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Abstract

The objective of this paper is twofold. On one hand, the main results of the exact penalty

methods for nonlinear programming that are useful for algorithmic purposes are surveyed

and the proof of the main result is simpli�ed. On the other hand, it is shown that the main

theorem on this subject still holds when one includes only a subset of the constraints in

the penalized objective function, so that suitable constrained subproblems are solved at each

penalty step. The reasons why this is important from a practical (algorithmic) point of view

are explained.
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1 Introduction

The Nonlinear Programming problem (NLP) consists in the minimization of a general

objective function subject to constraints that are usually given by a set of equalities

and inequalities. Nevertheless, the nature of the constraints is not necessarily the

same. Many times it is possible to take advantage of the structure of some equality

and/or inequality constraints. For example, the geometry of simple bounds, polytopes

and Euclidian balls can be conveniently exploited in the development of numerical

algorithms for solving (NLP).

Exterior penalty methods, usually referred only as penalty methods, consist in

solving (NLP) by means of the resolution of a sequence of subproblems with simple

constraints (or unconstrained). The constraints which cannot be easily dealt with are

placed into the objective function through a penalty function, so that any violation of
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such constraints is penalized. However, for exact penalty methods, the known result

which ensures that the solution to the original problem is also a solution to the sub-

problems, is stated for unconstrained subproblems only. In this work, we extend such

result to allow constrained subproblems in exact penalty methods. In consequence,

numerical algorithms might be developed combining the advantages of exploiting the

simple constrained set and the usage of exact penalty functions.

Consider the following general (NLP)

min f(x)
s.t. h(x) = 0

g(x) � 0

x 2 
 ;

(1)

where 
 is a closed set de�ned by simple constraints, f : IRn ! IR, h : IRn ! IRm1 ,

g : IRn ! IRm2 and f; h; g 2 C2.

The penalty functions that appear more frequently in the literature are the Qua-

dratic Loss Penalty Function P2(x; �) = f(x) + �
�
kh(x)k22 + kg+(x)k22

�
and the L1

Penalty Function P1(x; �) = f(x)+� (kh(x)k1 + kg+(x)k1), where � > 0 is the penalty

parameter and g+
j
(x) = maxf0; gj(x)g. Usually, penalty methods generate a sequence

of infeasible points and under very mild conditions any limit point is an optimal so-

lution to the original problem. In most of the methods, the feasibility is achieved

only at the solution. However, there are penalty functions that generate a sequence

of points that may be interior or exterior to the feasible region (see [12, 24]).

In the theory developed for classical penalty methods the sequence of penalty

parameters must be unbounded in order to guarantee global convergence. Computa-

tional di�culties of ill-conditioning appear when we have to solve penalty subproblems

for large values of �. An alternative to remedy this situation is the approach discussed
in Mart��nez & Santos [23] for P2(x; �). The main idea of their work is to determine

a stable Newton direction, using a procedure that introduces new variables in the

nonlinear system given by the �rst{order necessary conditions for a local minimizer

of P2(x; �), i.e. rP2(x; �) = 0. Another weakness of the penalty methods is the

assumption that global minimizers of the penalty subproblems have to be computed.

In practice, we do not obtain global minimizers: the algorithms usually generate a

sequence of local minimizers.

The idea of exact penalty methods is to solve (NLP) by means of a single un-

constrained minimization problem. Roughly speaking, an exact penalty function for

problem (1) is a function P (x; �), where � > 0 is the penalty parameter, with the prop-

erty that there exists a lower bound �� > 0 such that for � > �� any local minimizer of

(NLP) is also a local minimizer of the penalty subproblem. A more rigorous de�nition

of an exact penalty function can be found in [8]. Exact penalty functions can be di-

vided into two classes: continuously di�erentiable and nondi�erentiable exact penalty

functions. Continuously di�erentiable exact penalty functions were introduced by
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Fletcher [13] for equality constrained problems and by Glad & Polak [16] for prob-

lems with inequality constraints; further contributions have been given in Di Pillo &

Grippo [8, 9]. Nondi�erentiable exact penalty functions were introduced by Zangwill

[26] and Pietrzykowski [25], and a lot of research has been developed in this subject

(see, e.g. [5, 6, 7, 10, 14]).

