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Abstract

In this work we compare the numerical performance of the software BOX-QUACAN with the

package LANCELOT. We put BOX-QUACAN in a context by means of solving an extensive set of

problems, so that speci�c features of both approaches are compared. Through the computa-

tional results, conclusions are made about classes of problems for which each algorithm suits

better and ideas for future research are devised.

Keywords: Numerical tests, Trust{region methods, Large{scale problems, Bound{constrai-

ned minimization.

1 Introduction

In this work we consider the problem

Minimize f(x)
s:t: l � x � u ;

(1)

where f : IRn ! IR is di�erentiable on the feasible set B = fx 2 IRn j l � x � ug
and any component of the bounds l; u may be in�nite. We focus our interest on
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the case where n is large, since large{scale bound constrained problems appear fre-

quently in applications. Furthermore, in the last few years, Conn, Gould and Toint

[3, 4, 5, 6] stressed the importance of developing e�cient algorithms for problem (1).

They showed that general large{scale nonlinear programming problems can be e�-

ciently solved using augmented Lagrangian techniques, as long as a good method for

solving (1) is available.

In [11], Friedlander, Mart��nez and Santos proposed the algorithm BOX-QUACAN, of

trust{region type for solving (1). At each iteration, BOX-QUACAN considers the sub-

problem of minimizing a (not necessarily convex) quadratic on a box which is the

intersection of the feasible set B with a trust region de�ned by the `1 norm.

Our aim is to compare the numerical performance of the algorithm BOX-QUACAN

with the package LANCELOT, developed by Conn, Gould and Toint [6]. We intend

to put BOX-QUACAN in a context by means of solving an extensive set of problems

of type (1) from the CUTE collection [1], so that speci�c features of both approaches

can be compared and analyzed. Due to their trust{region nature, both algorithms

have many similarities, but no doubt the philosophy behind the quadratic solver is

the main di�erence between BOX-QUACAN and LANCELOT. In fact, in both approaches

only matrix{vector products are required for dealing with the box constrained sub-

problems, but BOX-QUACAN was developed for exploiting the subproblems to a great

extent, dealing with the whole feasible set by combining conjugate gradients (or an-

other iterative solver [10]) with projected gradients and an active set strategy specially

designed so that many constraints can be added or dropped in a single iteration. In

LANCELOT, on the other hand, conjugate gradients are applied just in a convenient

portion of the feasible set.

This work is organized as follows: in Section 2 the common features of trust{region

algorithms applied to problem (1) are described. Sections 3 and 4 state, respectively,

the distinctive characteristics of BOX-QUACAN and LANCELOT. The numerical results

are presented and analysed in Section 5. Finally, in Section 6 some conclusions are

stated and ideas for future research are devised.

2 Trust-region Algorithms for Bound-constrained Minimization

Feasible point methods are well suited to problem (1) due to the simplicity of the set

B. This is the case of trust{region algorithms, which can be either applied directly

to (1) (cf. [3, 4, 11]) or combined with an interior{point approach, so that strictly

feasible iterates are generated (cf. [2, 7]).

Roughly speaking, the trust{region method for solving (1) consists of the following.

At the k-th iteration, a quadratic model for the decrease of the objective function is
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built around the current point xk:

f(xk + s)� f(xk) � qk(s) �
1

2
sTBks+ gT

k
s (2)

where gk � rf(xk), Bk 2 IR
n�n and Bk = BT

k
.

Since the quadratic model (2) becomes less representative as the step s increases
in size, we can trust in approximating f(xk + s)� f(xk) by qk(s) in a neighborhood

of xk , that is, in the set

B� = fs 2 IRn j xk + s 2 B; ksk � �g

where � > 0 and k � k is an arbitrary norm in IRn. Thus, an approximate minimizerbs of qk(s) in the region B� is a good candidate for step. In other words, xk + bs is

accepted and de�ned as xk+1 as long as there is a su�cient decrease from f(xk) to
f(xk+bs). Otherwise, the step bs is rejected, the size of set B� is decreased by reducing

the trust{region radius � and a new quadratic subproblem is de�ned.

As usual in modern trust{region methods, it is not necessary to accurately solve

the subproblem to obtain global convergence of the main algorithm (cf. [3, 4, 11]).

Instead, a mild condition that relates the target value of the quadratic model for de-

crease (2) to the solution of a very simple auxiliary subproblem is su�cient to ensure

that every accumulation point is stationary.

Distinct strategies for approximately solving the quadratic subproblem and up-

dating the trust{region radius generate distinct algorithms. Moreover, the choice of

the norm that de�nes the trust region is also relevant to the treatment given to the

quadratic subproblem. The set B� is still box{shaped when the `1 norm is used, as

in [3, 4, 11]. In this case,

B� = fs 2 IRn j lk � s � ukg (3)

where (lk)i = maxfli � (xk)i;��g and (uk)i = minfui � (xk)i;�g, i = 1; : : : ; n.
Alternatively, B� will be the intersection of the original box with an Euclidian ball if

the `2 norm is adopted (cf. [2, 7]).

In (2), the matrix Bk can be the Hessian r2f(xk) in case f is twice continuously

di�erentiable in B, or any quasi{Newton approximation. Besides being symmetric,

a boundedness condition on Bk is the only assumption required for achieving global

convergence of the main algorithm.

3 The Algorithm BOX-QUACAN

In this section we describe the algorithm BOX-QUACAN, for �nding approximate solu-

tions of the bound constrained minimization problem (1), where some components of

the vectors l and u that de�ne the bounds may be in�nite. The algorithm BOX-QUACAN
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is of trust{region type and has been fully analysed in [11]. Here we intend to give a

brief description of the method, so that the similarities and di�erences with the box

constrained algorithm that is part of the package LANCELOT become more evident.

Let �1; �2; �;�min; � be such that 0 < �1 � �2 < 1, � 2 (0; 1), �min > 0 and

� 2 (0; 1]. In the beginning, we have an arbitrary initial feasible point x0, an initial

symmetric matrix B0 2 IRn�n (the Hessian approximation), a nonsingular matrix

D0 2 IRn�n (the scaling matrix) and an initial radius �0 � �min. The role of the

scaling matrix Dk is to allow the possibility of adjusting the size of variables that have

widely di�ering magnitudes. Given a feasible point xk, square matrices Bk symmetric

and Dk nonsingular and �k � �min, the steps for obtaining xk+1 and �k are given

as follows:

Algorithm BOX-QUACAN

Step 1. (Set the initial radius of the trust region and compute an upper bound of

kBkk2)

Set � �k.

Compute Mk > 0 such that kBkk2 �Mk.

Step 2. (Solve the \easy" subproblem)

Compute a global solution s
Q

k
(�) of

Minimize Qk(s) �
1
2
Mks

T s+ gT
k
s

s:t: l � xk + s � u
kDksk1 � � :

(4)

If Qk(s
Q

k
(�)) = 0, stop.

Step 3. (Compute the trial step)

Compute sk(�) such that

qk(sk(�)) � �Qk(s
Q

k
(�))

l � xk + sk(�) � u
kDksk(�)k1 � �

(5)

where qk(s) =
1
2
sTBks+ gT

k
s for all s 2 IRn.

Step 4. (Test su�cient decrease)

If f(xk + sk(�)) � f(xk) + �qk(sk(�)) then

de�ne sk = sk(�), xk+1 = xk + sk, �k = � and return.

Else, � �new 2 [�1kDksk(�)k1; �2�] and repeat Step 2.

Remark: De�ning es = �gk=Mk, then ks� esk22 = 2Qk(s)=Mk + kesk22 and so sQk (�) is
the Euclidean projection of es on the feasible region of (4). Computing this projection
c Investigaci�on Operativa 1997
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is trivial in many practical situations. For example, if Dk is diagonal then the feasible

set of (4) is still box{shaped: (3) holds with (lk)i = maxfli � (xk)i;��=(Dk)iig and

(uk)i = minfui � (xk)i;�=(Dk)iig, i = 1; : : : ; n.

The following results are proved in [11]. The global convergence result (Theo-

rem 2) is also valid for the bound constrained algorithm of LANCELOT and, in fact, it

is the type of result that one should expect from every reasonable method for bound

constrained minimization.

Lemma 1. If the algorithm BOX-QUACAN stops at Step 2 (so Qk(s
Q

k
(�)) = 0) then xk

is a Karush{Kuhn{Tucker point of the problem (1).

Theorem 1. The algorithm BOX-QUACAN is well de�ned, that is, if it does not stop at

Step 2 (with Qk(s
Q

k
(�)) = 0) then xk+1 can be computed repeating Steps 2{4 a �nite

number of times.

Theorem 2. Assume that fxkg is an in�nite sequence generated by the algorithm

BOX- QUACAN, IK1 is an in�nite set of indices such that limk2IK1
xk = x� and Mk,

kDkk1 and kD�1
k
k1 are bounded for k 2 IK1. Then x� is a stationary (Karush{

Kuhn{Tucker) point of (1).

A Fortran double precision code was written that implements the algorithm BOX-

QUACAN. The chosen set of parameters is speci�ed in Section 5. We observe that sk(�)

satisfying (5) in Step 3 exists, since sQ
k
(�) is an admissible choice. However, in order

to improve the performance of the algorithm, for computing sk(�) we considered the
following problem:

Minimize qk(s)
s:t: l � xk + s � u

kDksk1 � � :
(6)

For approximately solving (6) we used an algorithm that minimizes quadratics on

a box (cf. [9, 11]). This quadratic minimization solver proceeds combining conjugate

gradient iterations and projected gradients, so that only matrix{vector products are

required, no matrix factorizations are used and, in consequence, no �ll{in is produced.

