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This research originates in a problem posed more than 100

years ago. To a large extent, the problem is still open.
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Randomness - aléatoire - Zufall - azar - rasgelelik - satunnaisuuden - slumpmässighet

In 1909 Émile Borel gave a definition of the most elementary form of
randomness for a real number, thinking in the sequence of digits that
determine its expansion.

He called such reals normal numbers.

He posed the problem: Give an example.
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Normal numbers

A base is an integer greater than or equal to 2.

For a real number x in the unit interval, the expansion of x in base b is a
sequence a1a2a3 . . . of integers from {0, 1, . . . , b− 1} such that

x = 0.a1a2a3 . . .

where x =
∑
k≥1

ak
bk

, and x does not end with a tail of b− 1.
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Normal numbers

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in
base b, each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if, for every positive integer k, every
block of k digits (starting at any position) occurs in the expansion of x in
base b with limiting frequency 1/bk.

Equivalently: a real number x is normal to base b if, for every positive
integer k, x is simply normal to base bk.

A real number x is absolutely normal if x is normal to every base.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to
base 3 (their expansions lack the digit 1).

The rational numbers are not normal to any base.

Liouville’s constant
∑
n≥1 10

−n! is not normal to any base.
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Existence

Theorem (Borel 1909)

The set of absolutely normal numbers in the unit interval has Lebesgue
measure 1.

Problem (Borel 1909)

Give one example.

Are the usual mathematical constants, such as π, e, or
√
2, absolutely

normal? Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Constructions based on concatenation
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Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 . . . is normal to base 10.

The proof is by direct counting. It is unknown if it is normal to bases
that are not powers of 10.

Generalizations:

squares Besicovitch 1935, primes Copeland and Erdos 1946, de Bruijn words Ugalde, 2000.
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Concatenation is only good for one base

If we consider more than one base simultaneously concatenation may fail:

base 10 base 3

x = (0.25)10 = (0.020202020202 . . .)3
y = (0.0017)10 = (0.0000010201101100102 . . .)3

x+ y = (0.2517)10 = (0.0202101110122 . . .)3
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Constructions based on discrete counting
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Normal to all bases, non-computable constructions
Bulletin de la Société Mathématique de France (1917) 45:127–132; 132–144
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General construction of a computable real number

Consider a computable sequence (I)i≥1 of non-empty intervals Ii with
rational endpoints (left endpoint increasing, right endpoints decreasing),
nested, length goes to zero.

This gives a construction of the unique (computable) real x in
⋂
i≥1 Ii.
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Normal to all bases, computable-construction

Alan Turing, A note on normal numbers, 1937? Collected Works, Pure Mathematics, J.L.Britton ed.1992.

Corrected and completed in Becher, Figueira and Picchi, 2007.

Verónica Becher Constructing normal numbers 11 / 1



Turing’s handwritten manuscript

Turing cites Champernowne’s 0.123456789101112131415... as an
example of a number that is normal to base ten, and says:

“It may also be natural that an example of [an absolutely]
normal number be demonstrated as such and written down.

This note cannot, therefore, be considered as providing
convenient examples of normal numbers but rather, as a
counter [...] that the existence proof of normal numbers
provides no example of them.

The arguments in this note, in fact, follow the existence proof
fairly closely.”
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Turing’s algorithm for computing normal numbers

Theorem (Turing 1937?)

A computable version of Borel’s theorem for the Lebesgue measure of the
set of absolutely normal numbers.

Turing gives the following construction. For each k, n,

I Ek,n is a finite union of open intervals with rational endpoints.

I Lebesgue measure of Ek,n is equal to 1− 1
k + 1

k+n .

I Ek,n+1 ⊂ Ek,n.

For each k, the set
⋂
n

Ek,n has Lebesgue measure exactly 1− 1
k and

consists entirely of absolutely normal numbers.
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Turing’s algorithm for computing normal numbers

Theorem (Turing 1937?)

There is an algorithm that, given an integer k and an infinite sequence ν
of zeros and ones, produces an absolutely normal number α(k, ν) in the
unit interval, expressed in base two.

Start with the unit interval.

At each step, divide the current interval in two halves.

Choose the half that includes normal numbers in large-enough measure
(at step n, intersect half of the current interval with Ek,n.)

