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Abstract

The Expectation Maximization (EM) algorithm has been a very popular method for maximiz-

ing likelihoods in many statistical estimation problems. Recently, a new interpretation of the

EM algorithm applied to Poisson likelihood maximization was given in terms of majorizing-

functions (minorizing for the concave case); i.e., each iteration is de�ned by majorizing the

convex function to be minimized by another function which is tangent at the current iteration

point. This interpretation allows a natural extension of the method to regularized problems.

In this article we present a further extension of the majorizing-functions approach to general

likelihood functions and regularization terms. We prove convergence results.

Keywords: Maximum Likelihood, Regularization, Interior Point Methods, Majorizing Func-

tions.

1 Introduction

Maximum Likelihood (ML) computation via the Expectation Maximization (EM) al-

gorithm has become a very popular method for solving a very large class of statistical

optimization problems. In particular, since it was �rst suggested by Shepp and Vardi

[16] in 1982 for emission tomography, it has originated a great deal of research in

image reconstruction, an important area of application.

The EM algorithm for general estimation problems was proposed in 1977 [5] by

Dempster, Laird and Rubin and the basic idea is very simple. Suppose the observed
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data in some experiment or sequence of experiments is a random vector y with density

function g(Y; x), where x is some vector of parameters to be estimated. In general, it

may be di�cult to maximize g(Y; x) with respect to x, especially if x is a very large

vector, as it is the case in Emission Computed Tomography (ECT). A possible solu-

tion to this problem is to perform the thought experiment of embedding the sample

space for Y in a richer or larger sample space Y where optimization problems are

easier to solve. The observed data is a realization from Y (incomplete data). The

corresponding y in Y is not observed directly but through g. Especially, we assume

that there is a mapping y
h! y(y) from Y to Y , and that y is known only to lie in

Y (y), the subset of Y determined by the equation y = y(y), where y is the observed

data, y will be refered as the complete data.

If Y has a density function f(Y ; x) with respect to some measure �(Y ); g(Y; x)

can be recovered by integration, i.e.,

g(Y; x) =

Z
f(Y ; x)d�(Y ):fY = h(Y ) = Y g (1)

Our problem is now �nding a value of x which maximizes g(Y; x) given an observed

y; in other words:

max
x2


L(x) = log g(Y; x); (2)

where 
 is a given convex set in IR
n.

If

k(Y =Y; x) =
f(Y ; x)

g(Y; x)
(3)

is the conditional density of Y given Y and x, L(x) can be written in the form

L(x) = log f(Y ; x)� log k(Y =Y; x): (4)

We de�ne

H(ex; x) = E(log k(Y =Y; x)=Y; x) (5)

where E(�=Y; x) denotes the expectation given Y and x. Then

Q(ex; x) = L(ex) +H(ex; x): (6)

The following property of H motivates the EM algorithm and its generalizations.

Lemma. 8(ex; x) in 
2

H(ex; x) � H(x; x) (7)

with equality i� k(Y =Y; ex) = k(Y =Y; x) almost everywhere.
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Proof. See [5], Lemma 1. 2

(7) is a straightforward consequence of Jensen's inequality and the Lemma essen-

tially says that H(ex; x) has a maximum for ex = x as a function of the �rst variable.

Using (6), for a given xk and for all x we have that

L(x)� L(xk) = [Q(x; xk)�Q(xk; xk)] + [H(xk ; xk)�H(x; xk)]: (8)

By the Lemma the second term between brackets is always nonnegative, then if

we choose x such that

Q(x; xk) � Q(xk; xk): (9)

L(x) will be greater or equal than L(xk). Therefore the function L will be nonde-

creasing and this is the �rst step to develop an algorithm for maximizing L. Taking

into account this property we de�ne the

EM Algorithm: Given x0 2 
, for k = 0; 1; 2 : : :

E-step: Compute the conditional expectation

E(log f(Y ; x)=Y; xk) = Q(x; xk); (10)

M-step: Choose xk+1 to be

argmax
x2


Q(x; xk): (11)

In the particular case of Emission Computed Tomography (ECT), the ML ap-

proach mathematically consists of estimating the emission densities xj (for each pixel

[picture element] j) by solving the optimization problem

max
x�0

L(x) =

mX
i=1

yi loghai; xi � hai; xi; (12)

where yi(i = 1; : : : ;m) represents the total emission counts for the i-th pair of de-

tectors (if it is a PET [Posotron Emission Tomography] reconstruction [17]), ai =

faijgj = 1; : : : ; n) is the vector derived from the discretization of the i-th line inte-

gral, x = (x1; : : : ; xn)
t is the image vector of densities and h; i denotes the standard

inner product. The projection matrix A with rows ai is assumed to have nonzero

rows (every projection line intersects at least one pixel) and columns (every pixel is

intersected by at least one projection line).