The stopping criterion for the algorithm that solves (6) is

kP [rqk(s);B�k
]k2 � �kP [rqk(0);B�k

]k2 ; (7)

where P [x;S] denotes the projection of x on the set S and � 2 (0; 1) is the demanded
accuracy. Of course, we also required the accomplishment of condition (5). The initial

approximation for the quadratic minimization was sQ
k
(�). This choice is reasonable

because it guarantees that the condition (5) imposed for convergence will be satis�ed.
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4 The Package LANCELOT Applied to Bound-constrained

Minimization

The package LANCELOT, developed by Conn, Gould and Toint [6] can be applied to

general large{scale nonlinear programming problems

Minimize f(x)
s:t: c(x) = 0

l � x � u
(8)

where f : IRn ! IR and c : IRn ! IRm are assumed to be di�erentiable on the set B.

Any component of the bounds in (8) may be in�nite.

Using augmented Lagrangian techniques, the problem (8) can be solved by a

sequence of simple bound constrained problems

Minimize �(x; �; S; �) � f(x) +

mX
i=1

�ici(x) +
1

2�

mX
i=1

siici(x)
2

s:t: l � x � u

(9)

where, for all i = 1; : : : ;m, the values �i are the components of the Lagrange mul-
tiplier estimates vector �, sii are the diagonal entries of the positive de�nite scaling
matrix S and � is the penalty parameter [5].

Thus, the heart of the software is an e�cient solver for problem (1), which is

applied to (9) successively, generating a sequence of iterates fxkg. In LANCELOT, this

solver is called SBMIN, an algorithm for �nding approximate solutions of the bound{

constrained problem (1).

In this section we will devote our attention to the algorithm SBMIN, which is the

equivalent in LANCELOT to BOX-QUACAN. Algorithm SBMIN is also of trust{region type,

but it di�ers from BOX-QUACAN in some features that are briey described below. For

more details, see [4, 6].

Let us consider qk(s) the quadratic model for decrease of f around xk , for k =

0; 1; 2; : : : as de�ned in (2). A trial step sk is determined through the approximate

solution of problem
Minimize qk(s)

s:t: l � xk + s � u

ksk � �k ;
(10)

where k � k is an adequate norm and �k is the current trust{region radius. As in

the algorithm BOX-QUACAN, it is convenient to use the `1 norm, so that the feasible

region of subproblem (10) becomes the box B�k
de�ned in (3). At each iteration of

SBMIN the trial step that approximately minimizes the subproblem (10) is obtained

after a previous computation of a step that ensures global convergence: the general-

ized Cauchy step.
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The generalized Cauchy step (GCS), denoted by sC
k
, is computed by a projected

gradient algorithm. The so{called fraction of Cauchy decrease condition

qk(sk) � �qk(s
C

k
); � 2 (0; 1)

is an important ingredient in the proof of global convergence of algorithm SBMIN.

Considering a positive de�nite diagonal scaling matrix Dk and g
k
= Dkgk, the

projection of direction �g
k
in the feasible set B�k

yields the poligonal line P [xk �
tg
k
;B�k

], for t � 0. A piecewise quadratic function is thus de�ned by

q
k
(t) = qk(P [xk � tg

k
;B�k

]); t � 0:

The value tC
k
corresponding to the �rst local minimizer of q

k
(t) de�nes

xC
k
= P [xk � tC

k
g
k
;B�k

];

which is the generalized Cauchy point at the k{th iteration and the generalized Cauchy
step is given by

sC
k
= xC

k
� xk:

Once the step sC
k
is determined, the idea is to achieve a further decrease in the

quadratic model by a better trial step that accelerates the convergence of the method.

Considering the current feasible set B�k
, the trial step sk is de�ned so that the active

components of sC
k

are kept �xed and the algorithm tries to decrease the reduced

quadratic de�ned in terms of the free variables. This is done by means of the conjugate

gradient method using sC
k
as the initial approximation. The algorithm stops with a

trial step sk when the norm of the reduced gradient of the model is less than �k given
by

�k = minf0:1;
p
kP [rqk(0);B�k

]k1gkP [rqk(0);B�k
]k1

or when any of the free variables violates a bound of B�k
.

The algorithm SBMIN is described as follows.

Let 0, 1, 2, � and � be such that 0 < 0 � 1 < 1 < 2, � > 0 and � > 0. The

feasible starting point x0, the initial trust{region radius �0 and the initial symmetric

approximation to the Hessian matrix B0 are given. At each iteration k, the steps to
obtain xk+1 and �k+1 are given in the following:

Algorithm SBMIN

Step 1. (Test for convergence)

Compute the projected gradient (gk)P � P [xk � gk;B�k
]� xk.

If k(gk)P k1 = 0, stop.

Step 2. (Compute the GCS)

Calculate the bounds lk and uk of the current feasible set B�k
de�ned in (3)

and obtain the GSC sC
k
as described previously.
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Step 3. (Compute the trial step)

Apply the conjugate gradient algorithm starting from sC
k
to �nd an approxima-

tion sk to the minimizer of the model quadratic (2) over the feasible region (3),
with the additional restriction that the variables that are on their bounds in sC

k

remain �xed.

Step 4. (Test su�cient decrease and update current point and current trust{region

radius)

Compute �k =
f(xk + sk)� f(xk)

qk(sk)
.

Set

xk+1 =

�
xk + sk if �k > � ;
xk if �k � �

and

�k+1 =

8><
>:


(k)
0 �k if �k � � ;
�k if � < �k < � ;


(k)
2 �k if �k � � ;

where


(k)
0 =

8>><
>>:

max
n
0; 1

kskk

�k

o
if 0 � �k � � ;

max
n
0;

(1��)gTk kskk

f(xk)�f(xk+sk)+(1��)g
T
k
sk+�qk(sk)

o
if �k < 0

and


(k)
2 = max

�
1; 2

kskk

�k

�
:

It is worthwhile noticing that it might be that xk+1 coincides with xk, what
guarantees that the algorithm is well de�ned. Naturally, it is only when the iterate

has changed that it is necessary to recompute the gradient and a new second derivative

approximation. The convergence results of the algorithm SBMIN are proved in [3].

5 Numerical Results

The comparison of the numerical performance of the algorithms BOX-QUACAN and

LANCELOT was made through the resolution of 220 problems selected from the CUTE

collection (version of 1993). Several sets of problems can be obtained from this collec-

tion, according to given speci�ed features, such as type of objective function, type of

constraints, origin of problem, etc. With the aim not contaminating the �nal results

of the comparison by any particular feature of the considered problems that might be

more favorable to one approach than to the other, in our numerical tests we selected

problems with several but well speci�ed features. In this sense, the 220 test problems

are distributed in �fteen sets, according to type of objective function (quadratic (Q),
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least squares (L) or any other nonlinear type (O)); type of constraints (unconstrained

(U) or simple bounded (B)) and origin of problem (academic (A), i.e. that has been

constructed speci�cally by researchers to test one or more algorithms, real (R), i.e.

the problem solution has been used in a real application for purposes other than test-

ing algorithms and modelling (M), i.e. the problem is part of a modelling exercise

where the actual value of the solution is not used in a genuine practical application).

Among the eighteen sets that could be generated by combining the features above,

imposing existence of second derivatives and regularity, the selection process of CUTE

generated only �fteen sets: the combinations real unconstrained least{squares, other

real unconstrained and other real bound{constrained did not produce any problem.

Since the choices of parameters for BOX-QUACAN and SBMIN are related to the

di�erent set of test problems, �rst we will specify the set of selected problems of our

comparative tests:

� Academic unconstrained quadratic problems (AUQ)

� Academic unconstrained least{squares problems (AUL)

� Other academic unconstrained problems (OAU)

� Academic bound{constrained quadratic problems (ABQ)

� Academic bound{constrained least{squares problems (ABL)

� Other academic bound{constrained problems (OAB)

� Real unconstrained quadratic problems (RUQ)

� Real bound{constrained quadratic problems (RBQ)

� Real bound{constrained least{squares problems (RBL)

� Modelling unconstrained quadratic problems (MUQ)

� Modelling unconstrained least{squares problems (MUL)

� Other modelling unconstrained problems (OMU)

� Modelling bound{constrained quadratic problems (MBQ)

� Modelling bound{constrained least{squares problems (MBL)

� Other modelling bound{constrained problems (OMB)

The tests were developed in Fortran 77 double precision and run in a SUN Sparc

Station 2 with the -O compiler option for both codes. An interface was built for

running BOX-QUACAN with the CUTE collection which decodi�es the Standard Input

Format (SIF) to produce Fortran subroutines for evaluating the objective function,

its gradient and the product of its Hessian by a vector [12]. In the following we spec-

ify the chosen parameters so that both algorithms become as closely comparable as
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possible.

In the algorithm BOX-QUACAN we used �1 = �2 = 0:5, � = 0:1, �min = 10�4,

� = 10�3, Bk = r2f(xk) and Dk = I for all k. For non-quadratic problems the

initial trust{region radius was chosen according to the following. We computed

�max = minf105; ku� lk1g

and

� = kP [g0;B]k2
maxf1; kx0k2g

maxf1; jf(x0)jg
:

Then,

if � < 0:5 we set �0 = minf0:1�max; 10g;
if 0:5 � � < 10 we set �0 = minf0:5�max; 100g;
if � � 10 we set �0 = minf�max; 1000g.

For quadratic problems we set �0 = �max.

A point is declared stationary whenever k(gk)P k1 � "g for non-quadratic prob-

lems ((gk)P de�ned by Step 1 of Algorithm SBMIN) or kP [gk;B]k2 � "g for quadratic
problems, with tolerance for norm of projected gradient "g = 10�5. Other reasons for

stopping are that 1000 functional evaluations are performed or that the trust{region

radius becomes too small (�k � "�), with tolerance "� = 10�8. In the stopping

criterion (7) we used � = 0:1 and � = "g=kP [rqk(0);B�k
]k2, respectively for non-

quadratic and quadratic problems.

It is important to stress that with the choices speci�cally made for the quadratic

problems we intended to ensure that in this case the trust{region algorithm works

just as a main program that interfaces the problem data and the quadratic solver.

