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Normal numbers

A base is an integer b greater than or equal to 2.

Definition (Borel, 1909)

A real x is simply normal to base b if in the expansion of x in base b, each digit
occurs with limiting frequency equal to 1/b.

A real x is normal to base b if x is simply normal to every base bk, for every
positive integer k.

A real x is absolutely normal if x is normal to every base.

Equivalently, x is normal to base b if every block of digits occurs in the expansion of x in base b

with limiting frequency equal to 1/bk, where k is the block length.
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Examples and counterexamples

I 0.01010010001000010000 . . . is not simply normal to base 2.

I 0.01010101010101010101 . . . is simply normal to base 2 but not to base 4.

I Each number that is simply normal to base bk is simply normal to base b.

I Each rational number is not simply normal to some base.

I Each number in the Cantor middle third set is not simply normal to base 3.

I 0.123456789101112131415 . . . is normal to base 10 (Champernowne, 1933).

It is unknown if it simply normal to bases that are not powers of 10.

I Stoneham number α2,3 =
∑
k≥1

1

3k 23k
is normal to base 2 but not simply

normal to base 6 (Bailey, Borwein, 2012).
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Absolutely normal numbers

In 1909 Borel proved that the set of absolutely normal numbers has Lebesgue
measure one. He asked for one example.

Constructions of absolutely normal numbers (1917-2013) accounted for no
other mathematical (geometric, algebraic, number-theoretic) properties.

Theorem (Lutz, Mayordomo 2013; Figueira, Nies 2013; Becher, Heiber, Slaman 2013)

There is a polynomial-time algorithm to compute an absolutely normal number.

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Normality to different bases

Two integers are multiplicatively dependent if one is a rational power of the
other. Example: 2 and 8 are multiplicatively dependent.

The set of positive integers that are not perfect powers {2, 3, 5, 6, 7, 10, 11, . . .}
are pairwise mutually independent.

Theorem (Cassels 1959; Schmidt 1961/1962; Becher, Slaman 2013)

For any subset S of the multiplicative dependence classes, there is a real x
which is normal to the bases in S and not simply normal to the bases in the
complement of S. Furthermore, the real x is computable from S.
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Simple normality to different bases

Theorem (Becher, Bugeaud, Slaman 2013)

Let M be any function from the multiplicative dependence classes to their
subsets such that

I for each b, if bkm ∈M(b) then bk ∈M(b)

I if M(b) is infinite then M(b) = {bk : k ≥ 1}.
Then, there is a real x which is simply normal to exactly the bases specified by M .
Furthermore, the real x is computable from the function M .

The theorem gives a complete characterization (necessary and sufficient conditions).
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Normal numbers and uniform distribution modulo one
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Normality as uniform distribution modulo one

Theorem (Wall 1949)

A real x is normal to base b if and only if (bkx)k≥0 equidistributes modulo one
for Lebesgue measure.

Belief
Typical elements of well-structured sets, with respect to appropriate measures,
are absolutely normal, unless the set displays an obvious obstruction.

Taking this to the extreme and applying it to singletons one arrives at the
folklore conjecture that constants such as π, e,

√
2 are absolutely normal.
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Normality using Weyl’s criterion

A real x is normal to base b if and ony if (bkx)k≥0 is uniformly distributed
modulo one. That is, if and only if, for every non-zero integer t,

lim
n→∞

1

n

n−1∑
k=0

e2πitb
kx = 0.
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Measures whose Fourier transform decays quickly

Lemma (application of Davenport, Erdős, LeVeque’s Theorem)

Let µ be a measure, I an interval and b a base. If for every non-zero integer t,

∑
n≥1

1

n

∫
I

∣∣∣∣∣ 1n
n−1∑
k=0

e2πitb
kx

∣∣∣∣∣
2

dµ(x) <∞

then for µ-almost all x in interval I are normal to base b.
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Normal numbers and Diophantine approximations
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Irrationality exponent

Definition (Liouville 1855)

The irrationality exponent of a real number x, is the supremum of the set of
real numbers z for which

0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qz

is satisfied by an infinite number of integer pairs (p, q) with q > 0.
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Irrationality exponent

If z is large and 0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qz
then

p

q
is a good approximation to x in base q.

