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Normal numbers

A base is an integer greater than or equal to 2.

For a real number x, the expansion of x in base b is a sequence a1a2a3 . . . of
integers from {0, 1, . . . , b− 1} such that

x = bxc+
∑
k≥1

ak
bk

= bxc+ 0.a1a2a3 . . .

where infinitely many of the ak are not equal to b− 1.
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Normal numbers

Definition (Borel, 1909)

A real number x is simply normal to base b if, in the expansion of x in base b,
each digit occurs with limiting frequency equal to 1/b.

A real number x is normal to base b if x is simply normal to base bk, for every
positive integer k.

A real number x is absolutely normal if x is normal to every base.
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Normal numbers

Theorem (Borel 1922, Niven and Zuckerman 1951)

A real number x is normal to base b if, for every k ≥ 1, every block of k digits
occurs in the expansion of x in base b with limiting frequency 1/bk.
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Not normal

0.01 002 0003 00004 000005 0000006 00000007 000000008 . . .
is not simply normal to base 10.

0.0123456789 0123456789 0123456789 0123456789 0123456789 . . .
is simply normal to base 10, but not simply normal to base 100.

The numbers is the middle third Cantor set are not simply normal to base 3.

The rational numbers are not normal to any base.
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Existence

If the digits in the expansion of x in base b were chosen at random, simple
normality of x to base b would be a special case of the Law of Large Numbers.

Theorem (Borel 1909)

The set of absolutely normal numbers in the unit interval has Lebesgue measure 1.

Problem (Borel 1909)

Give one example.

Are the usual mathematical constants, such as π, e, or
√

2, absolutely normal?
Or at least simply normal to some base?

Conjecture (Borel 1950)

Irrational algebraic numbers are absolutely normal.
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Constructions based on concatenation
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Normal to a given base

Theorem (Champernowne, 1933)

0.123456789101112131415161718192021 . . . is normal to base 10.

The proof is by direct counting. It is unknown if it is normal to bases that are
not powers of 10.

Generalizations:

squares Besicovitch 1935, primes Copeland and Erdos 1946, de Bruijn words Ugalde, 2000.
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Concatenation is only good for one base

If we consider more than one base simultaneously concatenation may fail:

base 10 base 3

x = (0.25)10 = (0.020202020202 . . .)3
y = (0.0017)10 = (0.0000010201101100102 . . .)3

x+ y = (0.2517)10 = (0.0202101110122 . . .)3
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Constructions based on subintervals
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Constructions based on subintervals

Let
( )

denote
(
m
2x
, n
2x

)
;
( )

denote
(
m′

3y
, n

′

3y

)
;
( )

denote
(
m′′

5z
, n

′′

5z

)
.

0 1

Step t0
( )

Step t1
((( ))) ((( ))) ((( )))

Step t2
(((((( )))))) (((((( )))))) (((((( ))))))

...
...

...
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Normal to all bases, non-effective constructions
Bulletin de la Société Mathématique de France (1917) 45:127–132; 132–144
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Normal to all bases, effective-construction

Alan Turing, A note on normal numbers. Collected Works, Pure Mathematics, J.L. Britton editor, 1992.

Corrected and completed in Becher, Figueira and Picchi, 2007.
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Letter exchange between Turing and Hardy (AMT/D/5)

                        June 1
Dear Turing,

I have just came across your letter (March 28) which I seem to 
have put aside for reflection and forgotten.

I have a vague recollection that Borel says in one of his books 
that Lebesgue had shown him a construction. 
Try Leçons sur la théorie de la croissance (including the 
appendices), or the productivity book (written under his 
direction by a lot of people, but including one volume on 
arithmetical prosy, by himself).

Also I seem to remember vaguely that when Champernowne 
was doing his stuff I had a hunt, but could not find nothing 
satisfactory anywhere. 

Now, of course, when I do write, I do so from London, where I 
have no books to refer to. But if I put it off till my return, I may 
forget again.  

Sorry to be so unsatisfactory. But my 'feeling' is that Lebesgue 
made a proof which never got published.

Yours sincerely,
                                               G.H. Hardy
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Turing’s algorithm for computing normal numbers

Theorem (Turing 1937?)

An effective version of Borel’s theorem for the Lebesgue measure of the set of
absolutely normal numbers.