For most of the problems, the upper bound Mk was set to 105. In a few cases

(marked with # in Tables 1-15) we used Mk = 1010.

We run the algorithm SBMIN with the following choices:

� exact-second-derivatives-used

� cg-method-used

� exact-Cauchy-point-required

� in�nity-norm-trust-region-used

� gradient-tolerance 10�5 (i.e. convergence is declared if k(gk)P k1 � 10�5)

� maximum-number-of-iterations 1000
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The initial trust region was the default value �0 = 0:1k(g0)P k1, with (g0)P as

de�ned in Step 1 of Algorithm SBMIN. The other parameters of algorithm SBMIN were

0 = 0:0625, 1 = 0:5, 2 = 2, � = 0:25, � = 0:75 and "� = 10�12.

BOX-QUACAN requires Fortran routines for computing the objective function value,

its gradient, its Hessian times a vector and a driver for setting the data and the pa-

rameters. LANCELOT demands the problem to be coded in SIF, so that its interface

generates the necessary Fortran routines. If the user is already familiar with coding

in SIF, both BOX-QUACAN and LANCELOT can be used. BOX-QUACAN and its interface

for decoding SIF are available under request to the authors.

In Tables 1-15 the following notation is used: N is the dimension of the problem;

S identi�es the software used (B for BOX-QUACAN and L for LANCELOT); RS is the

reason for stopping: gp indicates that the projected gradient is su�ciently small, 1F

indicates that the maximum allowed number of functional evaluations was reached,

1I indicates that the maximum allowed number of outer iterations was reached and

� indicates that an excessively small trust{region radius was computed. The pair

(ITout, ITinn) contains the number of outer and inner iterations (quadratic solver) of

each algorithm. The pair (FE, GE) informs the number of functional and gradient

evaluations; f(x) and kgpk are respectively the objective function value and the `1
norm of the projected gradient at the �nal point. The value T gives the CPU time in

seconds spent by each test.
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PROBLEM N S RS (ITout , ITinn) (FE, GE) f(x) kgpk T

DIXON3DQ 10 B gp (1, 10) (2,1) 0.9D�29 0.6D�14 0.01

L gp (4, 22) (4, 5) 0.3D�30 0.9D�15 0.06

DQDRTIC 5000 B gp (1, 5) (2, 1) 0.2D�19 0.6D�10 2.25

L gp (2, 9) (2, 3) 0.1D�29 0.2D�14 3.90

HILBERTA 10 B gp (1, 5) (2, 1) 0.1D�08 0.2D�05 0.02
L gp (4, 7) (4, 5) 0.2D�06 0.5D�05 0.10

HILBERTB 50 B gp (1, 4) (2, 1) 0.7D�12 0.2D�05 0.18
L gp (3, 3) (3, 4) 0.8D�12 0.1D�05 0.50

TESTQUAD 1000 B gp (1, 707) (2, 1) 0.2D�11 0.2D�05 23.50
L gp (3, 787) (3, 4) 0.1D�11 0.3D�05 16.70

TRIDIA 10000 B gp (1, 1095) (2, 1) 0.1D�13 0.2D�05 371.00
L gp (3, 1261) (3, 4) 0.3D�13 0.1D�05 294.60

ZANGWIL2 2 B gp (1, 1) (2, 1) �0.2D+02 0.0D+00 0.01

L gp (3, 0) (3, 4) �0.2D+00 0.0D+00 0.04

Table 1: Academic unconstrained quadratic problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

BARD 3 B gp (12, 29) (14, 12) 0.8D�02 0.6D�06 0.05
L gp (11, 28) (11, 11) 0.8D�02 0.2D�05 0.10

BDQRTIC 1000 B gp (14, 74) (15, 14) 0.4D+04 0.3D�05 8.04
L gp (10, 80) (10, 11) 0.4D+04 0.2D�05 7.80

BEALE 2 B gp (7, 22) (16, 7) 0.2D�16 0.2D�07 0.04
L gp (11, 17) (11, 11) 0.3D�16 0.5D�08 0.10

BIGGS6 6 B gp (25, 143) (44, 25) 0.6D�02 0.9D�06 0.25
L gp (23, 72) (23, 21) 0.2D�06 0.4D�05 0.30

BOX3 3 B gp (8, 16) (9, 8) 0.2D�14 0.2D�08 0.02

L gp (7, 14) (7, 8) 0.2D�08 0.2D�05 0.10

BROWNAL 10 B gp (7, 10) (8, 7) 0.2D�09 0.3D�05 0.03

L gp (4, 6) (4, 5) 0.1D�09 0.8D�05 0.10

BROWNBS 2 B# gp (112, 314) (113, 112) 0.0D+00 0.0D+00 0.23
L gp (6, 7) (6, 7) 0.2D�30 0.9D�09 0.05

BROWNDEN 4 B gp (10, 30) (11, 10) 0.9D+05 0.7D�10 0.04
L gp (8, 30) (8, 9) 0.9D+05 0.3D�09 0.10

BRYBND 5000 B gp (9, 68) (10, 9) 0.5D�11 0.4D�05 39.25
L gp (20, 187) (20, 17) 0.7D�12 0.5D�05 108.90

CHNROSNB 50 B gp (43, 682) (71, 43) 0.1D�10 0.3D�05 1.54
L gp (85, 598) (85, 67) 0.1D�12 0.3D�05 1.90

CUBE 2 B gp (34, 80) (58, 34) 0.3D�10 0.4D�05 0.05

L gp (47, 80) (47, 40) 0.3D�12 0.3D�06 0.10

DENSCHNB 2 B gp (3, 14) (11, 3) 0.0D+00 0.0D+00 0.02

L gp (6, 4) (6, 7) 0.3D�11 0.4D�05 0.10

Table 2: Academic unconstrained least{squares problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

DENSCHNC 2 B gp (9, 13) (10, 9) 0.2D�12 0.1D�05 0.03

L gp (13, 21) (13, 12) 0.2D�19 0.8D�09 0.10

DENSCHND 3 B gp (29, 84) (39, 29) 0.1D�07 0.7D�05 0.06

L gp (32, 68) (32, 29) 0.1D�06 0.4D�05 0.30

DENSCHNE 3 B gp (13, 27) (30, 13) 0.5D�16 0.1D�07 0.01
L gp (15, 13) (15, 15) 0.3D�11 0.3D�05 0.10

DENSCHNF 2 B gp (6, 12) (7, 6) 0.7D�21 0.6D�09 0.01
L gp (6, 12) (6, 7) 0.7D�21 0.6D�09 0.10

EIGENALS 110 B gp (20, 137) (29, 20) 0.1D�08 0.7D�05 3.51
L gp (20, 138) (20, 19) 0.2D�09 0.4D�05 3.10

EIGENBLS 110 B gp (74, 5607) (155, 74) 0.9D�10 0.3D�05 144.08
L gp (147, 3228) (147, 126) 0.3D�09 0.3D�05 83.50

EIGENCLS 462 B gp (83, 9507) (165, 83) 0.1D�09 0.3D�05 2118.36

L gp (181, 3448) (181, 145) 0.3D�10 0.4D�05 768.00

ENGVAL2 3 B gp (19, 40) (27, 19) 0.4D�14 0.6D�07 0.04

L gp (20, 32) (20, 19) 0.9D�12 0.1D�05 0.20

ERRINROS 50 B gp (60, 902) (106, 60) 0.4D+02 0.2D�05 2.21

L gp (60, 677) (60, 54) 0.4D+02 0.2D�05 2.00

EXPFIT 2 B gp (6, 12) (17, 6) 0.2D+00 0.5D�08 0.03
L gp (10, 12) (10, 9) 0.2D+00 0.2D�08 0.10

EXTROSNB 10 B 1F (506, 5646) (1000, 506) 0.5D�06 0.2D�03 3.69
L gp (394, 3024) (394, 327) 0.2D�05 0.8D�05 3.60

FREUROTH 5000 B gp (12, 54) (28, 12) 0.6D+06 0.3D�06 32.41
L gp (15, 33) (15, 13) 0.6D+06 0.3D�06 22.50

GENROSE 500 B gp (226, 6283) (450, 226) 0.1D+01 0.1D�05 133.71

L gp (527, 2994) (527, 460) 0.1D+01 0.2D�05 80.00

GROWTHLS 3 B gp (136, 508) (275, 136) 0.1D+01 0.9D�07 0.86

L gp (187, 471) (187, 160) 0.1D+01 0.1D�06 1.60

HATFLDD 3 B gp (19, 52) (28, 19) 0.7D�07 0.4D�06 0.08

L gp (19, 33) (19, 19) 0.8D�07 0.6D�05 0.10

HATFLDE 3 B gp (17, 44) (25, 17) 0.5D�06 0.4D�05 0.10
L gp (20, 39) (20, 20) 0.5D�06 0.3D�05 0.20

HELIX 3 B gp (13, 37) (23, 13) 0.1D�10 0.5D�05 0.05
L gp (14, 29) (14, 11) 0.3D�14 0.7D�05 0.10

HIMMELBF 4 B gp (57, 360) (121, 57) 0.3D+03 0.4D�05 0.28
L gp (299, 996) (299, 262) 0.3D+03 0.2D�05 2.60

HYDC20LS 99 B# 1F (993, 20005) (1000, 993) 0.7D+01 0.2D+01 262.19
L 1I (1000, 212657) (999,990) 0.7D+00 0.2D+04 2421.10

LIARWHD 10000 B gp (15, 24) (18, 15) 0.5D�09 0.1D�05 39.33

L gp (12, 22) (12, 13) 0.1D�19 0.3D�07 26.90

MANCINO 100 B gp (13, 40) (14, 13) 0.9D�17 0.2D�05 157.68

L gp (11, 22) (11, 7) 0.2D�20 0.5D�07 41.20

MSQRTALS 1024 B gp (29, 6862) (56, 29) 0.5D�08 0.8D�05 4134.11
L gp (38, 5021) (38, 29) 0.7D�09 0.8D�06 3175.00