If both halves do, use the current bit of the sequence ν to decide.

The output α(k, ν) is the trace of the left/right selection at each step.

Computation of the n-th digit requires a number of elementary
operations exponential in n.

Schmidt 1961/1962, Becher and Figueira 2002 gave other algorithms with exponential complexity.
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Normal to all bases, in polynomial time

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

That is,

For any computable non-decreasing unbounded function f , there is an
algorithm that outputs the first n digits in the expansion of a real
number in base 2 after O

(
f(n)n2

)
elementary operations.

The algorithm is based on Turing’s. Speed is gained by

I testing the segment to be added instead of the whole initial segment.

I slowing convergence to normality.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument to compute an

absolutely normal number in polynomial time, based on martingales.

Verónica Becher Constructing normal numbers 15 / 1



Normal to all bases, in polynomial time

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

That is,

For any computable non-decreasing unbounded function f , there is an
algorithm that outputs the first n digits in the expansion of a real
number in base 2 after O

(
f(n)n2

)
elementary operations.

The algorithm is based on Turing’s. Speed is gained by

I testing the segment to be added instead of the whole initial segment.

I slowing convergence to normality.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument to compute an

absolutely normal number in polynomial time, based on martingales.

Verónica Becher Constructing normal numbers 15 / 1



Normal to all bases, in polynomial time

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

That is,

For any computable non-decreasing unbounded function f , there is an
algorithm that outputs the first n digits in the expansion of a real
number in base 2 after O

(
f(n)n2

)
elementary operations.

The algorithm is based on Turing’s. Speed is gained by

I testing the segment to be added instead of the whole initial segment.

I slowing convergence to normality.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument to compute an

absolutely normal number in polynomial time, based on martingales.

Verónica Becher Constructing normal numbers 15 / 1



Normal to all bases, in polynomial time

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

That is,

For any computable non-decreasing unbounded function f , there is an
algorithm that outputs the first n digits in the expansion of a real
number in base 2 after O

(
f(n)n2

)
elementary operations.

The algorithm is based on Turing’s. Speed is gained by

I testing the segment to be added instead of the whole initial segment.

I slowing convergence to normality.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument to compute an

absolutely normal number in polynomial time, based on martingales.

Verónica Becher Constructing normal numbers 15 / 1



Normal to all bases, in polynomial time

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with
just above quadratic time-complexity.

That is,

For any computable non-decreasing unbounded function f , there is an
algorithm that outputs the first n digits in the expansion of a real
number in base 2 after O

(
f(n)n2

)
elementary operations.

The algorithm is based on Turing’s. Speed is gained by

I testing the segment to be added instead of the whole initial segment.

I slowing convergence to normality.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument to compute an

absolutely normal number in polynomial time, based on martingales.

Verónica Becher Constructing normal numbers 15 / 1



Normal to all bases, in polynomial time

Output of algorithm Becher, Heiber and Slaman, 2013 programmed by Martin Epszteyn.

0.4031290542003809132371428380827059102765116777624189775110896366...

base 2 base 6 base10
Plots of the first 250000 digits of the output of our algorithm.

Available from http://www.dc.uba.ar/people/profesores/becher/software/ann.zip
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Open question

Is there an absolutely normal number computable in polynomial time
having a nearly optimal rate of convergence to normality?

Verónica Becher Constructing normal numbers 17 / 1



Constructions based on harmonic analysis
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Normality as uniform distribution modulo one

Theorem (Wall 1949)

A real x is normal to base b if and only if (bkx)k≥0 is uniformly
distributed modulo one for Lebesgue measure.

This means that the elements

{b0x} = 0.b1b2b3b4b5 . . .
{b1x} = 0.b2b3b4b5 . . .
{b2x} = 0.b3b4b5 . . .
{b3x} = 0.b4b5 . . .

...

are uniformly distributed in the unit interval.
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Normality and Weyl’s criterion

Theorem (Weyl’s criterion)

For any sequence (xn)n≥1 of real numbers the following are equivalent:

I sequence (xn)n≥1 is uniformly distributed modulo one.

I for every Riemann-integrable (complex-valued) 1-periodic function f ,∫ 1

0

f(z) dz is the limit of the average values of f on the sequence.

