Algebraically expandable classes of implication algebras

Miguel Campercholi
FAMAF - Universidad Nacional de Córdoba, Córdoba, Argentina.
camper@mate.uncor.edu
April 5, 2008

In this work we solve the following problem:

Characterize the subclasses of implication algebras that can be axiomatized by sentences of the form $\forall \exists! \land p = q$.

In the process we obtain a representation result for finite implication algebras, and as a by-product of our solution a number of interesting classes of implication algebras arise. We also obtain a characterization of the congruence permutable implication algebras.

Implication algebras, also known as Tarski algebras, have been introduced and studied by J. C. Abbott in [1], [2]. They are the $\{\rightarrow\}$-subreducts of Boolean algebras. It is also known that implication algebras are the algebraic counterpart of the implicational fragment of classical propositional logic [4].

An implication algebra is an algebra $(L, \rightarrow, 1)$ satisfying:

1. $1 \rightarrow x \approx x$,
2. $x \rightarrow 1 \approx 1$,
3. $x \rightarrow (y \rightarrow z) \approx y \rightarrow (x \rightarrow z)$,
4. $(x \rightarrow y) \rightarrow y \approx (y \rightarrow x) \rightarrow x$.

We write I to denote the variety of implication algebras. The algebra $2 = (\{0, 1\}, \rightarrow, 1)$, where $x \rightarrow y = 0$ iff $x = 1$ and $y = 0$, is the only (up to isomorphisms) subdirectly irreducible in I.

An equational function definition sentence (EFD-sentence) is a sentence of the form

$$\forall x_1, \ldots, x_n \exists! z_1, \ldots, z_m \varepsilon(\bar{x}, \bar{z}),$$

where $n \geq 0$, $m \geq 1$, and $\varepsilon(\bar{x}, \bar{z})$ is a conjunction of equations. Observe that for every algebra A that satisfies φ we can define a function $[\varphi]^A : A^n \rightarrow A^m$ by

$$[\varphi]^A(\bar{a}) = \text{the only } \bar{b} \in A^m \text{ such that } A \vDash \varepsilon(\bar{a}, \bar{b}).$$

If $\pi_j : A^m \rightarrow A$ is the jth canonical projection we write $[\varphi]^A$ to denote $\pi_j \circ [\varphi]^A$, for $j = 1, \ldots, m$.

We call the structure $(A, [\varphi]^A_1, \ldots, [\varphi]^A_n)$ an algebraic expansion of A, since the new operations are defined as unique solutions to systems of equations. If a class C of algebras of the same language satisfies an EFD-sentence, then every algebra in C can be expanded in this way, thus, we call a class axiomatizable by
EFD-sentences an *algebraically expandable* class. A study of this kind of classes for several other varieties can be found in [3].

Let us begin by defining a class of finite implication algebras that play a key rôle in our work. For $n \geq 2$ let

$$F_n = \{0, 1\}^n - \{(0, \ldots, 0)\},$$

and let F_n be the subalgebra of 2^n whose universe is F_n. For notational purposes it will be convenient to define $F_1 = 2$. Let

$$\mathcal{F} = \{F_n : n \geq 1\}.$$

In other words, \mathcal{F} is the class containing the implicational reducts of one of each finite Boolean algebra without its bottom element, plus the implication algebra 2. The following proposition is one of the main tools in the solution of our problem.

Proposition 1 Every finite member of \mathcal{I} is isomorphic to a global subdirect product with factors in $\mathcal{F} = \{F_n : n \geq 1\}$.

The rôle of the members of \mathcal{F} in the study of axiomatizability by EFD-sentences in \mathcal{I} closely resembles the rôle subdirectly irreducibles would play in studying axiomatizability by identities in a given variety. This is due to the following:

Lemma 2 ([5]) Suppose $A \subseteq \Pi\{A_i : i \in I\}$ is a global subdirect product, and let φ be an EFD-sentence. If $A_i \models \varphi$, for all $i \in I$ then $A \models \varphi$.

Let $n \geq 2$, and let x_1, \ldots, x_n be variables. For $i = 1, \ldots, n$ define the terms

$$s^n_i(x_1, \ldots, x_n) = \bigvee_{j=1, j\neq i}^n x_j,$$

and let

$$\varphi_n = \forall x_1, \ldots, x_n \exists z \left(z \leq s^n_i(x) \land \ldots \land z \leq s^n_i(x) \land \left(\bigvee_{i=1}^n (s^n_i(x) \rightarrow z) = 1 \right) \right).$$

Though φ_n and s^n_i are defined using the symbols the \leq and \lor, these symbols are just shorthand, and it should be clear that φ_n is a sentence in the language ($\rightarrow, 1$).

Let \mathcal{I}_n be the class of algebras in \mathcal{I} that satisfy φ_n, i.e.,

$$\mathcal{I}_n = \text{Mod}(\varphi) \cap \mathcal{I}.$$

The theorem below presents the solution to the problem we stated in the beginning of this abstract.

Theorem 3 If $C \subseteq \mathcal{I}$ is an algebraically expandable class then either $C = \{\text{trivial algebras in } \mathcal{I}\}$, $C = \mathcal{I}$ or $C = \mathcal{I}_n$ for some $n \geq 2$. Furthermore we have

$$\{\text{trivial algebras in } \mathcal{I}\} \subsetneq \mathcal{I}_2 \subsetneq \mathcal{I}_3 \subsetneq \cdots \subsetneq \mathcal{I}.$$
We show next that each class \(I_n \) is actually the reduct of a variety to the language of \(I \). For every \(L \in I_n \) a new \(n \)-ary operation \(\mu_n : L^n \to L \) can be defined by
\[
\mu_n(a_1, \ldots, a_n) = \bigwedge_{j=1}^{n} s_j^n(a_1, \ldots, a_n).
\]
Now, extend the language of \(I \) with the \(n \)-ary function symbol \(\mu_n \), and define the following class of algebras in this new language:
\[
\mathcal{M}_n = \{ (L, \mu_n) : L \in I_n \}.
\]

Proposition 4 The class \(\mathcal{M}_n \) is a variety axiomatizable by

\[
(I_1), (I_2), (I_3), (I_4),
\]
\[
\forall \bar{x} \, \mu_n(\bar{x}) \leq s_j^n(\bar{x}), \text{ for } j = 1, \ldots, n,
\]
\[
\forall \bar{x} \, \bigwedge_{i=1}^{n} (s_i^n(\bar{x}) \to \mu_n(\bar{x})) = 1.
\]

Furthermore, \(\text{Con}(L, \mu_n) = \text{Con}(L) \), for \(L \in I_n \).

We conclude this work with a characterization of congruence permutable implication algebras.

Theorem 5 Let \(L \in I \). T.f.a.e.:

1. \(L \) is congruence permutable.
2. The meet of any two elements of \(L \) exists.
3. \(L \models \forall x_1, x_2 \exists z \, z \leq x_1 \land z \leq x_2 \land ((x_1 \rightarrow z) \lor (x_2 \rightarrow z) = 1) \).
4. \(L \) is isomorphic to a global subdirect product whose factors are all isomorphic to \(2 \).

Furthermore, if \(L \) is finite the above are equivalent to:

5. \(L \) has no homomorphic images in \(F - \{ 2 \} \).

References