Turing gives the following construction. For each k, n,

I Ek,n is a finite union of open intervals with rational endpoints.

I Measure of Ek,n is equal to 1− 1
k

+ 1
k+n

.

I Ek,n+1 ⊂ Ek,n.

For each k, the set
⋂
n

Ek,n has Lebesgue measure exactly 1− 1
k

and consists

entirely of absolutely normal numbers.
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Turing’s algorithm for computing normal numbers

Theorem (Turing 1937?)

There is an algorithm that, given an integer k and an infinite sequence ν of
zeros and ones, produces an absolutely normal number α(k, ν) in the unit
interval, expressed in base two.

At each step, divide the current interval in two halves,

Choose the half that includes normal numbers in large-enough measure.

The output α(k, ν) is the trace of the left/right selection at each step.

Computation of the n-th digit requires exponential in n elementary operations.

Schmidt 1961/1962, Levin 1971 (proved in Alvarez and Becher 2015), Becher and Figueira 2002

gave other algorithms with exponential complexity.
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Algorithm in polynomial time

Theorem (Becher, Heiber and Slaman, 2013)

There is an algorithm that computes an absolutely normal number with just
above quadratic time-complexity.

That is,

For any computable non-decreasing unbounded function f , there is an
algorithm that outputs the first n digits in the expansion of a real number in
base 2 after O

(
f(n)n2

)
elementary operations.

The algorithm is based on Turing’s. Speed is gained by

I testing the extension instead of the whole initial segment.

I slowing convergence to normality.

Lutz and Mayordomo (2013) and Figueira and Nies (2013) have another argument for an

absolutely normal number in polynomial time, based on martingales.
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Algorithm in polynomial time

Output of algorithm Becher, Heiber and Slaman, 2013 programmed by Martin Epszteyn.

0.4031290542003809132371428380827059102765116777624189775110896366...

base 2 base 6 base10
Plots of the first 250000 digits of the output of our algorithm.

Available from http://www.dc.uba.ar/people/profesores/becher/software/ann.zip
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Open question

Is there an absolutely normal number computable in polynomial time having a
nearly optimal rate of convergence to normality?
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Constructions based on harmonic analysis
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Normality as uniform distribution modulo one

Theorem (Wall 1949)

A real x is normal to base b if and only if (bkx)k≥0 equidistributes modulo one
for Lebesgue measure.
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Normality and Weyl’s criterion

Theorem (Weyl’s criterion)

A sequence (xn)n≥1 of real numbers is uniformly distributed if, and only if,
for every Riemann-integrable (complex-valued) 1-periodic function f ,∫ 1

0

f(z) dz is the limit of the average values of f on the sequence.

That is, if and only if, for every non-zero integer t, lim
n→∞

1

n

n∑
k=1

e2πitxk = 0.
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Normality and Weyl’s criterion

A number x normal to base b if and only if (bkx)k≥0 is u.d. modulo one.

That is, if and only if, for every non-zero integer t, lim
n→∞

1

n

n−1∑
k=0

e2πitb
kx = 0.
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Multiplicative dependence

Two positive integers are multiplicatively dependent if one is a rational power
of the other. Example: 2 and 8 are dependent.

Simple normality to base 8 implies simple normality to base 2 because 8 = 23

and the digits in {0, .., 7} correspond to the blocks in base 2:

000 001 010 011 100 101 110 111

where half of the digits are 0.

Theorem (Maxfield 1953)

Let b and b′ multiplicatively dependent. For any real number x, x is normal to
base b if and only if x is normal to base b′.
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Normality to different bases

Theorem (Cassels, 1959)

Almost all (for the uniform measure) real numbers in the middle third Cantor
set are normal to every base that is not a power of 3.

Theorem (Schmidt 1961/1962)

For any given set S of bases closed under multiplicative dependence, there are
real numbers normal to every base in S and not normal to any base in its
complement. Furthermore, there is a real x computable from S.

Pollington 1981 showed the set of such numbers has full Hausdorff dimension.

Becher and Slaman 2014 refuted simple normality, a question of Brown, Moran and Pearce 1988.
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Simple normality to different bases

Observation

If k is a multiple of `, simple normality to bk implies simple normality to b`.

Theorem (Long 1957)

Simple normality to infinitely many powers of b implies normality to base b.

