\left(2^{d}, 2^{d}\right)$-perfect necklace.
Since there are $2^{2^{d}}-1$ suitable tuples ν and there are $2^{2^{d}}$ different vectors $z \in \mathbb{F}_{2}^{2^{d}}$, the number of binary nested $\left(2^{d}, 2^{d}\right)$-perfect necklaces is at least

$$
2^{2^{d}-1} \times 2^{2^{d}}
$$

By a graph theoretical argument we know that there can be no more.

Nested marvelous necklaces

Definition

A necklace over a a b-symbol alphabet is nested (n, k)-marvelous if all blocks of length n occur exactly k times, and in case $n>1$ it is the concatenation of b nested ($n-1, k$)-marvelous necklaces.

This is nested (3,3)-marvelous, not perfect,

$$
000111011001000111101010
$$

Theorem (Becher and Carton 2020)

For every number x whose base- b expansion is the concatenation of nested $\left(2^{d}, 2^{d}\right)$-marvelous necklaces, $D_{N}\left(\left(b^{n} x\right)_{n \geq 0}\right)$ is $\left.O(\log N)^{2} / N\right)$.

References

- N. Alvarez, V. Becher, P. Ferrari and S. Yuhjtman. "Perfect necklaces", Advances of Applied Mathematics 80:48-61, 2016.
- V. Becher and O. Carton. "Normal numbers and nested perfect necklaces", Journal of Complexity 54:101403, 2019
- D. Champernowne. "The Construction of Decimals Normal in the Scale of Ten." Journal London Mathematical Society, S1-8(4):254-260, 1933.
- J. Cooper, C. Heitsch. The discrepancy of the lex-least de Bruijn sequence. Discrete Mathematics, 310 (67): 1152-1159, 2010.
- M. B. Levin. On the discrepancy estimate of normal numbers. Acta Arithmetica 88(2):99-111, 1999.
- N. Korobov. On completely uniform distributions and jointly normal numbers. Izv. AN SSSR, ser. matem., 20, 1956.
- W. Schmidt. Irregularities of distribution VII. Acta Arithmetica, 21:45-50, 1972.
- D.D.Wall. "Normal numbers",Ph.D.Thesis University of California Berkeley,1949.

