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How is randomness related to theory of uniform distribution?
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Intuition for randomness

A real number is random if it belongs to not set of probability 0.

A literal reading is not good: no real number would be random.
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Martin-Löf random reals

Definition (Martin-Löf 1966)

A real x is random if for every computable sequence (Vn)n≥1 of
computably enumerable open sets of reals such that µ(Vn) < 2−n,

x 6∈
⋂
n≥1

Vn.

Almost all (for Lebesgue measure) reals are random.
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Random reals

A real number is random if, essentially, its initial segments can only be
described explicitely by a Turing machine.

Definition (Chaitin 1975)

A real x is random if and only if ∃C ∀n K(a1a2..an) > n− C, where K
is the Kolmogorov complexity for a universal Turing machine with
prefix-free domain.

Theorem (Schnorr 1975)

Martin-Löf and Chaitin definitions coincide.
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Examples of random reals

Chaitin’s Ω numbers
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Uniform distribution modulo one

For a real x, {x} = x− bxc.

Definition

A sequence of reals (xn)n≥1 is uniformly distributed modulo one,
abbreviated u.d. mod 1, if for all a, b ∈ [0, 1],

lim
N→∞

#
{
n : 1 ≤ n ≤ N, {xn} ∈ [a, b)

}
N

= b− a
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Weyl’s criterion

A sequence (xn)n≥1 of real numbers is u.d. mod 1 if for every Reimann
integrable function f ,

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx

Theorem (Weyl 1916)

A sequence (xn)n≥1 of real numbers is u.d. mod 1 if and only if for every
non-zero integer h,

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0

Randomness and uniform distribution modulo one Verónica Becher



Weyl’s criterion

A sequence (xn)n≥1 of real numbers is u.d. mod 1 if for every Reimann
integrable function f ,

lim
N→∞

1

N

N∑
n=1

f(xn) =

∫ 1

0

f(x)dx

Theorem (Weyl 1916)

A sequence (xn)n≥1 of real numbers is u.d. mod 1 if and only if for every
non-zero integer h,

lim
N→∞

1

N

N∑
n=1

e2πihxn = 0

Randomness and uniform distribution modulo one Verónica Becher



Hermann Weyl on a seesaw at a Gasthaus in Nikolausberg, Germany in 1932
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Examples

Theorem (Bohl; Sierpiński; Weyl 1909-1910)

A real x is irrational if and only if (nx)n≥1 is u.d. mod 1.

Theorem (Wall 1949)

A real x is Borel normal to base b if and only if (bnx)n≥1 is u.d. mod 1.
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Theorem (Bohl; Sierpiński; Weyl 1909-1910)

A real x is irrational if and only if (nx)n≥1 is u.d. mod 1.

Theorem (Wall 1949)

A real x is Borel normal to base b if and only if (bnx)n≥1 is u.d. mod 1.

Randomness and uniform distribution modulo one Verónica Becher



Koksma’s General Metric Theorem

Given a real x in [0, 1] and (un : [0, 1]→ R)n≥1 consider (un(x))n≥1.

Definition (Koksma 1935)

Let Kall be the class of sequences (un : [0, 1]→ R)n≥1 such that

1. un(x) is continuously differentiable for every n,

2. u′m(x)− u′n(x) is monotone on x for all m 6= n,

3. there exists K > 0 such that for all x ∈ [0, 1] and all m 6= n,
|u′m(x)− u′n(x)| ≥ K.

Examples:
(nx)n≥1

(2nx)n≥1

(anx)n≥1 where (an)n≥1 is a sequence of distinct integers.
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Koksma’s General Metric Theorem

Theorem (Koksma General Metric Theorem 1935)

Let (un : [0, 1]→ R)n≥1 in Kall. Then, for almost all (Lebesgue
measure) reals x in [0, 1], (un(x))n≥1 is u.d. mod 1.
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Avigad’s Theorem

Theorem (Avigad 2013)

If a real x is random then for every computable sequence (an)n≥1 of
distinct integers, (anx)n≥1 is u.d. mod 1.

Actually Avigad’s theorem holds for Schnorr randomness which is weaker
than Martin-Löf randomness.
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Effective Koksma class K

Definition

Let K be the class of computable sequences (un : [0, 1]→ R)n≥1 in Kall
such that the sequence of derivatives (u′n : [0, 1]→ R)n≥1 is also
computable.
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Strict inclusion

Theorem 1

Let x be a real in [0, 1]. If x is random then for every
(un : [0, 1]→ R)n≥1 in K the sequence (un(x))n≥1 is u.d. mod 1.

The reverse of Theorem 1 does not hold.