Theorem (Becher, Bugeaud and Slaman, 2015)

Necessary and sufficient conditions for a set S so that there exists a number
that is simply normal to each of the bases in S and not simply normal to each
of the bases in the complement of S.

Moreover, the set of numbers with this condition has full Hausdorff dimension.

Also, the asserted real number is computable from the set S.
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Normality to different bases in a logical perspective

Consider the Arithmetical Hierarchy of formulas in the language of first-order
arithmetic.

Theorem (Becher and Slaman 2014)

Let S be a Π0
3 set of bases closed by multiplicative dependence. There is a

real x that is normal to every base in S and not normal to any of the bases in
the complement of S. Furthermore, x is uniformly computable in the Π0

3

formula defining S.

The proof shows that discrepancy functions are pairwise independent.
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Normality to different bases in a logical perspective

Consider Arithmetic Hierarchy of formulas in the language of second-order
arithmetic, with quantification only over integers.

We confirmed Achim Ditzen’s conjecture (1994) on a question of A. Kechris:

Theorem (Becher and Slaman 2014)

The set of real numbers that are normal to at least one base is Σ0
4-complete.

We conclude that the set of bases to which a number can be normal is not tied
to any arithmetical properties other than multiplicative dependence.
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Normal numbers and Diophantine approximations
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Uniform distribution modulo one for appropriate measures

By Wall’s theorem, a real x is normal to base b if and only if (bkx)k≥0

equidistributes modulo one for Lebesgue measure.

Belief

If we consider appropriate measures, most elements of well structured sets are
absolutely normal, unless the sets have evident obstacles.
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Appropriate measures for normality

Let µ be a measure on the real numbers, The Fourier transform µ̂ of µ is

µ̂(t) =

∫ ∞
−∞

e2πitxdµ(x).

Lemma (direct application of Davenport, Erdős, LeVeque’s Theorem 1963)

If µ is a measure on the real numbers such that µ̂ vanishes at infinity
sufficiently quickly then almost every real number is absolutely normal.
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Irrationality exponent

Definition (Liouville 1855)

The irrationality exponent of a real number x, is the supremum of the set of

real numbers z for which the inequality 0 <

∣∣∣∣x− p

q

∣∣∣∣ < 1

qz
is satisfied by an

infinite number of integer pairs (p, q) with positive q.
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Irrationality exponent

I Liouville numbers are the numbers with infinite irrationality exponent.
Example: Liouville’s constant

∑
n≥1 10−n!.

I Almost all real numbers have irrationality exponent equal to 2.

I Irrational algebraic numbers have irrationality exponent equal to 2.

(Thue - Siegel - Roth theorem 1955).

I Rational numbers have irrationality exponent equal to 1.

Every real greater than or equal to 2 is the irrationality exponent of some real.

Becher, Bugeaud and Slaman (2015) considered the i.e. of computable numbers.
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Absolute normality and irrationality exponents

Theorem (Bugeaud 2002)

There is an absolutely normal Liouville number.

Theorem (Becher, Heiber and Slaman 2015)

There is a computable absolutely normal Liouville number.

Theorem (Becher, Bugeaud and Slaman 2015)

For every real a greater than or equal to 2, there is a real an absolutely normal
number computable in a and with irrationality exponent equal to a.
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Cantor-like fractals, measures and approximations

I Jarńık (1929) and Besicovich (1934) defined a Cantor-like set for reals with a
given irrationality exponent.

I Kaufman (1981) defined a measure on Jarńık’s set whose Fourier transform
decays quickly.

I Bluhm (2000) refined it into a measure supported by the Liouville numbers,
whose Fourier transform decays quickly.

For the Liouville case, we tailored Bluhm’s measure for effective
approximations. Support consists entirely of absolutely normal numbers.

For the case of finite irrationality exponent, we considered the uniform measure
on the fractal set given by the central halves of Jarńık’s intervals. Support is
strictly included in support of Kaufman’s measure and consists entirely of
absolutely normal numbers.
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strictly included in support of Kaufman’s measure and consists entirely of
absolutely normal numbers.

Verónica Becher Constructing normal numbers 30 / 34



Cantor-like fractals, measures and approximations
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Simple normality and irrationality exponents

Theorem (Becher, Bugeaud and Slaman, in progress)

Let S be a set of bases satisfying the conditions for simple normality.