If L(x) is given by (12) and Y is the sample space of the emission data y, Y may be

chosen as the sample space of vectors y = fyijg, where yij is the number of emissions

from pixel j detected by pair i; it is clear that

yi =

nX
j=1

yij ; (13)
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and the expected value of yij (unknown) given yi and x
k is

E(yij=yi; x
k) =

yiaijx
k
j

hai; xki
: (14)

The extended log-likelihood for this problem is

L(x) =
X
ij

yij log aijxj � aijxj ; (15)

and applying the expectation given y and xk to L we obtain

Q � Q1(x; x
k) =

X
i;j

yiaijx
k
j

hai; xki
log aijxj � aijxj ; (16)

using (14) and linearity. In the same way

H � H1(x; x
k) =

X
i;j

yiaijx
k
j

hai; xki
log aijxj �

mX
i=1

yi loghai; xi (17)

and the sequence de�ned by (11) is, for k = 0; 1; 2; : : : :

x
k+1
j = x

k
jA

k
j ; (18)

where

A
k
j =

mX
i=1

yiaij

hai; xki
: (19)

Analyzing the EM algorithm in this particular case in a non-statistical framework

we can make the following observation: the expectation step substitutes the original

problem of maximizing L by another simpler problem of maximizing Q whose vari-

ables are separated. This is done, using the fact that hai; xi can be represented as

a convex combination of the xj with coe��cients
aijx

k
j

hai; xki
and the concavity of logx.

Moreover, it is worth observing that, essentially, the EM algorithm consists of build-

ing at each step a simpler function that minorizes L and coincides with L and its

gradient at the current iterate. The maximization of this simpler function generates

the next point. This observation led us to generalize the EM algorithm for Poisson

likelihoods to the case in which there is a regularization (penalization) term [7]. Nu-

merical simulations for this algorithm can be found in [9]. In this article we present a

further generalization to regularized ML problems that includes important examples

that will be described later. The main statistical problem is to estimate parameters

related by a nonnegative matrix A with data y, with a known distribution density,

adding some prior information that is mainly contained in the regularization term.
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So, our general optimization problem (we switch now to minimization of convex

functions instead of maximization of concave ones, just because of this generalized

habit in the optimization community) has the form

min
x�0

G(x) = L(x) +R(x); (20)

where

L(x) =

mX
i=1

gi(hai; xi); (21)

R(x) =

pX
l=1

ĝl(hsl; xi); (22)

gi(i = 1; : : : ;m) and ĝl(l = 1; : : : ; p) are single variable real valued strictly convex

functions, the ĝl's continuously di�erentiable in the real line and the gi's at least in

the positive line. A is a nonnegative matrix as previously de�ned and the sl are the

rows of the real pxn matrix S with elements slj .

Also we will assume the following properties for the g's,

limt!0+ g
0
i(t) < 0; (23)

ĝl
0(0) � 0; (24)

and

limt!1 gi(t) = +1: (25)

Several important likelihood functions gi and regularization functions ĝl satisfy

the conditions above. One important family of gi's can be derived from the so called

�-divergences [2], de�ned in the following way. Let � be a convex di�erentiable real

valued function de�ned in R+ and satifying some boundary conditions (see [2]); then

for every x and y in R
m
+ we de�ne the divergence measure

d�(x; y) =

mX
i=1

yi�(
xi

yi
): (26)

Now, let y = (yi), and consider

gi(t) = yi�(
t

yi
): (27)

If �(t) = � ln t + t � 1, we retrieve the Kullback-Leibler consistency measure,

or equivalently, the Poisson likelihood, and the algorithm is the modi�ed EM of [7].