A class of nondi�erentiable exact penalty functions associated to (1) for 
 = IRn

was analyzed by Charalambous [5] in 1978. It is given by

Pp(x; �; �) = f(x) + �

0
@m1X

i=1

[�ijhi(x)j]
p +

m2X
j=1

[�jg
+

j
(x)]p

1
A
1=p

(2)

where p � 1; �i; �j > 0; i = 1; : : : ;m1 and j = 1; : : : ;m2: For p = 1 and considering

all the penalty parameters equal to �; we have the L1 Penalty Function, introduced

by Pietrzykowski [25] in 1969,

P1(x; �) = f(x) + �

0
@m1X

i=1

jhi(x)j +

m2X
j=1

g+
j
(x)

1
A : (3)

For p =1; we have

P1(x; �) = f(x) + max
1 � i � m1

1 � j � m2

f�ijhi(x)j; �jg
+

j
(x)g (4)

which is the exact Minimax Penalty Function of Bandler & Charalambous [1].

Pietrzykowski has shown that function (3) is exact in the sense that there is a

�nite � > 0 such that any regular local minimizer of (NLP) is also a local minimizer

of the penalized unconstrained problem. In 1970, Luenberger [19] showed that, under

convex assumptions, there is a lower bound for �, equal to the largest Lagrange mul-
tiplier in absolute value, associated to the nonlinear problem. In 1978 Charalambous

[5, 6] generalized the result of Luenberger for the L1 penalty function (3), assuming

the second-order su�cient conditions for (NLP).

Other worth mentioning works involving the L1 penalty function are the ones

of Charalambous [6] and Coleman & Conn [7]. These works present the optimality

conditions for minimizing the L1 function. Further contributions involving the L1
penalty function can be found in [11, 18, 26]. The L1 penalty function often appears

in sequential quadratic programming techniques, used as a merit function (see [4, 21]).

In 1979, Han & Mangasarian [17] introduced a class of exact penalty functions

associated to problem (1) with 
 = IRn;

PQ(x; �) = f(x) + �Q(kh(x); g+(x)k) (5)
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where � is the penalty parameter, k � k is any �xed vector norm in IRm1+m2 , and

Q : IR+ ! IR+ is any convex function such that

Q(t) = 0 i� t = 0 and 0 < lim
t!0+

Q(t)�Q(0)

t
<1 :

(Throughout the paper, for u 2 IRm1 and v 2 IRm2 , the notation ku; vk means

k(u1; : : : ; um1
; v1; : : : ; vm2

)T k.)

Observe that for Q(�) = � and k � k1 we have the L1 penalty function, P1(x; �);
for Q(�) = � and k � kp we have the class of functions studied by Charalambous [5]

with equal weights; for Q(�) = � and k � k1 we have the Minimax penalty function.

For simplicity and without loosing generality, in this work we restrict our attention

to the exact penalty function (5) with Q(�) = �; that is,

P (x; �) = f(x) + � kh(x); g+(x)k: (6)

Function P (x; �) penalizes only the constraints g and h of the original problem.

Keeping the penalty subproblems constrained to the set 
, we will show that the clas-

sical exact penalty function theorem for the unconstrained case is still valid for this

new situation. The consequence of such result is that we can apply e�cient already

known algorithms that take advantage of the structure of the penalty subproblems,

as in the recent work of Mart��nez & Moretti [22].

This work is organized as follows. In Section 2 the results for classical exterior

penalty function algorithms are reviewed and the relationship between the solutions

to (NLP) and the solutions to the penalty subproblems is commented. In Section 3,

a simple proof for the exactness of P (x; �) with unconstrained penalty subproblems

is presented. Next, this result is extended to constrained subproblems, where it is

shown that there exists a �nite penalty parameter that depends only on the Lagrange

multipliers associated to the penalized constraints. Finally, in Section 4 we discuss

the consequences of this extension for practical optimization.

2 General Results

Let us consider the penalty subproblems

min P (x; �k) = f(x) + �kkh(x); g
+(x)k

s.t. x 2 
 ;
(7)

with �k > 0 and k � k any given norm in IRm1+m2 :

Initially, we recall the classical global convergence theorem.

Theorem 1: Let fxkg, k = 0; 1; 2; : : :, be a sequence of global minimizers of problem

(7), and 0 < �k < �k+1, �k ! +1. Then, every limit point of the sequence fxkg is
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a global minimizer of problem (1).