MSQRTBLS 1024 B gp (48, 13266) (95, 48) 0.3D�09 0.2D�05 7397.93
L gp (34, 3544) (34, 28) 0.2D�09 0.1D�05 2744.30

NONDIA 10000 B gp (4, 5) (5, 4) 0.6D�09 0.2D�06 8.45
L gp (4, 4) (4, 5) 0.4D�15 0.3D�05 8.10

NONMSQRT 1024 B 1F (969, 51230) (1000, 969) 0.9D+02 0.3D�02 26497.87
L 1I (1000, 456057) (1000, 910) 0.9D+02 0.4D+00 229492.00

PENALTY1 1000 B gp (39, 177) (49, 39) 0.1D-02 0.9D�05 15.05

L gp (49, 54) (49, 39) 0.1D-02 0.7D�05 7.60

PENALTY2 100 B gp (19, 80) (20, 19) 0.1D+06 0.2D�05 0.95

L gp (19, 575) (19, 20) 0.1D+06 0.2D�05 3.70

PFIT1LS 3 B gp (430, 2191) (868, 430) 0.4D�06 0.9D�05 1.91

L gp (535, 1069) (535, 466) 0.6D�07 0.1D�04 2.90

Table 2 (cont.): Academic unconstrained least{squares problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

PFIT2LS 3 B gp (295, 1750) (597, 295) 0.4D�07 0.7D�05 1.33

L gp (207, 432) (207, 178) 0.7D�07 0.1D�04 1.20

PFIT3LS 3 B gp (106, 535) (217, 106) 0.1D�07 0.7D�05 0.48

L gp (181, 349) (181, 155) 0.1D�07 0.9D�05 1.00

PFIT4LS 3 B gp (172, 680) (350, 172) 0.1D�07 0.9D�05 0.69
L gp (397, 790) (397, 354) 0.1D�07 0.9D�05 2.30

ROSENBR 2 B gp (25, 61) (48, 25) 0.4D�13 0.8D�06 0.02
L gp (31, 55) (31, 27) 0.4D�10 0.5D�05 0.20

S308 2 B gp (9, 15) (10, 9) 0.8D+00 0.9D�05 0.02
L gp (9, 14) (9, 10) 0.8D+00 0.3D�07 0.10

SENSORS 100 B gp (9, 51) (19, 9) �0.2D+04 0.2D�06 44.34
L gp (14, 20) (14, 10) �0.2D+04 0.2D�06 25.30

SINEVAL 2 B gp (59, 173) (117, 59) 0.3D�14 0.3D�07 0.15

L gp (69, 100) (69, 62) 0.1D�12 0.2D�06 0.30

SPMSRTLS 10000 B gp (200, 10580) (263, 200) 0.3D+00 0.7D�05 7969.27

L gp (17, 275) (17, 14) 0.5D�10 0.1D�05 226.20

SROSENBR 10000 B gp (7, 9) (8, 7) 0.4D�07 0.2D�05 9.56

L gp (12, 22) (12, 10) 0.4D�10 0.7D�07 18.80

TQUARTIC 10000 B gp (7, 13) (12, 7) 0.7D�04 0.2D�05 15.08
L gp (9, 8) (9, 10) 0.3D�10 0.1D�05 36.80

VAREIGVL 5000 B gp (14, 64) (15, 14) 0.1D�07 0.1D�05 28.46
L gp (13, 123) (13, 14) 0.8D�07 0.3D�05 46.00

WATSON 31 B gp (10, 47) (11, 10) 0.1D�07 0.4D�06 0.46
L gp (9, 46) (9, 10) 0.3D�07 0.3D�05 0.60

WOODS 10000 B gp (17, 38) (18, 17) 0.2D�07 0.6D�05 31.35

L gp (16, 59) (16, 17) 0.7D�09 0.1D�04 37.50

Table 2 (cont.): Academic unconstrained least{squares problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

ALLINITU 4 B gp (9, 31) (20, 9) 0.5D+01 0.3D�05 0.04
L gp (13, 15) (13, 12) 0.5D+01 0.1D�06 0.10

ARWHEAD 5000 B gp (5, 6) (6, 5) 0.1D�11 0.1D�05 6.61
L gp (5, 4) (5, 6) 0.0D+00 0.3D�06 10.90

BRKMCC 2 B gp (3, 5) (4, 3) 0.2D+00 0.1D�05 0.01

L gp (4, 5) (4, 5) 0.2D+00 0.2D�10 0.04

BROYDN7D 1000 B gp (13, 434) (26, 13) 0.4D+03 0.4D�05 37.45

L gp (125, 381) (125, 98) 0.4D+03 0.1D�05 40.90

CLIFF 2 B# gp (27, 28) (28, 27) 0.2D+00 0.6D�07 0.02

L gp (27, 4) (27, 28) 0.2D+00 0.4D�05 0.10

CRAGGLVY 5000 B gp (16, 118) (17, 16) 0.2D+04 0.6D�05 58.34
L gp (12, 327) (12, 13) 0.2D+04 0.6D�06 91.1

DENSCHNA 2 B gp (5, 9) (6, 5) 0.1D�14 0.7D�07 0.01
L gp (5, 6) (5, 6) 0.7D�13 0.5D�06 0.05

DIXMAANA 3000 B gp (8, 25) (15, 8 ) 0.1D+01 0.1D�05 10.11
L gp (9, 12) (9, 8) 0.1D+01 0.4D�08 5.70

DIXMAANB 3000 B gp (7, 11) (8, 7 ) 0.1D+01 0.9D�05 6.06
L gp (14, 32) (14, 12) 0.1D+01 0.1D�05 11.50

DIXMAANC 3000 B gp (9, 13) (10, 9 ) 0.1D+01 0.4D�05 7.69

L gp (16, 40) (16, 14) 0.1D+01 0.7D�06 14.80

DIXMAAND 3000 B gp (10, 16 ) (11, 10 ) 0.1D+01 0.2D�05 8.70

L gp (10, 26) (10, 9) 0.1D+01 0.2D�08 8.20

DIXMAANE 3000 B gp (10, 367 ) (20, 10 ) 0.1D+01 0.9D�06 70.11
L gp (12, 291) (12, 11) 0.1D+01 0.1D�05 37.80

DIXMAANF 3000 B gp (12, 213 ) (13, 12 ) 0.1D+01 0.3D�05 43.25
L gp (22, 287) (22, 20) 0.1D+01 0.2D�05 46.90

Table 3: Other academic unconstrained problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

DIXMAANG 3000 B gp (14, 771) (32, 14 ) 0.1D+01 0.9D�05 142.44

L gp (20, 260) (20, 17) 0.1D+01 0.9D�05 41.50

DIXMAANH 3000 B gp (15, 912) (33, 15) 0.1D+01 0.3D�05 162.97

L gp (21, 293) (21, 18) 0.1D+01 0.9D�0.5 47.00

DIXMAANI 3000 B gp (15, 5941 ) (31, 15 ) 0.1D+01 0.3D�05 889.85
L gp (10, 5758) (10, 9) 0.1D+01 0.2D�05 615.20

DIXMAANJ 3000 B gp (13, 151 ) (14, 13 ) 0.1D+01 0.9D�05 33.08
L gp (44, 3380) (44, 36) 0.1D+01 0.7D�05 454.40

DIXMAANK 3000 B gp (14, 164 ) (15, 14 ) 0.1D+01 0.6D�05 35.69
L gp (38, 2835) (38, 31) 0.1D+01 0.6D�05 377.20

DIXMAANL 3000 B gp (15, 175 ) (16, 15 ) 0.1D+01 0.4D�05 37.49
L gp (39, 3187) (39, 33) 0.1D+01 0.9D�05 408.00

DJTL 2 B# gp (26, 93) (58, 26) �0.9D+04 0.3D�06 0.11

L gp (54, 45) (54, 45) �0.9D+04 0.1D�06 0.30

DQRTIC 5000 B gp (40, 164) (41, 40) 0.1D�05 0.8D�05 46.00

L gp (2, 9) (2, 3) 0.1D�28 0.2D�14 3.90

EDENSCH 2000 B gp (15, 33) (17, 15) 0.1D+05 0.2D�05 10.98

L gp (12, 79) (12, 13) 0.1D+05 0.5D�05 12.00

EG2 1000 B gp (3, 3) (4, 3) �0.1D+04 0.6D�08 0.70
L gp (3, 0) (3, 4) �0.1D+04 0.6D�08 0.50

ENGVAL1 5000 B gp (10, 24 ) (11, 10 ) 0.5D+04 0.3D�05 16.22
L gp (7, 35) (7, 8) 0.5D+04 0.4D�05 13.90

FLETCBV2 10000 B gp (0, 0) (1, 0) �0.5D+00 0.2D�07 1.68
L gp (0, 0) (0, 1) �0.5D+00 0.2D�07 1.80

FLETCBV3 10000 B 1F (500, 4445 ) (1001, 500) �0.4D+09 0.3D+01 4342.48

L 1I (999, 348) (999, 872) �0.4D+09 0.3D+01 4058.90

FLETCHBV 100 B 1F (500, 4416) (1001, 500) �0.4D+11 0.3D+05 33.82

L 1I (999, 854) (999, 859) �0.6D+11 0.3D+05 40.80

FLETCHCR 100 B gp (157, 1793) (187, 157) 0.1D�12 0.7D�05 10.22

L gp (229, 1753) (229, 195) 0.2D�11 0.8D�05 9.20

HAIRY 2 B gp (22, 50) (48, 22) 0.2D+02 0.1D�14 0.03
L gp (90, 85) (90, 73) 0.2D+02 0.1D�07 0.50

HIMMELBB 2 B gp (20, 20) (21, 20) 0.1D�07 0.6D�05 0.04
L gp (23, 6) (23, 20) 0.1D�11 0.4D�06 0.10

HIMMELBG 2 B gp (5, 9) (14, 5) 0.8D�13 0.7D�06 0.02
L gp (5, 3) (5, 6) 0.2D�14 0.1D�06 0.03