�(t) = (1 �
p
t)2 gives the Hellinger `distance'. If �(t) = (t � 1)2, we have the �2

divergence and the resulting algorithm is the modi�cation of ISRA (Iterative Space

Reconstruction Algorithm) for regularized nonnegative least squares problems pre-

sented in [6]. Other important examples of �-divergences with their properties can
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be found in [2]. Other examples, not being derived in [2] in [12].

Regarding the ĝl's, a very important case was proposed in [8], and a list of other

possibilities is given in [11].

In the next section we present an interior point algorithm for solving the general

problem (20), in section 3 we prove some convergence properties of the new algorithm

and, �nally, in section 4 we present some concluding remarks.

2 The Majorizing-Functions Algorithm

Before introducing the new algorithm we need �rst to de�ne the majorizing functions

via convexity.

Using the convexity of the gi's we obtain

gi(hai; xi) = gi(

nX
j=1

aijx
0
j

hai; x0ix0j
xjhai; x0i) (28)

�
nX

j=1

aijx
0
j

hal; x0i
gi(
hai; x0ixj

x0j

): (29)

And we de�ne

�L(x; x0) =

nX
j=1

�L
j (xj ; x

0); (30)

where

�L
j (xj ; x

0) =

mX
i=1

aijx
0
j

hsl; x0i
gi(
hsl; x0ixj

x0j

): (31)

Now let �lj (l = 1; : : : ; p; j = 1; : : : ; n) be nonnegative real numbers such that

nX
j=1

�
l
j = 1; for l = 1; : : : ; p; (32)

if

c
l
j = slj=�

l
j ; for j = 1; : : : ; n; l = 1; : : : ; p; (33)

(If slj = 0, we de�ne �lj = c
l
j = 0; �lj 6= 0 in any other case), and for a given xk

d
lk
j =

8>><
>>:

hsl; xki �
1

�lj

sljx
k
j if �

l
j 6= 0 for j = 1; : : : n

hsl; xki otherwise

(34)
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Using (29) and the convexity of the ĝl's, we get

ĝl(hsl; xi) = ĝl(

nX
j=1

�
l
j(c

l
jxj + d

lk
j )

�
nX

j=1

�
l
j ĝl(c

l
jxj + d

lk
j ): (35)

(36)

And we de�ne

�R(x; x0) =

nX
j=1

�R
j (xj ; x

0); (37)

where

�R
j (xj ; x

0) =

pX
l=1

�
l
j ĝl(c

l
jxj + d

lk
j ): (38)

Finally we de�ne

�(x; x0) = �L(x; x0) + �R(x; x0): (39)

The following properties are easily veri�ed and they motivate the de�nition of the

algorithm.

Proposition 1. If Rn
+ denotes the positive orthant, 8(x; x0) 2 (Rn

+)
2
: (i) G(x) �

�(x; x0), (ii) G(x0) = �(x0; x0), (iii) rG(x0) = r�(x0; x0).

Proof. (i) is an imediate consequence of the inequalities (29) and (35) above. (ii)

and (iii) are straightforward calculations.

The Algorithm: Given x0 � 0 and for k = 0; 1 : : : ;

~xk = arg min
x�0

�(x; xk); (40)

anf for a given 0 < � < 1,

x
k+1
j =

�
�x

k
j if ~xkj = 0

~xkj otherwise.
(41)

From (40),it is clear that ,for j = 1; : : : ; n,

~xksj r�(~xks ; xks)j = 0; (42)

that

r�(~xks ; xks)j � 0 (43)

and that ~xks is � 0. On the other hand xk+1 is strictly positive 8k, so, the algorithm
is well de�ned.
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3 Convergence Results

In this section we will prove convergence of algorithm (40-41) assuming uniqueness

of the solution, a very natural assumption when dealing with regularized problems.

Also we will assume that 8 x and x
0
xjr�(xj ; x0)j is a continuous function of xj in

the nonnegative orthant.

Lemma 2. For k = 1; 2; : : :

G(xk+1) = �(xk+1; xk+1) � �(xk+1; xk) � �(xk; xk) = G(xk): (44)

Proof. The equalities follow from Proposition 1(ii), the �rst inequality is a con-

sequence of Proposition 1(i) and (ii), and the second one of the de�nition of the

algorithm.

Corollary 3. The sequences fG(xk)g and f�(xk+1; xk)g converge to the same limit

G
�.

