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How is randomness related to theory of uniform distribution?
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Intuition for randomness

A real number is random if it belongs to not set of probability 0.
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Intuition for randomness

A real number is random if it belongs to not set of probability 0.

A literal reading is not good: no real number would be random.
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INFORMATION AND coxTron 9, GO2-610 (19G6)

The Definition of Random Sequences

) Per Marmin-Lor
Institute of Mathematical Statistics, University of Stockholm, Stockholm, Sweden

Kolmogorov has defined the conditional complexity of an object y
when the object z is already given to us as the minimal length of a
binary program which by means of £ computes y on a certain asymp-
totically optimal machine. On the basis of this definition he has
proposed to consider those elements of a given large finite popula-
tion to be rnndo:n whose complexity is maximal, Almost all elements
he maximal

this paper it is shown that the random elements as defin
olmogorov possess all conceivable statistical properties of random-
ness, They can equivalently be considercd as the elements which
withstand a certain universal stochasticity test. The definition is
extended to infinite binary sequences and it is shown that the non
random scquences form a maximal constructive null set. Finally,
he Kollektivs introduced by von Mises obtain a definition which
to satisfy all intuitive requirements.
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Martin-Lof random reals

Definition (Martin-Lf 1966)

A real z is random if for every computable sequence (V,,)n>1 of
computably enumerable open sets of reals such that p(V,) < 27",

x%ﬂVn

n>1

Randomness and uniform distribution modulo one Verénica Becher



Martin-Lof random reals

Definition (Martin-Lf 1966)

A real z is random if for every computable sequence (V,,)n>1 of
computably enumerable open sets of reals such that p(V,) < 27",

x%ﬂVn

n>1

Almost all (for Lebesgue measure) reals are random.
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Random reals

A real number is random if, essentially, its initial segments can only be
described explicitely by a Turing machine.
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Random reals

A real number is random if, essentially, its initial segments can only be
described explicitely by a Turing machine.

Definition (chaitin 1075)

A real z is random if and only if 3C ¥n K(aias..a,) > n — C, where K
is the Kolmogorov complexity for a universal Turing machine with
prefix-free domain.
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Random reals

A real number is random if, essentially, its initial segments can only be
described explicitely by a Turing machine.

Definition (chaitin 1075)

A real z is random if and only if 3C ¥n K(aias..a,) > n — C, where K
is the Kolmogorov complexity for a universal Turing machine with
prefix-free domain.

Theorem (schnorr 1975)

Martin-Léf and Chaitin definitions coincide.
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Examples of random reals

Chaitin's 2 numbers
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Mathematische Annalen 77:313-352, 1916
H. Wsrr. Gleichverteilung von Zahlen wod. Eins, 313

Uber die Gleichverteilung von Zahlen mod. Eins.*)
Von
Hermaxy WEYL in Ziirich.

§1
Grundlagen. Der lineare Fall.
Es seien auf der Geraden der reellen Zahlen unendlich viele Punkte

P PR P
markiert; wir rollen die Gerade auf einen Kreis vom Umfange 1 auf und
fragen, ob dabei die an den Stellen «, befindlichen Marken schlieBlich
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Uniform distribution modulo one

For a real z, {z} =2 — |z].

Definition
A sequence of reals (x,,)n>1 is uniformly distributed modulo one,
abbreviated u.d. mod 1, if for all a,b € [0,1],

. #{n:1<n< N {z,} €a,b)}
lim =b—a
N —o00 N
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Weyl's criterion

A sequence (x,,),>1 of real numbers is u.d. mod 1 if for every Reimann
integrable function f,

o1 g !
J oy 3o = |
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Weyl's criterion

A sequence (x,,),>1 of real numbers is u.d. mod 1 if for every Reimann
integrable function f,

. !
J oy 3o = |

Theorem (wey 1916)

A sequence (zy,)n>1 of real numbers is u.d. mod 1 if and only if for every
non-zero integer h,
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Hermann Weyl on a seesaw at a Gasthaus in Nikolausberg, Germany in 1932




Examples

Theorem (Bohl; Sierpinski; Weyl 190971910)

A real x is irrational if and only if (nz)p>1 is u.d. mod 1.
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Examples

Theorem (Bohl; Sierpinski; Weyl 190971910)

A real x is irrational if and only if (nx)p>1 is u.d. mod 1.