HIMMELBH 2 B gp (5, 13) (12, 5) �0.1D+01 0.3D�09 0.01
L gp (5, 0) (5, 6) �0.1D+01 0.7D�10 0.04

INDEF 50 B 1F (991, 1979) (1000, 991) �0.5D+09 0.1D+01 13.26

L 1I (999, 927) (999, 557) �0.8D+05 0.1D+02 17.90

JENSMP 2 B gp (9, 14) (10, 9) 0.1D+03 0.2D�05 0.03

L gp (9, 18) (9, 10) 0.1D+03 0.4D�05 0.10

LOGROS 2 B gp (49, 131) (95, 49) 0.0D+00 0.7D�08 0.10
L gp (54, 64) (54, 47) 0.0D+00 0.2D�08 0.20

NCB20B 1000 B gp (15, 3070) (31, 15) 0.2D+04 0.6D�06 1504.87
L gp (34, 1497) (34, 27) 0.2D+04 0.3D�05 662.40

NONDQUAR 10000 B gp (55, 2153) (99, 55) 0.6D�0.5 0.8D�05 918.42
L gp (33, 983) (33, 28) 0.8D�05 0.5D�05 283.50

PENALTY3 100 B � (24, 160) (90, 24) 0.1D�02 0.5D�04 171.24
L � (31, 104) (31, 18) 0.1D�02 0.6D�03 98.30

POWELLSG 10000 B gp (15, 55) (16, 15) 0.3D�04 0.7D�05 35.06

L gp (15, 61) (15, 16) 0.1D�04 0.4D�05 29.00

POWER 1000 B# gp (29, 347) (30, 29) 0.3D�07 0.9D�05 10.16

L gp (28, 2987) (28, 29) 0.5D�08 0.3D�05 81.00

QUARTC 10000 B# gp (42, 92) (43, 42) 0.7D�05 0.4D�05 59.98

L gp (28, 2756) (28, 29) 0.4D�05 0.7D�05 58.90

Table 3 (cont.): Other academic unconstrained problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

SCHMVETT 10000 B gp (7, 47) (8, 7) �0.3D+05 0.1D�05 63.04
L gp (3, 55) (3, 4) �0.3D+05 0.1D�06 46.60

SINQUAD 10000 B gp (123, 438) (239, 123) 0.1D�04 0.4D�05 694.05
L gp (122, 178) (122, 107) 0.8D�04 0.3D�05 385.00

SISSER 2 B gp (12, 12) (13, 12) 0.1D�07 0.4D�05 0.01
L gp (12, 5) (12, 13) 0.1D�07 0.5D�05 0.10

SNAIL 2 B gp (69, 174) (116, 69) 0.6D�13 0.5D�06 0.11

L gp (87, 154) (87, 78) 0.1D�10 0.6D�05 0.40

TOINTGSS 10000 B gp (3, 3) (4, 3) 0.1D+02 0.3D�05 10.70

L gp (3, 12) (3, 4) 0.1D+02 0.2D�06 11.00

TOINTPSP 50 B gp (14, 151) (26, 14) 0.2D+03 0.2D�05 0.47

L gp (33, 91) (33, 27) 0.2D+03 0.1D�05 0.60

VARDIM 100 B# gp (21, 32) (31, 21) 0.1D�22 0.7D�09 0.27
L gp (25, 0) (25, 26) 0.5D�25 0.4D�10 0.40

Table 3 (cont.): Other academic unconstrained problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

BIGGSB1 1000 B gp (1, 3545) (2, 1) 0.2D�01 0.9D�05 71.89

L gp (502, 66509) (502, 503) 0.2D�01 0.6D�05 1095.90

BQP1VAR 1 B gp (1, 1) (2, 1) 0.0D+00 0.0D+00 0.01

L gp (2, 0) (2, 3) 0.0D+00 0.0D+00 0.03

BQPGABIM 50 B gp (1, 16) (2, 1) �0.4D�04 0.3D�05 0.05
L gp (3, 19) (3, 4) �0.4D�04 0.6D�05 0.10

BQPGASIM 50 B gp (1, 17) (2, 1) �0.6D�04 0.3D�05 0.06
L gp (3, 18) (3, 4) �0.6D�04 0.2D�05 0.10

BQPGAUSS 2003 B gp (1, 7442) (2, 1) �0.4D+00 0.9D�05 983.69
L gp (7, 9511) (7, 8) �0.4D+00 0.1D�05 1174.70

CHENHARK 1000 B gp (1, 3730) (2, 1) �0.2D+01 0.7D�06 76.48
L gp (121, 136276) (121, 122) �0.2D+01 0.3D�06 2288.40

HARKERP2 100 B gp (1, 9) (2, 1) �0.5D+00 0.1D�11 0.33

L gp (1, 2) (2, 2) �0.5D+00 0.8D�12 0.70

HS3 2 B gp (1, 2) (2, 1) 0.0D+00 0.0D+00 0.01

L gp (7, 0) (7, 8) 0.2D�35 0.0D+00 0.01

HS3MOD 2 B gp (1, 3) (2, 1) 0.0D+00 0.0D+00 0.01
L gp (4, 0) (4, 5) 0.0D+00 0.0D+00 0.04

JNLBRNG1 15625 B gp (1, 1142) (2, 1) �0.2D+00 0.9D�05 2176.15
L gp (24, 2556) (24, 25) �0.2D+00 0.4D�05 2170.60

JNLBRNG2 15625 B gp (1, 1106) (2, 1) �0.4D+01 0.9D�05 1321.84
L gp (14, 2673) (14, 15) �0.4D+01 0.6D�06 2121.30

JNLBRNGA 15625 B gp (1, 1179) (2, 1) �0.3D+00 0.8D�05 1519.47
L gp (21, 2135) (21, 22) �0.3D+00 0.3D�06 1758.30

JNLBRNGB 15625 B gp (1, 2661) (2, 1) �0.6D+01 0.9D�05 2334.17

L gp (11, 4439) (11, 12) �0.6D+01 0.9D�06 3295.20

NOBNDTOR 14884 B gp (1, 884) (2, 1) �04D+00 0.9D�05 1340.68

L gp (36, 1539) (36, 37) �0.4D+00 0.2D�05 1519.30

OBSTCLAE 15625 B gp (1, 759) (2, 1) 0.2D+01 0.7D�05 1598.07

L gp (4, 7608) (4, 5) 0.2D+01 0.1D�05 6978.70

OBSTCLAL 15625 B gp (1, 305) (2, 1) 0.2D+01 0.7D�05 415.42
L gp (24, 805) (24, 25) 0.2D+01 0.3D�05 579.60

Table 4: Academic bound{constrained quadratic problems
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PROBLEM N S RS (ITout , ITinn) (FE, GE) f(x) kgpk T

OBSTCLBL 15625 B gp (1, 366) (2, 1) 0.7D+01 0.9D�05 896.07

L gp (18, 3259) (18, 19) 0.7D+01 0.6D�06 2696.50

OBSTCLBM 15625 B gp (1, 242) (2, 1) 0.7D+01 0.9D�05 477.19

L gp (5, 1483) (5, 6) 0.7D+01 0.2D�05 1372.90

OBSTCLBU 15625 B gp (1, 443) (2, 1) 0.7D+01 0.8D�05 762.01
L gp (19, 1102) (19, 20) 0.7D+01 0.2D�05 923.00

OSLBQP 8 B gp (1, 1) (2, 1) 0.6D+01 0.0D+00 0.01
L gp (2, 0) (2, 3) 0.6D+01 0.0D+00 0.04

QUDLIN 12 B gp (1, 1) (2, 1) �0.7D+04 0.0D+00 0.02
L gp (1, 0) (1, 2) �0.7D+04 0.0D+00 0.06

SIM2BQP 2 B gp (1, 1) (2, 1) 0.0D+00 0.0D+00 0.01
L gp (2, 0) (2, 3) 0.0D+00 0.0D+00 0.03

SIMBQP 2 B gp (1, 5) (2, 1) 0.0D+00 0.0D+00 0.01

L gp (1, 0) (1, 2) 0.0D+00 0.0D+00 0.03

Table 4 (cont.): Academic bound{constrained quadratic problems

PROBLEM N S RS (ITout , ITinn) (FE, GE) f(x) kgpk T

CHEBYQAD 50 B gp (25, 1499) (52, 25) 0.5D�02 0.4D�05 58.80
L gp (28, 453) (28, 23) 0.5D�02 0.8D�05 19.20

HATFLDA 4 B gp (5, 28) (13, 5) 0.1D�10 0.4D�05 0.03
L gp (28, 73) (28, 29) 0.3D�12 0.4D�6 0.17

HATFLDB 4 B gp (5, 35) (14, 5) 0.6D�02 0.9D�07 0.03

L gp (25, 55) (25, 26) 0.6D�02 0.1D�05 0.14

HATFLDC 24 B gp (6, 28) (7, 6) 0.1D�10 0.1D�05 0.03

L gp (4, 18) (4, 5) 0.2D�11 0.2D�05 0.10

HS1 2 B gp (25, 52) (35, 25) 0.3D�13 0.1D�06 0.02

L gp (35, 61) (35, 31) 0.4D�11 0.2D�05 0.20

HS110 50 B gp (1, 0) (2, 1) �0.1D+11 0.0D�00 0.02
L gp (1, 0) (1, 2) �0.1D+11 0.0D+0 0.04

HS2 2 B gp (6, 8) (7, 6) 0.5D+01 0.9D�07 0.02
L gp (11, 20) (11, 10) 0.5D+01 0.2D�05 0.10

HS25 3 B gp (0, 0) (1, 0) 0.3D+02 0.2D�07 0.02
L gp (0, 0) (0, 1) 0.3D+02 0.2D�07 0.03