Proof. This is consequence of the fact that G(x) is bounded above (remember that

the problem has a solution) and (44).

Corollary 4. fxkg is bounded.

Proof. G is strictly convex and because of (25) it has bounded level sets, so, Lemma

2 implies that fxkg is bounded.

Proposition 5. Every limit point bx of (40-41) satis�es

bxjrG(bx)j = 0; j = 1; : : : ; n: (45)

Proof. Let fxksg be a subsequence of (40-41) convergent to bx and suppose that xks+1
converges to �x (it should be a subsequence of xks+1 but we will denote it as being the

same to simplify the notation), and that ~xks converges to ~x.

Suppose now that, for some u 2 [1; n]

bxurG(bx)u 6= 0: (46)

Because of Lemma 2 and the continuity condition bbx = Alg(bx) is well de�ned,

where Alg(x) denotes the application of the algorithm (40-41) to the point x. Using

the continuity in equation (42), we take limits and get

~xjr�j( ~xj ; bx) = 0; for j = 1; : : : ; n: (47)

If ~xj > 0, then r�j( ~xj ; bx) = 0, and

�j( ~xj ; bx) � �j(bbxj ; bx); (48)
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but �j(:; bx) is strictly convex and it has a unique minimum, so ~xj = bbxj . If ~xj = 0 andbxj is positive, for ks large enough r�j(~xks ; bxks) < 0, using (23) and (24); but this

contradicts the de�nition of ~xks , therefore bxj should be zero. It is straightforward

deducing that �x = bx because, by de�nition, ~xksj � x
ks+1
j � bxksj . So, if bxj 6= 0, then

~xj 6= 0, in particular

�u(~xu; bx) < �u(bxu; bx): (49)

Also, by de�nition �j(x
ks+1
j ; x

ks) � �j(x
ks
j ; x

ks) for every j, and taking limits

�j(~xj ; bx) � �j(bxj ; bx): (50)

From (49) and (50) and the de�nition of � it follows that

G(~x) < G(bx); (51)

a contradiction with Corollary 3.

Theorem 6. With the hypotheses of the beginning of this section the sequence gen-

erated by (40-41) converges to a solution of (20).

Proof. By Proposition 5, if bx is a limit point of (40-41)

bxjrG(bx)j = 0 and bxj � 0: (52)

So, we need only to prove that

rG(bx)j � 0; (53)

for bx to satisfy the Kuhn-Tucker optimality conditions [1]. Using the same arguments

of Theorem 1 in [7] or [10], we can prove that the whole sequence converges to bx; i.e.;
that there is only on limit point. Consider two such points x� and x

��, and the sets

(see [10])

N = f1; 2; : : : ; ng; (54)

Z
� = fj 2 N : x�j = 0g; (55)

Z
�� = fj 2 N : x�j = 0g: (56)

Let GS�(x) be the restriction of G(x) to the set

S
� = fx : xj = 0 for j 2 Z

�g:

GS�(x) is strictly convex in S
� and has a unique stationary point which is necessar-

ily the minimum. Therefore, if Z� = Z
�
; x
� and x�� should be the same. The number

of limit points is bounded by the number of subsets of N , that it is �nite. Now we

can use Ostrowski's theorem [14] (the set of limit points of a sequence fx�g such that

x
k+1 � x

k
�!
k!1

0 is connected) and deduce that xk�!
k!1

x
�. If bxj > 0, the result is obvi-

ous. Now assume that for some j, bxj = 0 and rG(bx)j < 0. In that case there exists

a natural number K such that for k � K it holds that rG(xk)j = r�(xkj ; xk)j < 0,

but this implies that xk+1j > x
k
j for k � K. A contradiction.
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4 Concluding Remarks

In this article we have presented an extension of the EM algorithm to a very general

class of problems arising from nonnegative likelihood maximization with concave `a

priori' information. Theorem 6 also extends and improves on some previously exist-

ing results for problems arising in image reconstruction ([6], [7]) as well as in image

processing ([3], [12]). Further research is needed mainly in two directions: how to gen-

erate a more general family of majorizing functions (for example, the case in which

convexity is used to separate the variables in blocks of more than one variable) and

how to accelerate the resulting algorithms that can be sometimes rather slow (for

example, by using some kind of decomposition like in [4]).
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