I for every non-zero integer t, lim
n→∞

1

n

n∑
k=1

e2πitxk = 0.

Wall’s Theorem

A number x is normal to base b if and only if for every non-zero integer t,

lim
n→∞

1

n

n−1∑
k=0

e2πitb
kx = 0.
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Normality to different bases

Two integers x, y are multiplicatively dependent if there are two integers
s, t such that xs = yt. E.g: 2 and 8 are dependent, but 2 and 6 are not.

Theorem (Maxfield 1953)

Let b and b′ multiplicatively dependent. For any real number x, x is
normal to base b if and only if x is normal to base b′.
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Normality to different bases

Theorem (Cassels, 1959)

Almost all (for the uniform measure) real numbers in the middle third
Cantor set are normal to every base that is not a power of 3.

Theorem (Schmidt 1961/1962)

For any given set S of bases closed under multiplicative dependence,
there are real numbers normal to every base in S and not normal to any
base in its complement. Furthermore, there is a real x computable
from S.

Pollington 1981 showed the set of such numbers has full Hausdorff dimension.
Becher and Slaman 2014 improved the second statement to simple normality, a question of Brown,
Moran and Pearce 1988.

Also Levin 1977, reconsidered Alvarez and Becher 2015.
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Simple normality to different bases

Fact

If k is a multiple of `, simple normality to bk implies simple normality to b`.

Theorem (Long 1957)

Simple normality to infinitely many powers of b implies normality to base b.

Theorem (Becher, Bugeaud and Slaman, 2015)

Necessary and sufficient conditions for a set S so that there exists a
number that is simply normal to each of the bases in S and not simply
normal to each of the bases in the complement of S.

Moreover, for each such set S, the set of numbers with this condition has
full Hausdorff dimension.

Also, the asserted real number is computable from the set S.
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Uniform distribution modulo one for appropriate measures

By Wall’s theorem, a real x is normal to base b if and only if (bkx)k≥0
uniformly distributed modulo one for Lebesgue measure.

Belief

If we consider appropriate measures, most elements of well structured
sets are absolutely normal, unless the sets have evident obstacles.
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Appropriate measures for normality

Lemma (direct application of Davenport, Erdős, LeVeque’s Theorem 1963)

If µ is a measure on the real numbers such that its Fourier transform
vanishes at infinity sufficiently quickly then µ-almost every real number is
absolutely normal.
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Irrationality exponent

Definition (Liouville 1855)

The irrationality exponent of a real number x, is the supremum of the

set of real numbers z for which the inequality 0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qz
is

satisfied by an infinite number of integer pairs (p, q) with positive q.

I Liouville numbers are the numbers with infinite i.e.

I Almost all real numbers have i.e. equal to 2.

I Irrational algebraic numbers have i.e. equal to 2.
(Thue - Siegel - Roth theorem 1955).

I Rational numbers have i.e. equal to 1.
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Cantor-like fractals, measures and approximations

I Jarńık (1929) and Besicovich (1934) defined a Cantor-like set for reals with
a given irrationality exponent.

I Kaufman (1981) defined a measure on Jarńık’s set whose Fourier
transform decays quickly.

I Bluhm (2000) refined it into a measure supported by the Liouville
numbers, whose Fourier transform decays quickly.
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Absolute normality and irrationality exponents

Theorem (Bugeaud 2002)

There is an absolutely normal Liouville number.

Theorem (Becher, Heiber and Slaman 2015)

There is a computable absolutely normal Liouville number.

Theorem (Becher, Bugeaud and Slaman 2015)

For every real a greater than or equal to 2, there is an absolutely normal
number computable in a and with irrationality exponent equal to a.
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Simple normality and irrationality exponents

Theorem (Becher, Bugeaud and Slaman, in progress)

Let S be a set of bases satisfying the conditions for simple normality.

I There is a Liouville number x simply normal to exactly the bases
in S.

I For every real a greater than or equal to 2 there is a real x with
irrationality exponent equal to a and simply normal to exactly the
bases in S.

Furthermore, x is computable from S and, for non- Liouville, also from a.

This theorem is the strongest possible generalization.

Verónica Becher Constructing normal numbers 28 / 1



Open question

We would like several mathematical properties on top of normality.

Which sets admit an appropriate measure for normality?