Theorem 2

There is a real x in [0, 1] such that x is not random and for every
(un : [0, 1]→ R)n≥1 in K, (un(x))n≥1 is u.d. mod 1.
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Σ0
1-u.d. mod 1

Definition

A sequence (xn)n≥1 of reals is Σ0
1-u.d. mod 1 if for every computably

enumerable open set A ⊆ [0, 1],

lim
N→∞

1

N
#

{
n : 1 ≤ n ≤ N, {xn} ∈ A

}
= µ(A).
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Σ0
1-u.d. mod 1 is different from u.d. mod 1

Proposition

If x is computable and irrational then (nx)n≥1 is u.d. mod 1 but not
Σ0

1-u.d mod 1.

Proof. Let x be computable and irrational, for example π.

A =
⋃
n≥1

(
{nx} − 2−n−3 , {nx}+ 2−n−3

)
Then,

µ(A) ≤
∑
n≥1

2 2−n−3 = 1/2 and
1

N
#

{
n : 1 ≤ n ≤ N, {xn} ∈ A

}
= 1.

Hence, (nx)n≥1 is not Σ0
1-u.d. mod 1.
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Almost all sequences are Σ0
1-u.d. mod 1

Consider Lebesgue measure µ on [0, 1] and the product measure µ∞ on [0, 1]N.

Proposition (easy extension of Hlawka, 1956)

µ∞-almost all elements in [0, 1]N are Σ0
1-u.d. in the unit interval.
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Inclusion

Theorem 3

Let x be a real number in [0, 1]. If there is (un : [0, 1]→ R)n≥1 in K
such that (un(x))n≥1 is Σ0

1-u.d. mod 1 then x is random.
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Characterization

Theorem (Franklin,Greenberg,Miller,Ng 2012; Bienvenu,Day,Hoyrup,Mezhirov,Shen 2012)

A real x is random if and only if (2nx) is Σ0
1-u.d. mod 1.
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Randomness and uniform distribution

exists (un)n≥1 in K, (un(x))n≥1 is Σ0
1-u.d. mod 1

⇓ ⇑?

(2nx)n≥1 is Σ0
1-u.d. mod 1

⇓ ⇑

x is random

⇓ 6⇑

for all (un)n≥1 in K is (un(x))n≥1 is u.d. mod 1
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Discrepancy associated to random reals

Problem

Is there a random real x such that (2nx)n≥1 has discrepancy
O((logN)/N) ?
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Discrepancy associated random reals

Definition

DN ((xn)n≥1) = sup
0≤u<v≤1

∣∣∣∣#{n : 1 ≤ n ≤ N, u ≤ {xn} < v}
N

− (v − u)

∣∣∣∣

Thus, (xn)n≥1 is u.d. mod 1 if lim
N→∞

DN ((xn)n≥1) = 0.

Schmidt, 1972, proved that there is a constant C such that for every
(xn)n≥1 there are infinitely many Ns with

DN ((xn)n≥1) ≥ C logN

N
.

There are Van der Corput sequences such that there is C such that for
cofinitely many Ns,

DN ((xn)n≥1) ≤ C logN

N
.
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Selection that preserves uniform distribution modulo 1

Problem

What forms of selection of a subsequence preserve u.d. mod 1.
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Selection that preserves uniform distribution modulo 1

In particular, (2nx) is u.d. mod 1 if and only if the selection by oblivious
finite automaton of a sequence (2nx) is u.d. mod 1.

Let x = a1a2 . . . be a word in alphabet A and let L be a regular
language. The word obtained by prefix selection of x by L is ak1ak2 . . .,
where k1k2 . . . is the enumeration in increasing order of all the positive
integers k such that a1a2 . . . ak−1 is in L.

Theorem (Agafonov 1968)

Let L be a regular language and let x be a word in alphabet A.
Then, if x is Borel normal then the word obtained by prefix selection of x
by L is also Borel normal.
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Individual Ergodic Theorem

Let (Y,F , ν), where ν is a non-negative normed measure, T is an ergodic
transformation of Y with respect to ν and F is a σ-algebra. Then, for
any ν-integrable function f on Y , for ν∞ -almost every y in Y ,

lim
N→∞

1

N

N∑
n=1

f(Tny) =

∫
Y

f dν.

Let Y = [0, 1]∞, T be the shift and let projectionp1 : [0, 1]∞ → [0, 1],
p1(x1, x2, . . .) = x1. Then for any real valued Borel measurabe function
f , for µ∞ -almost every y,

lim
N→∞

1

N

N∑
n=1

f(xn) = lim
N→∞

1

N

N∑
n=1

f ◦ p1(Tn(x1, x2, . . .))

=

∫
[0,1]∞

f ◦ p1 dµ∞

=

∫
[0,1]

f dµ.
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