LINVERSE 1999 B gp (43, 2320) (59, 43) 0.7D+03 0.9D�05 734.65

L gp (28, 2049) (28, 23) 0.7D+03 0.3D�05 365.60

NONSCOMP 10000 B gp (11, 51) (12, 11) 0.9D�11 0.6D�05 32.51

L gp (8, 78) (8, 9) 0.2D�11 0.5D�05 35.40

PSPDOC 4 B gp (5, 16) (9, 5) 0.2D+01 0.8D�10 0.02

L gp (8, 14) (8, 9) 0.2D+01 0.9D�05 0.10

QR3DLS 610 B gp (265, 78034) (534, 265) 0.3D�07 0.3D�05 11269.31
L gp (323, 23614) (323, 282) 0.2D�07 0.6D�05 3440.30

SPECAN 9 B gp (13, 66) (18, 13) 0.2D�12 0.3D�05 66.97
L gp (14, 68) (14, 12) 0.4D�12 0.8D�05 110.40

Table 5: Academic bound{constrained least{squares problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

ALLINIT 4 B gp (7, 40) (18, 7) 0.2D+02 0.8D�06 0.08

L gp (11, 13) (11, 10) 0.2D+02 0.8D�09 0.10

BDEXP 5000 B gp (10, 10) (11, 10) 0.2D�02 0.6D�05 13.79

L gp (10, 27) (10, 11) 0.2D�02 0.6D�05 13.40

EG1 3 B gp (6, 13) (8, 6) �0.1D+01 0.1D�04 0.02
L gp (6, 9) (6, 7) �0.1D+01 0.8D�05 0.06

EXPLIN 120 B gp (14, 38) (16, 14) �0.8D+06 0.7D�05 0.21
L gp (13, 80) (13, 14) �0.8D+06 0.3D�05 0.20

EXPLIN2 120 B gp (13, 34) (14, 13) �0.8D+06 0.4D�05 0.19
L gp (11, 52) (11, 12) �0.8D+06 0.5D�05 0.30

EXPQUAD 120 B � (21, 107) (90, 21) �0.4D+07 0.1D�03 0.90
L gp (18, 98) (18, 16) �0.4D+07 0.4D�06 0.60

HS38 4 B gp (46, 247) (78, 46) 0.7D�11 0.2D�05 0.13

L gp (54, 194) (54, 47) 0.6D�17 0.6D�07 0.30

HS4 2 B gp (1, 1) (2, 1) 0.3D+01 0.0D+00 0.01

L gp (1, 0) (1, 2) 0.3D+01 0.0D+00 0.01

HS45 5 B gp (3, 3) (4, 3) 0.1D+01 0.0D+00 0.02

L gp (8, 0) (8, 9) 0.1D+01 0.0D+00 0.05

HS5 2 B gp (5, 11) (8, 5) �0.2D+01 0.5D�08 0.02
L gp (5, 5) (5, 6) �0.2D+01 0.3D�06 0.03

MAXLIKA 8 B gp (31, 210) (42, 31) 0.1D+04 0.5D�05 11.31
L gp (8, 36) (8, 9) 0.1D+04 0.6D�05 1.50

MCCORMCK 10000 B gp (7, 14) (8, 7) �0.9D+04 0.7D�06 26.17
L gp (8, 16) (8, 7) �0.9D+04 0.4D�05 22.40

PROBPENL 500 B gp (1, 0) (2, 1) 0.4D�06 0.2D�06 0.22

L gp (1, 0) (1, 2) 0.4D�06 0.3D�06 0.14

SINEALI 20 B gp (7, 13) (9, 7) �0.2D+04 0.2D�05 0.05

L gp (17, 138) (17, 13) �0.2D+04 0.1D�04 0.20

Table 6: Other academic bound{constrained problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

PALMER1C 8 B# gp (1, 20) (2, 1) 0.1D+00 0.2D�06 0.02
L gp (85, 2006) (85, 86) 0.1D+00 0.4D�05 2.20

PALMER1D 7 B gp (1, 14) (2, 1) 0.7D+00 0.3D�05 0.02
L gp (4, 40) (4, 5) 0.7D+00 0.4D�05 0.10

PALMER2C 8 B gp (1, 20) (2, 1) 0.1D�01 0.3D�05 0.02
L gp (44, 1031) (44, 45) 0.1D�01 0.7D�05 0.90

PALMER3C 8 B gp (1, 19) (2, 1) 0.2D�01 0.5D�07 0.01

L gp (8, 146) (8, 9) 0.2D�01 0.6D�05 0.20

PALMER4C 8 B gp (1, 17) (2, 1) 0.5D�01 0.2D�05 0.01

L gp (33, 729) (33, 34) 0.5D�01 0.6D�05 0.80

PALMER5C 6 B gp (1, 6) (2, 1) 0.2D+01 0.2D�12 0.01
L gp (4, 14) (4, 5) 0.2D+01 0.5D�06 0.05

PALMER6C 8 B gp (1, 18) (2, 1) 0.2D�01 0.5D�08 0.01
L gp (48, 1099) (48, 49) 0.2D�01 0.2D�05 1.00

PALMER7C 8 B gp (1, 17) (2, 1) 0.6D+00 0.9D�05 0.01
L gp (13, 259) (13, 14) 0.6D+00 0.3D�05 0.20

PALMER8C 8 B gp (1, 17) (2, 1) 0.2D+00 0.3D�05 0.02
L gp (5, 68) (5, 6) 0.2D+00 0.2D�06 0.10

Table 7: Real unconstrained quadratic problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

ODNAMUR 11130 B gp (1, 37846) (2, 1) 0.9D+04 0.9D�05 12530.26

L gp (9, 51556) (9, 10) 0.9D+04 0.2D�05 10224.00

Table 8: Real bound{constrained quadratic problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

PALMER1 4 B gp (19, 39) (27, 19) 0.1D+05 0.2D�07 0.15
L gp (27, 40) (27, 40) 0.1D+05 0.4D�08 0.30

PALMER1A 6 B gp (104, 765) (179, 104) 0.1D+00 0.5D�05 1.57
L gp (217, 901) (217, 207) 0.1D+00 0.2D�05 2.90

PALMER1B 4 B gp (27, 83) (38, 27) 0.3D+01 0.9D�05 0.20
L gp (46, 75) (46, 41) 0.3D+01 0.1D�06 0.40

PALMER1E 8 B gp (179, 1941) (268, 179) 0.8D�03 0.1D�05 3.77

L gp (274, 4310) (274, 266) 0.8D�03 0.4D�05 7.30

PALMER2 4 B# gp (17, 45) (30, 17) 0.4D+04 0.2D�05 0.13

L gp (29, 39) (29, 24) 0.4D+04 0.2D�06 0.30

PALMER2A 6 B gp (59, 348) (91, 59) 0.2D�01 0.5D�05 0.59

L gp (99, 474) (99, 83) 0.2D�01 0.3D�05 1.10

PALMER2B 4 B gp (17, 78) (27, 17) 0.6D+00 0.2D�05 0.11
L gp (44, 76) (44, 38) 0.6D+00 0.3D�05 0.40

PALMER2E 8 B gp (455, 3627) (560, 455) 0.2D�03 0.9D�05 5.42
L gp (139, 1660) (139, 130) 0.2D�03 0.6D�05 2.70

PALMER3 4 B gp (14, 39) (22, 14) 0.2D+04 0.9D�05 0.10
L gp (28, 26) (28, 26) 0.2D+04 0.7D�05 0.20

PALMER3A 6 B gp (93, 741) (160, 93) 0.2D�01 0.3D�05 1.00

L gp (165, 800) (165, 150) 0.2D�01 0.3D�05 1.80

PALMER3B 4 B gp (17, 71) (27, 17) 0.4D+01 0.5D�05 0.17

L gp (29, 63) (29, 26) 0.4D+01 0.5D�07 0.20

PALMER3E 8 B gp (442, 4040) (632, 442) 0.5D�04 0.3D�05 5.72

L gp (112, 1266) (112, 107) 0.5D�04 0.6D�05 2.30

PALMER4 4 B gp (14, 36) (22, 14) 0.2D+04 0.9D�05 0.13
L gp (21, 21) (21, 19) 0.2D+04 0.1D�04 0.30

PALMER4A 6 B gp (41, 230) (61, 41) 0.4D�01 0.5D�05 0.37
L gp (77, 347) (77, 68) 0.4D�01 0.2D�05 0.80

PALMER4B 4 B gp (16, 73) (25, 16) 0.6D+01 0.7D�05 0.14
L gp (22, 51) (22, 20) 0.6D+01 0.5D�07 0.20

PALMER4E 8 B gp (227, 2228) (335, 227) 0.1D�03 0.8D�05 3.06
L gp (91, 1130) (91, 83) 0.1D�03 0.4D�05 1.80

PALMER5A 8 B 1F (744, 5219) (1000, 744) 0.1D+00 0.5D�03 5.00

L 1I (999, 11559) (999, 969) 0.1D+00 0.98D�01 13.70

PALMER5B 9 B gp (651, 4480) (789, 651) 0.1D�01 0.5D�05 4.35

L gp (296, 2617) (296, 266) 0.1D�01 0.6D�05 3.70

PALMER5D 8 B gp (5, 23) (6, 5) 0.9D+02 0.7D�12 0.04
L gp (2, 7) (2, 3) 0.9D+02 0.7D�08 0.03

PALMER5E 8 B 1F (512, 5276) (1003, 512) 0.3D�01 0.2D+01 4.99
L 1I (999, 7839) (999, 870) 0.3D�01 0.1D�03 11.40

PALMER6A 6 B gp (178, 1501) (298, 178) 0.6D�01 0.7D�05 1.27
L gp (164, 765) (164, 144) 0.6D�01 0.6D�05 1.40

PALMER6E 8 B gp (58, 807) (106, 58) 0.2D�03 0.9D�05 0.69
L gp (103, 946) (103, 95) 0.2D�03 0.3D�05 1.30

Table 9: Real bound{constrained least{squares problems
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PROBLEM N S RS (ITout , ITinn) (FE, GE) f(x) kgpk T