I There is a Liouville number x simply normal to exactly the bases in S.

I For every a greater than or equal to 2 there is a real x with irrationality
exponent equal to a and simply normal to exactly the bases in S.

Furthermore, x is computable from S and, for non- Liouville, also from a.

This theorem is the strongest possible generalization.
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Open question

We would like several mathematical properties on top of normality.
Which sets admit an appropriate measure for normality?

Hochman and Shmerkin (2015) give a fractal-geometric condition for a measure on [0, 1] to be
supported on points that are normal to a given base. This support should have Lebesgue measure 1
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Constructions of normal numbers

Based on concatenation of prescribed blocks

1931 Normal to a given base, discrepancy O
(

1
logn

)
Champernowne

Logarithmic complexity.

Based on subintervals and discrete counting
1917 Absolutely normal. Not computable Lebesgue, Sierpiński

1937 Absolutely normal. Exponential complexity Turing

2013 Absolutely normal. Nearly quadratic complexity BHS

sacrificing discrepancy

Based on harmonic analysis (exponential complexity)
1961 Normal to prescribed bases Schmidt

1971 Absolutely normal with discrepancy O
(

(logn)3√
n

)
Levin

2015 Simply normal to prescribed bases BS,BBS

2015 (Simply) normal to bases and irrationality exponents BHS,BBS

Stoneham series (not in this talk)
1973 Normal to a given base. Stoneham, Korobov

2012 Normal to base 2 but not to base 6 Bailey and Borwein
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1937 Absolutely normal. Exponential complexity Turing

2013 Absolutely normal. Nearly quadratic complexity BHS

sacrificing discrepancy

Based on harmonic analysis (exponential complexity)
1961 Normal to prescribed bases Schmidt

1971 Absolutely normal with discrepancy O
(

(logn)3√
n

)
Levin

2015 Simply normal to prescribed bases BS,BBS

2015 (Simply) normal to bases and irrationality exponents BHS,BBS

Stoneham series (not in this talk)
1973 Normal to a given base. Stoneham, Korobov

2012 Normal to base 2 but not to base 6 Bailey and Borwein

Verónica Becher Constructing normal numbers 33 / 34



Constructions of normal numbers

Based on concatenation of prescribed blocks

1931 Normal to a given base, discrepancy O
(

1
logn

)
Champernowne

Logarithmic complexity.

Based on subintervals and discrete counting
1917 Absolutely normal. Not computable Lebesgue, Sierpiński
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Research line

Little is known about the interplay between combinatorial, recursion-theoretic
and number-theoretic properties of the expansions of real numbers.

These investigations on normal numbers aim to make progress in this direction.

Proof techniques include deconstructions in terms of finite approximations and
integration of different approaches.

Joint work with Ted Slaman (University of California Berkeley)

and partly with Yann Bugeaud (Université Strasbourg)

Pablo Ariel Heiber (Universidad de Buenos Aires).

The End
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Jarńık’s fractal

Fix a real a greater than 2. Jarńık gave a Cantor-like construction of a set in [0, 1].
Let (mk)k≥1 be an appropriate increasing sequence of positive integers.
For each k ≥ 1,

E(k) =
⋃̇

q prime
mk<q<2mk

{
x ∈

(
1

qa
, 1− 1

qa

)
: ∃p ∈ N,

∣∣∣∣pq − x
∣∣∣∣ < 1

qa

}

E(k) has about
m2
k

logmk
disjoint intervals, each of length at least

2

(2mk)a
.

Jarńık’s’s fractal for the real a is

J =
⋂
k≥1

E(k).
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Simple normality to different bases

The positive integers that are not perfect powers, 2, 3, 5, 6, 7, 10, 11, . . . are
pairwise multiplicatively independent. They are the minimal representatives of
the equivalence classes of the multiplicative dependence relation.

Theorem (Becher, Bugeaud and Slaman, 2015)

Let f be any function from the set of integers that are not perfect powers to
sets of integers such that, for each b,

I if for some k, bk is in f(b) then, for every ` that divides k, b` is in f(b);

I if f(b) is infinite then f(b) = {bk : k ≥ 1}.
Then, there is a real x simply normal to exactly the bases specified by f .

Moreover, the set of numbers with this condition has full Hausdorff dimension.
Also, the real x is computable from the function f .
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