Hochman and Shmerkin (2015) give a fractal-geometric condition for a measure on [0, 1] to be
supported on points that are normal to a given base. This support should have Lebesgue measure 1
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Constructions of normal numbers

Based on concatenation of prescribed blocks
1931 Normal to a given base. Logarithmic complexity Champernowne

discrepancy O
(

1
logn

)
.

Based on discrete counting
1917 Absolutely normal. Not computable Lebesgue, Sierpiński

1937 Absolutely normal. Exponential complexity Turing

2013 Absolutely normal. Nearly quadratic complexity BHS

sacrificing discrepancy

Based on harmonic analysis (exponential complexity)
1961 Normal to prescribed bases Schmidt

1971 Absolutely normal with discrepancy O
(

(logn)3√
n

)
Levin

2015 (Simply) normal to prescribed bases BS,BBS

2015 (Simply) normal to bases and irrationality exponents BHS,BBS

Stoneham series (not in this talk)
1973 Normal to a given base. Stoneham, Korobov

2012 Normal to base 2 but not to base 6 Bailey and Borwein
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1937 Absolutely normal. Exponential complexity Turing

2013 Absolutely normal. Nearly quadratic complexity BHS

sacrificing discrepancy

Based on harmonic analysis (exponential complexity)
1961 Normal to prescribed bases Schmidt

1971 Absolutely normal with discrepancy O
(

(logn)3√
n

)
Levin

2015 (Simply) normal to prescribed bases BS,BBS

2015 (Simply) normal to bases and irrationality exponents BHS,BBS

Stoneham series (not in this talk)
1973 Normal to a given base. Stoneham, Korobov

2012 Normal to base 2 but not to base 6 Bailey and Borwein

Verónica Becher Constructing normal numbers 30 / 1



Constructions of normal numbers

Based on concatenation of prescribed blocks
1931 Normal to a given base. Logarithmic complexity Champernowne

discrepancy O
(

1
logn

)
.

Based on discrete counting
1917 Absolutely normal. Not computable Lebesgue, Sierpiński
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1937 Absolutely normal. Exponential complexity Turing

2013 Absolutely normal. Nearly quadratic complexity BHS

sacrificing discrepancy

Based on harmonic analysis (exponential complexity)
1961 Normal to prescribed bases Schmidt

1971 Absolutely normal with discrepancy O
(

(logn)3√
n

)
Levin

2015 (Simply) normal to prescribed bases BS,BBS

2015 (Simply) normal to bases and irrationality exponents BHS,BBS

Stoneham series (not in this talk)
1973 Normal to a given base. Stoneham, Korobov

2012 Normal to base 2 but not to base 6 Bailey and Borwein

Verónica Becher Constructing normal numbers 30 / 1



Constructions of normal numbers

Based on concatenation of prescribed blocks
1931 Normal to a given base. Logarithmic complexity Champernowne

discrepancy O
(

1
logn

)
.

Based on discrete counting
1917 Absolutely normal. Not computable Lebesgue, Sierpiński
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Research line

Little is known about the interplay between combinatorial,
recursion-theoretic and number-theoretic properties of the expansions of
real numbers.

The investigations on normal numbers that I described in this talk aim to
make progress in this direction.

The main proof technique is the reformulation of number-theoretic
concepts in computational terms, by working with finite approximations.

Joint work with Ted Slaman (University of California Berkeley)

and partly with Yann Bugeaud (Université Strasbourg)

Pablo Ariel Heiber (Universidad de Buenos Aires).

The End
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I Émile Borel. Les probabilités dénombrables et leurs applications arithmétiques. Supplemento
di Rendiconti del circolo matematico di Palermo, 27:247–271, 1909.
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Comptes rendus de l’Académie des Sciences de Paris 230:591–593, 1950.

I Yann Bugeaud. Nombres de Liouville et nombres normaux. Comptes Rendus de l’Académie
des Sciences Paris, 335(2):117–120, 2002.

I Yann Bugeaud. Distribution Modulo One and Diophantine Approximation. Number 193 in
Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, UK, 2012.

I Champernowne, D. The Construction of Decimals in the Scale of Ten. Journal of the
London Mathematical Society, 8:254-260, 1933.

I L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Dover, 2006.
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