PALMER7A 6 B# 1F (736, 4080) (1001, 736) 0.1D+02 0.2D+01 4.24

L 1I (999, 5441) (999, 883) 0.1D+02 0.5D+01 9.40

PALMER7E 8 B gp (14, 137) (22, 14) 0.1D+02 0.7D�05 0.15

L gp (403, 2358) (403, 351) 0.1D+02 0.1D�04 4.40

PALMER8A 6 B# gp (37, 152) (41, 37) 0.7D�01 0.8D�05 0.13
L gp (62, 309) (62, 54) 0.07D�01 0.9D�06 0.80

PALMER8E 8 B gp (41, 419) (66, 41) 0.6D�02 0.5D�06 0.35
L gp (35, 391) (35, 33) 0.6D�02 0.5D�05 0.60

WEEDS 3 B gp (35, 70) (43, 35) 0.3D+01 0.2D�07 0.14
L gp (27, 61) (27, 24) 0.3D+01 0.7D�05 0.20

Table 9 (cont.): Real bound{constrained least{squares problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

TOINTQOR 50 B gp (1,27) (2,1) 0.1D+04 0.5D�05 0.06

L gp (4, 35) (4, 5) 0.1D+04 0.3D�05 0.10

Table 10: Modelling unconstrained quadratic problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

GULF 3 B gp (30,82) (51,30) 0.9D�08 0.2D�06 2.22
L gp (42, 90) (42, 38) 0.2D�07 0.2D�05 1.30

HEART6LS 6 B# 1F (498,2875) (1000,498) 0.3D�01 0.2D+03 4.47
L 1I (1000, 2179) (1000, 874) 0.9D�01 0.1D+02 7.50

KOWOSB 4 B gp (10,58) (20,10) 0.3D�03 0.4D�05 0.09
L gp (10, 26) (10, 11) 0.3D�03 0.6D�05 0.10

MOREBV 5000 B gp (2,88) (3,2) 0.2D�09 0.2D�5 21.60

L gp (4, 73) (4, 5) 0.3D�09 0.4D�05 15.30

OSBORNEB 11 B gp (23,332) (47,23) 0.4D�01 0.5D�07 3.59

L gp (31,204) (31,28) 0.4D�01 0.8D�05 2.00

VIBRBEAM 8 B# 1F (943,4173) (1000,943) 0.2D+00 0.1D+00 42.52
L gp (169,1082) (169,157) 0.2D+00 0.7D�05 9.60

YFITU 3 B gp (74,213) (117,74) 0.2D�07 0.8D�05 0.44
L gp (85,224) (85,70) 0.3D�08 0.1D�05 0.70

Table 11: Modelling unconstrained least{squares problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

FMINSURF 15625 B gp (80,5475) (170,80) 0.1D+01 0.1D�05 8332.79
L gp (974, 2396) (974,893) 0.1D+01 0.2D�05 6264.70

TOINTGOR 50 B gp (8,124) (9,8) 0.1D+04 0.5D�05 0.30
L gp (6, 128) (6, 7) 0.1D+04 0.2D�05 0.20

Table 12: Other modelling unconstrained problems
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PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

TORSION1 14884 B gp (1,803) (2,1) �0.4D+00 0.7D�05 1251.14

L gp (37, 1347) (37, 38) �0.4D+00 0.4D�06 1050.90

TORSION2 14884 B gp (1,765) (2,1) �0.4D+00 0.9D�05 1276.25

L gp (10, 5053) (10, 11) �0.4D+00 0.2D�05 4796.60

TORSION3 14884 B gp (1,270) (2,1) �0.1D+01 0.8D�05 288.87
L gp (19, 390) (19, 20) �0.1D+01 0.9D�06 261.30

TORSION4 14884 B gp (1,225) (2,1) �0.1D+01 0.9D�05 266.25
L gp (15, 5954) (15, 16) �0.1D+01 0.5D�06 5289.10

TORSION5 14884 B gp (1,84) (2,1) �0.2D+01 0.8D�05 85.25
L gp (9,114) (9, 10) �0.3D+01 0.2D�05 75.30

TORSION6 14884 B gp (1,78) (2,1) �0.3D+01 0.8D�05 70.77
L gp (11,7355) (11,12) �0.3D+01 0.6D�06 6249.30

TORSIONA 14884 B gp (1,858) (2,1) �0.4D+00 0.8D�05 1315.55

L gp (37,1339) (37,38) �0.4D+00 0.5D�06 1109.80

TORSIONB 14884 B gp (1,588) (2,1) �0.4D+00 0.9D�05 995.13

L gp (8,5000) (8,9) �0.4D+00 0.3D�05 4873.40

TORSIONC 14884 B gp (1,273) (2,1) �0.1D+01 0.9D�05 301.21

L gp (19,390) (19, 20) �0.1D+01 0.1D�05 277.80

TORSIOND 14884 B gp (1,227) (2,1) �0.1D+01 0.9D�05 322.86
L gp (9,9430) (9, 10) �0.1D+01 0.3D�05 8345.90

TORSIONE 14884 B gp (1,82) (2,1) �0.3D+01 0.8D�05 70.89
L gp (9,114) (9, 10) �0.3D+01 0.2D�05 77.50

TORSIONF 14884 B gp (1,90) (2,1) �0.3D+01 0.8D�05 100.66
L gp (10,5343) (10, 11) �0.3D+01 0.7D�06 4120.80

Table 13: Modelling bound{constrained quadratic problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

YFIT 3 B gp (74,213) (117,74) 0.2D�07 0.8D�05 0.43
L gp (85,224) (85,70) 0.3D�08 0.1D�05 0.70

Table 14: Modelling bound{constrained least{squares problems

PROBLEM N S RS (ITout, ITinn) (FE, GE) f(x) kgpk T

QRTQUAD 120 B gp (30,275) (55,30) �0.4D+07 0.6D�05 1.65
L gp (178, 570) (178, 145) �0.4D+07 0.4D�05 6.00

S368 100 B gp (9,34) (12,9) �0.1D+03 0.7D�05 48.36

L gp (8, 20) (8, 7) �0.1D+03 0.2D�07 21.70

Table 15: Other modelling bound{constrained problems

The diagrams of Figure 1 illustrate the proportion of problems of di�erent dimen-

sions in the set of tests. For problems with more than one dimension, we selected the

largest possibility that matched with the available requirements of memory. This justi-

�es the small proportion of medium size problems in our set of tests. For the quadratic

problems, the class (100; 500] is empty. Most of the problems are concentrated either

in the �rst class, with 1 � n � 50 or in the last class (10000 < n � 15625). Consider-

ing the non-quadratic problems, the majority is constituted of the ones with smallest

dimensions: 59% have dimension less than or equal to 50. The second largest set

is the one obtained by combining classes E, F and G, that is, for which n > 1000,

corresponding to 25% of the non-quadratic problems.
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Fig. 1: Dimension of problems in the set of tests. Chart (a): Quadratic problems

- A = (0,50]; B=(50,100]; C=(500,1000]; D=(1000,5000]; E=(5000,10000];

F=(10000;15625]. Chart (b): Non-quadratic problems - A = (0,50];

B=(50,100]; C=(100,500]; D=(500,1000]; E=(1000,5000]; F=(5000,10000];

G=(10000;15625].

GMITout GMITinn GMFE GMGE GMT

AUQ B 1.000 18.61 2.000 1.000 0.493

(7) L 3.074 23.64 3.074 4.092 1.127
67% 21% 35% 76% 56%

AUL B 23.72 117.4 36.97 23.72 1.370
(50) L 25.91 83.01 25.91 24.32 2.145

8% �41% �43% 3% 36%

OAU B 13.74 67.07 20.04 13.74 3.693
(45) L 16.40 62.91 16.40 15.93 5.683

16% �7% �22% 14% 35%

ABQ B 1.000 84.87 2.000 1.000 7.073
(23) L 7.860 153.5 8.100 9.851 19.12

87% 45% 75% 90% 63%

ABL B 9.418 61.14 15.02 9.418 0.832
(13) L 12.79 60.44 12.79 13.11 1.622

26% �1% �17% 28% 49%

OAB B 7.469 17.35 11.76 7.469 0.232

(14) L 7.945 16.37 7.945 8.819 0.272
6% �6% �48% 15% 15%

RUQ B 1.000 15.65 2.000 1.000 .0136

(9) L 15.42 237.3 15.42 17.05 0.316
94% 93% 87% 94% 96%

RBQ B 1.000 37846. 2.000 1.000 12530.
(1) L 9.000 51556. 9.000 10.00 10224.

89% 27% 78% 90% �23%

RBL B 49.06 267.6 73.00 49.06 0.437
(24) L 62.93 252.1 62.93 59.17 0.730

22% �6% �16% 17% 42%

Table 16: Average computational e�ort of each set of problems
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GMITout GMITinn GMFE GMGE GMT

MUQ B 1.000 27.00 2.000 1.000 0.060

(1) L 4.000 35.00 4.000 5.000 0.100
75% 23% 50% 80% 40%

MUL B 15.92 124.2 27.87 15.92 1.468

(5) L 21.34 95.17 21.34 21.01 1.227
25% �31% �31% 24% �20%

OMU B 25.30 824.0 39.12 25.30 50.00
(2) L 76.45 553.8 76.45 79.06 35.40

67% �49% 49% 68% �41%

MBQ B 1.000 248.9 2.000 1.000 306.0
(12) L 13.80 1554. 13.80 14.91 1239.