I Liouville numbers are the numbers with infinite irrationality exponent.

Example, Liouville’s constant:
∑
n≥1

10−n!.

I Almost all real numbers have irrationality exponent equal to 2.

I Every real greater than 2 is the irrationality exponent of some real.

I Irrational algebraic numbers have irrationality exponent equal to 2

(Thue - Siegel - Roth theorem 1955).

I Rational numbers have irrationality exponent equal to 1.
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Jarńık’s fractal

Fix a real a greater than 2. Jarńık gave a Cantor-like construction of a set in [0, 1].
Let (mk)k≥1 be an appropriate increasing sequence of positive integers.
For each k ≥ 1,

E(k) =
⋃̇

q prime
mk<q<2mk

{
x ∈

(
1

qa
, 1− 1

qa

)
: ∃p ∈ N,

∣∣∣∣pq − x
∣∣∣∣ < 1

qa

}

E(k) has about
m2
k

logmk
disjoint intervals, each of length at least

2

(2mk)a
.

Jarńık’s’s fractal for the real a is

J =
⋂
k≥1

E(k).

Verónica Becher New normal numbers 11 / 15
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Absolutely normal Liouville numbers

Kaufman (1981) defined for each a greater than 2, a measure on Jarńık’s
fractal for a whose Fourier transform decays quickly.

Bluhm (2000) defined a measure such that it is supported by the Liouville
numbers and its Fourier transform decays quickly.

Theorem (Bugeaud 2002)

There is an absolutely normal Liouville number.

Theorem (Becher, Heiber, Slaman 2014)

There is a computable absolutely normal Liouville number.
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Uniform measure on Jarńık’s fractal

Consider the uniform measure on Jarńık’s fractal for a. The set of reals with
irrationality exponent equal to a has uniform-measure equal to 1.

Theorem (Jarńık’s 1929, Besicovich 1934)

For every real a greater than or equal to 2, the set of reals with irrationality
exponent equal to a has Hausdorff dimension 2/a.

Theorem (Mass Distribution Principle)

Let ν be a finite measure, d a positive real number. Suppose that there are
positive reals c and ε such that for all intervals I with |I| < ε,

ν(I) ≤ c |I|d.

Then, for any set X with Hausdorff dimension less than d, we have ν(X) = 0.

Take d = 2/a.
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An appropriate measure for finite irrationality exponents

Fix a real a greater than 2.

Consider Kaufman’s measure on the original Jarńık’s fractal for a whose Fourier
transform decays quickly.

Consider the uniform measure on the fractal set given by the central halves of
Jarńık’s intervals for a.

I Its support set is strictly included Kaufman’s support set.

I At each level of the Cantor-like construction, each new interval
concentrates most of Kaufman’s measure of the original interval.

I Thus, the support set for this uniform mesure is the set of reals which are
absolutely normal and have irrationality exponent equal to a.
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Normality and prescribed irrationality exponent

Theorem (Becher, Bugeaud, Slaman 2014)

For every real a greater than or equal to 2 and for every set S of bases
satisfying the conditions for simple normality there is a real x such that

I x has irrationality exponent equal to a,

I x is simply normal to exactly the bases in S.

Furthermore, the real x is computable from a and S.

This theorem is the strongest possible generalization.

The End
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Uniform distribution modulo one

Let {x} denote the fractional part of a real x.

Definition
A sequence of reals (xj)j≥1 is uniformly distributed modulo one if, for every
subinterval I of the unit interval,

lim
n→∞

#{j : 1 ≤ j ≤ n and {xj} ∈ I}
n

= |I|.
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Weyl’s criterion

A sequence is u.d. in the unit interval if for any Riemann integrable function f ,∫ 1

0

f(x)dx is the limit of the average values of f on the sequence.

Theorem (Weyl’s Criterion)

A sequence of reals (xj)j≥1 is uniformly distributed modulo one in the unit
interval if and only if for every complex-valued 1-periodic continuous function f ,∫ 1

0

f(x)dx = lim
n→∞

1

n

n∑
j=1

f(xj).

That is, if and only if, for every non-zero integer t,

lim
n→∞

1

n

n∑
j=1

e2πitxj = 0.
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