Theorem (wall 1949)

A real z is Borel normal to base b if and only if (b"x)p>1 is u.d. mod 1.
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Koksma's General Metric Theorem

Given a real z in [0,1] and (uy, : [0,1] — R),>1 consider (up())n>1-
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Koksma's General Metric Theorem

Given a real z in [0,1] and (uy, : [0,1] — R),>1 consider (up())n>1-
Definition (koksma 1935)

Let K% be the class of sequences (uy, : [0,1] — R),>1 such that
1. un(x) is continuously differentiable for every n,
2. ul (z) —ul,(z) is monotone on x for all m # n,

3. there exists K > 0 such that for all x € [0,1] and all m # n,
|t () — i (2)] = K.
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Koksma's General Metric Theorem

Given a real z in [0,1] and (uy, : [0,1] — R),>1 consider (up())n>1-
Definition (koksma 1935)

Let K% be the class of sequences (uy, : [0,1] — R),>1 such that
1. un(x) is continuously differentiable for every n,
2. ul (z) —ul,(z) is monotone on x for all m # n,

3. there exists K > 0 such that for all x € [0,1] and all m # n,
|t () — i (2)] = K.

Examples:
(n@)n>1
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Koksma's General Metric Theorem

Given a real z in [0,1] and (uy, : [0,1] — R),>1 consider (up())n>1-
Definition (koksma 1935)

Let K% be the class of sequences (uy, : [0,1] — R),>1 such that
1. un(x) is continuously differentiable for every n,
2. ul (z) —ul,(z) is monotone on x for all m # n,

3. there exists K > 0 such that for all x € [0,1] and all m # n,
|t () — i (2)] = K.

Examples:
(n@)n>1

(2"2)n>1
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Koksma's General Metric Theorem

Given a real z in [0,1] and (uy, : [0,1] — R),>1 consider (up())n>1-
Definition (koksma 1935)

Let K% be the class of sequences (uy, : [0,1] — R),>1 such that
1. un(x) is continuously differentiable for every n,
2. ul (z) —ul,(z) is monotone on x for all m # n,

3. there exists K > 0 such that for all x € [0,1] and all m # n,
|t () — i (2)] = K.

Examples:
(n@)n>1

(2"2)n>1

(anx)n>1 where (a,),>1 is a sequence of distinct integers.
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Koksma's General Metric Theorem

Theorem (Koksma General Metric Theorem 1935)

Let (uy : [0,1] — R),>1 in K. Then, for almost all (Lebesgue
measure) reals x in [0,1], (un(x))p>1 is u.d. mod 1.
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Avigad's Theorem

Theorem (Avigad 2013)

If a real x is random then for every computable sequence (a,)n>1 of
distinct integers, (a,)n>1 is u.d. mod 1.

Randomness and uniform distribution modulo one Verénica Becher



Avigad's Theorem

Theorem (Avigad 2013)

If a real « is random then for every computable sequence (a,)n>1 of
distinct integers, (a,)n>1 is u.d. mod 1.

Actually Avigad's theorem holds for Schnorr randomness which is weaker
than Martin-Lof randomness.
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Effective Koksma class K

Definition

Let K be the class of computable sequences (uy, : [0,1] = R),,> in K
such that the sequence of derivatives (u), : [0,1] = R),>1 is also
computable.
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Strict inclusion

Theorem 1

Let x be a real in [0,1]. If z is random then for every
(un 1 [0,1] = R),>1 in K the sequence (un(x))n>1 is u.d. mod 1.
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Strict inclusion

Theorem 1

Let x be a real in [0,1]. If z is random then for every
(un 1 [0,1] = R),>1 in K the sequence (un(x))n>1 is u.d. mod 1.

The reverse of Theorem 1 does not hold.

Theorem 2

There is a real x in [0, 1] such that = is not random and for every
(un 1 [0,1] =5 R)p>1 in K, (un(x))n>1 is u.d. mod 1.
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30-u.d. mod 1

Definition
A sequence (xy,)n>1 of reals is X{-u.d. mod 1 if for every computably
enumerable open set A C [0, 1],

1
i — 1 <n< =
lim N#{n.lfnﬁN,{mn}EA} u(A).

N—o00
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30-u.d. mod 1 is different from u.d. mod 1

Proposition

If x is computable and irrational then (nx),>1 is u.d. mod 1 but not
¥9-u.d mod 1.

Randomness and uniform distribution modulo one Verénica Becher



30-u.d. mod 1 is different from u.d. mod 1

Proposition

If z is computable and irrational then (nx)p>1 is u.d. mod 1 but not
¥9-u.d mod 1.