93% 84% 86% 93% 75%

MBL B 74.00 213.0 117.0 74.00 0.430
(1) L 85.00 224.0 85.00 70.00 0.700

13% 5% �38% �6% 39%

OMB B 16.43 96.70 25.69 16.43 8.933

(2) L 37.74 106.8 37.74 31.86 11.41
56% 9% 32% 48% 22%

Table 16 (cont.): Average computational e�ort of each set of problems

GMITout GMITinn GMFE GMGE GMT

QUADRATIC B 1.000 73.02 2.000 1.000 4.249

(53) L 8.753 236.7 8.868 10.44 17.19

89% 69% 77% 90% 75%

NON-QUADRATIC B 18.74 93.04 28.64 18.74 1.336

(156) L 22.52 79.52 22.52 21.85 2.028

17% �17% �27% 14% 34%

UNCONSTRAINED B 12.08 74.89 19.12 12.08 1.374

(119) L 18.38 77.48 18.38 18.18 2.578

34% 3% �4% 34% 47%

BOUND-CONSTRAINED B 5.959 107.5 10.19 5.959 2.542

(90) L 16.88 156.5 17.01 18.05 5.198

65% 31% 40% 67% 51%

TOTAL B 8.912 87.50 14.58 8.912 1.791

(209) L 17.72 104.9 17.78 18.12 3.487

50% 17% 18% 51% 49%

Table 17: Summarized average computational e�ort of the numerical experiments

Tables 16 and 17 summarize the average computational e�ort of algorithms BOX-

QUACAN and LANCELOT. The notation used is similar to the previous tables: GMITout

and GMITinn contain the geometric means of the number of outer and inner iterations

of each algorithm, GMFE and GMGE inform the geometric means of the number of

functional and gradient evaluations and GMT gives the geometric mean of the time

spent by each test. For not having to exclude the problems with zero for any of the

values ITout, ITinn, FE or GE from the average results, we replaced all the zeros

by ones in the computation of the geometric means. It is worthwhile stressing that

c Investigaci�on Operativa 1997



46 M. A. Diniz{Ehrhardt, M. A. Gomes{Ruggiero and S. A. Santos � Numerical Perf ...

the logarithm with base 10 of the geometric means presented in Tables 16 and 17

de�ne the average order of magnitude of the computed values. An additional row

was included that, column by column, compares the performance of both algorithms.

Keeping the e�ort spent by LANCELOT as a reference, we computed the relative dif-

ference between LANCELOT and BOX-QUACAN. The positive values indicate a superior

performance of BOX-QUACAN. The data from problems for which convergence failed (11

out of 220, i.e. 5%) were excluded from Tables 16 and 17, and the numbers in paren-

thesis indicate the amount of problems in that particular class. Convergence failed

(1F or 1I) for both algorithms in 4.1% of the tests (9 out of 220). BOX-QUACAN

failed alone in 0.9% of the tests (2 out of 220), while LANCELOT never failed for the

problems successfully solved by BOX-QUACAN. The two failures occurred for problems

EXTROSNB (Table 2) and VIBRBEAM (Table 11). In both cases we observed that

the objective function value at the �nal point is either better or the same as the one

achieved by SBMIN, but the norm of the projected gradient is still greater than the

required precision "g = 10�5, probably because the objective function is badly scaled.

In Table 16, the more relevant columns for the comparison are GMITinn and

GMGE. The former represents the computational e�ort of the quadratic solver and

the latter registers the number of distinct points (i.e. accepted by the su�cient de-

crease condition) in the sequence generated by each algorithm. Declaring the cases

where the relative measure belongs to the interval (�10%,10%) as a tie between the

two algorithms, the analysis of the results of Table 16 is given as follows. Horizon-

tally, except for the sets AUL and MUL, BOX-QUACAN performed better that LANCELOT.

Vertically, concerning inner iterations, the algorithm BOX-QUACAN had a worse per-

formance than LANCELOT in the sets AUL, RBQ, MUL and OMU. For the sets AUQ,

ABQ, RUQ, MUQ and MBQ the opposite took place and for the remaining sets

(OAU, ABL, OAB, RBL, MBL and OMB) ties occurred. The column GMGE in-

dicates an advantage of BOX-QUACAN over LANCELOT as far as derivative evaluations

are concerned for all sets except AUL and MBL, for which ties were obtained. In

terms of column GMFE, we observed that BOX-QUACAN uses a larger number of func-

tional evaluations than LANCELOT for the sets AUL, OAU, ABL, OAB, RBL, MUL

and MBL, indicating that BOX-QUACAN rejected a larger amount of points in the su-

�cient decrease test, probably due to the simplicity of its scheme for updating the

trust{region radius. For the remaining sets (AUQ, ABQ, RUQ, RBQ, MUQ, OMU,

MBQ and OMB) BOX-QUACAN needed fewer functional evaluations than LANCELOT.

For most of the small problems, the running time was included only for com-

pletion, since the measure of time can be rather innacurate in this case. As far as

the large-scale sparse problems are concerned, it is frequently seen that BOX-QUACAN

works less, performing fewer inner and/or outer iterations than SBMIN but spends a

larger amount of running time. The reason of such behavior is that, despite con-

taining important information about the performance of each algorithm separately,

the columns T and GMT of Tables 1-15 and 16-17 do not provide fair comparative

measures. Since the test problems were selected from the CUTE collection, the rou-

tines for computing the objective function value, its gradient and the product of its

Hessian by a vector are provided by this environment. Unfortunately, it is a draw-
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back of CUTE that, except for LANCELOT, it is not given to any other software the

option of exploiting the sparsity of a vector when it is multiplied by the Hessian ma-

trix. Because of this, the di�erence in spent time increases signi�catively with the

dimension of the problems. For example, in the set MBQ (Table 13), with 12 prob-

lems having dimension n = 14884, the performance of BOX-QUACAN is by far superior

than the one of LANCELOT for all the considered quanti�ers. Nevertheless, the rela-

tive measure of GMT is proportionally inferior when compared to the other measures.

Analysing Table 17 by rows we observe that on the whole BOX-QUACAN surpasses

LANCELOT. For quadratic problems, for the bound{constrained set and for the to-

tal set of solved problems all the quanti�ers are more favorable to BOX-QUACAN. For

non-quadratic problems LANCELOT performed better in terms of inner iterations and

functional evaluations. For unconstrained problems, there was a tie between the two

algorithms for the values GMITinn and GMFE.

There were two cases of stopping because the trust{region radius became too

small: problems PENALTY3 (Table 3) and EXPQUAD (Table 6). For the former

both BOX- QUACAN and LANCELOT stopped because �k � "�, while for the latter only
BOX-QUACAN stopped with this criterion. We observed, however, that for these prob-

lems the norm of the projected gradient at the �nal point is small, but not small

enough to achieve convergence with kgpk � "g as demanded. In other words, the �nal
point is almost optimal and the expected convergence was not reached probably due

to inuence of objective function scaling in both problems. Such inuence was also

present in problems marked with # in Tables 1-15 (13 out of 220, i.e. 6%), for which

the uniform choice of Mk = 105 for the upper bound was not large enough and so it

had to be increased to Mk = 1010.

An interesting aspect of our quadratic solver was detected through the real bound-

constrained quadratic problem ODNAMUR (Table 8). To uniformize the choices for

the whole set of tests, we de�ned very loosely the parameter of the quadratic solver in

charge of deciding to abandon the current face. For problem ODNAMUR, however,

such choice showed to be rather poor. Probably due to dual degeneracy, for this

problem the best policy was to investigate better the current face before abandoning

it, to avoid wastes in premature leaving and having to go back to it. The results

presented in Table 8 correspond to the more conservative choice for such parameter

and this is the only exception among the test problems.

Figures 2-6 provide visual alternatives for Table 17. The problems were classi�ed

in quadratic & non-quadratic and unconstrained & bound-constrained so that the

results of each algorithm become more evident. The �rst two diagrams illustrate the

consequences of the di�erent approaches adopted by BOX-QUACAN and LANCELOT con-

cerning the solution of the quadratic subproblems. More speci�cally, Figure 2 stresses

the value of using a specially designed solver for simple bounded quadratic problems

that exploits the whole feasible set, instead of relying on the identi�cation information

provided by the generalized Cauchy point. Figure 3 points out a slight advantage of

BOX-QUACAN over LANCELOT as far as non-quadratic problems are concerned. From
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Fig. 2: Computational e�ort of quadratic problems
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Fig. 3: Computational e�ort of non-quadratic problems
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Fig. 4: Computational e�ort of unconstrained problems
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Fig. 5: Computational e�ort of bound-constrained problems
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Fig. 6: Computational e�ort of the whole set of solved problems
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these results we can observe that if the problem is non-quadratic, the e�ort of solving

the quadratic subproblem on its whole feasible set does not seem worthwhile, specially

in the initial outer iterations, when the agreement between the quadratic model and

the problem is still to be tuned. In this sense, we believe that in the begining an even

more relaxed tolerance for approximately solving the quadratic subproblem should be

adopted in BOX-QUACAN. Through Figures 4 and 5 we can constrast the performance

of the two algorithms for problems with either arti�cial or natural bounds. In both

cases BOX-QUACAN had a superior behavior, although for the bound-constrained set

the diference is qualitatively larger. Figure 6 summarizes the average computational

e�ort of the numerical experiments considering all the problems as a single block,

showing that both approaches are competitive.

6 Final Remarks

As expected, the algorithm BOX-QUACAN had a very good performance for the quadratic

problems. This shows the value of investing in the quadratic solver whenever it is

known that the quadratic model represents well the objective function, in which case

BOX-QUACAN is preferable to SBMIN.

The numerical tests detected that there is certainly room for improvement in the

strategy for updating the trust{region radius of BOX-QUACAN. It is an interesting as-

pect to be investigated whether the implementation of SBMIN strategy for updating �

would improve BOX-QUACAN performance or not. Distinct ideas could be also tested

and a recent worthwhile mentioning work in this subject is [14]. Another aspect that

is currently under investigation is the initialization of the quadratic subproblem (6)

(cf. [13]). Future research also includes an extension of BOX-QUACAN for dealing with

nonlinear constraints. A step in this direction was done in [8], where an algorithm for

minimizing convex quadratics with simple bounds and equality constraints based on

augmented Lagrangians with adaptive precision control is proposed.
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