Proof. Let x be computable and irrational, for example .

A= U ({mﬁ} —27"7% {na} + 2_"—3)

n>1

Then,

1
<> R — 1<n< =1.
u(A) < 22 1/2  and N#{n lfan,{xn}eA} 1

n>1

Hence, (nz),>1 is not ¥9-u.d. mod 1.
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Almost all sequences are X-u.d. mod 1

Consider Lebesgue measure p on [0,1] and the product measure i, on [0, 1]

PrOpOSition (easy extension of Hlawka, 1956)

Hoo-almost all elements in [0, 1]N are $9-u.d. in the unit interval.
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Inclusion

Theorem 3

Let x be a real number in [0,1]. If there is (uy, : [0,1] = R),>1 in K
such that (u,(z))n>1 is X9-u.d. mod 1 then z is random.
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Characterization

Theorem (Franklin,Greenberg,Miller,Ng 2012; Bienvenu,Day,Hoyrup,Mezhirov,Shen 2012)

A real x is random if and only if (2"z) is ¥9-u.d. mod 1.
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Randomness and uniform distribution

exists (Un)n>1 in K, (un(x))n>1 is £9-u.d. mod 1

oA

(2"2)p>1 is X9-u.d. mod 1

o

x is random

¢oo

for all (up)n>1 in K is (un(2))n>1 is u.d. mod 1

Randomness and uniform distribution modulo one

Verénica Becher



Discrepancy associated to random reals

Problem

Is there a random real x such that (2"x),>1 has discrepancy
O((log N)/N) ?
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Discrepancy associated random reals

Definition

#{n:1<n< N, u<{z,} <v}
I —(v—u)

DN((mn)nZI) = sup
0<u<wv<1
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Discrepancy associated random reals

Definition

#{n:1<n<N, u<{z,} <v}
I —(v—wu)

DN((xn)nZI) = sup
0<u<wv<1

Thus, (z5)n>1 is u.d. mod 1 if I\}im Dn((zn)n>1) = 0.
—00
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Discrepancy associated random reals

Definition

#n:1<n<N, u<{z,} <v}
I —(v—u)

DN((mn)nzl) = sup
0<u<v<l1

Thus, (2,)n>1 is u.d. mod 1 if I\}im Dn((zn)n>1) = 0.
— 00

Schmidt, 1972, proved that there is a constant C' such that for every
(xn)n>1 there are infinitely many Ns with
log N

Dn((zp)n>1) > C N

There are Van der Corput sequences such that there is C' such that for
cofinitely many N,

log N
Dn((zp)n>1) <C ]gv .
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Selection that preserves uniform distribution modulo 1

Problem

What forms of selection of a subsequence preserve u.d. mod 1.
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Selection that preserves uniform distribution modulo 1

In particular, (2"x) is u.d. mod 1 if and only if the selection by oblivious
finite automaton of a sequence (2"x) is u.d. mod 1.
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Selection that preserves uniform distribution modulo 1

In particular, (2"z) is u.d. mod 1 if and only if the selection by oblivious
finite automaton of a sequence (2"z) is u.d. mod 1.

Let z = ajas ... be a word in alphabet A and let L be a regular
language. The word obtained by prefix selection of x by L is ag, a, - . .,
where k1ks ... is the enumeration in increasing order of all the positive
integers k such that ajas...ax—1 isin L.

Theorem (Agafonov 1968)

Let L be a regular language and let x be a word in alphabet A.
Then, if x is Borel normal then the word obtained by prefix selection of
by L is also Borel normal.
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Individual Ergodic Theorem
Let (Y, F,v), where v is a non-negative normed measure, T is an ergodic

transformation of Y with respect to v and F is a o-algebra. Then, for
any v-integrable function f on Y, for v, -almost every y in Y,

ol
Jim,y AT = [ f v



Individual Ergodic Theorem

Let (Y, F,v), where v is a non-negative normed measure, T is an ergodic
transformation of Y with respect to v and F is a o-algebra. Then, for
any v-integrable function f on Y, for v, -almost every y in Y,

NIE%ONZ :/de“

Let Y = [0,1]°°, T be the shift and let projectionp; : [0,1]>° — [0, 1],
p1(x1,x2,...) = x1. Then for any real valued Borel measurabe function
f, for poo -almost every y,

lim —Zf (zn) = hm —ZfOpl "(x1,z2,...))

N—oo N
=/ fopr dies
[0,1]°

:/ f du.
[0,1]