Proof: See [2, 3, 20], among others. 2

A limitation of the above theorem appears when we assume that the penalty sub-

problems have a global solution for all �k. The example below shows that there is no

guarantee of achieving a minimizer of the original problem if we do not follow global

minimizers of the penalty subproblems.

Example 1: Consider the problem min 0 s.t. x(x2 � 1) + 1 = 0. For the L1
penalty function, xk = 0 is a local minimizer of the penalty subproblem for all k � 0.

However, the unique limit point (x� = 0) is infeasible for the original problem.

Example 1 also shows that we might have convergence to a non-stationary point.

The next example points out that even if the limit point is feasible, by not following

global minimizers of the penalty subproblems, we can have convergence to a maxi-

mizer of the original problem.

Example 2: Consider the problem min�jxj1:5 s.t. 0 � x � 1. Using the

quadratic loss penalty function, xk = �9=(16�2
k
) is a local minimizer of the penalty

subproblem. The limit point of the sequence, x� = 0, is feasible but it is a maximizer

of the original problem.

Another question that might raise is what happens to a sequence of just station-

ary points of the penalty subproblems. For the quadratic loss penalty function, and

assuming regularity at the limit point, it can be proved that this limit point is sta-

tionary for the original problem (see, e.g. [3]). For the L1 penalty function, if we

request feasibility and regularity at the limit point, this result remains valid.

In order to avoid the need of a sequence of unbounded penalty parameters, it

is possible to construct penalty functions that are exact in the sense that a local

solution to the original problem is also a local solution to the penalty subproblem, for

a �nite value of the penalty parameter. Before proving that (6) is an exact penalty

function, we recall the second order su�cient optimality conditions for problem (1)

with 
 = IRn. The Lagrangian function is de�ned by

L(x; �; �) = f(x) + h(x)T�+ g(x)T� ;

and so

rxL(x; �; �) = rf(x) + Jh(x)
T�+ Jg(x)

T� ;

r2
xx
L(x; �; �) = r2f(x) +

m1X
i=1

�ir
2hi(x) +

m2X
j=1

�jr
2gj(x) ;

where

Jh(x) = [rh1(x); : : : ;rhm1
(x)]T and Jg(x) = [rg1(x); : : : ;rgm2

(x)]T :
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Theorem 2: If (x�; ��; ��) 2 IRn � IRm1 � IRm2

+ is such that

rxL(x
�; ��; ��) = 0 ; (8)

h(x�) = 0; g(x�) � 0; g(x�)T�� = 0 ; (9)

and

dTr2
xx
L(x�; ��; ��)d > 0 ; (10)

for all d 2 fy 2 IRn j Jh(x
�)y = 0; rgj(x

�)T y = 0; j 2 Jg, where J = fj j gj(x
�) =

0; ��
j
> 0g, then x� is a strict local minimizer of problem (1) with 
 = IRn

.

Proof: See, e.g. [20], pp. 316{317. 2

3 Exactness of P (x; �)

To establish a lower bound for the penalty parameter, so that the penalty function

P (x; �) becomes exact, we need the concept of dual norms. Recall that for any given

vector norm k � k in IRn there is a corresponding vector norm k � k0, called the dual

norm, which is de�ned by

kxk0 = max
kyk=1

xT y :

For example, the dual of k � k1 is k � k1 and k � k2 is self-dual. From the above

de�nition, it follows the so-called generalized Cauchy inequality,

jxT yj � kxk0 � kyk for all x; y 2 IRn : (11)

Several proofs of the exactness of P (x; �) can be found depending on the chosen

norm. For k � k1 see [3, 5, 6, 20] and for k � kp see [5, 8, 17]. There are also proofs that

do not depend on the chosen norm, using either subgradients [14] or the exactness

of the L1 penalty function [17]. In the following we present a simpler version of the

proof stated in [17] for the exactness of P (x; �).

Theorem 3: Let (x�; ��; ��) 2 IRn � IRm1 � IRm2

+ satisfy the second-order su�cient

conditions for a local minimizer of problem (1) with 
 = IRn
(given by Theorem 2) and

let k �k be any norm in IRm1+m2 with k �k0 its dual norm. Then for � > �� = k��; ��k0,
x� is a strict unconstrained local minimizer of P (x; �).

Proof: Let us assume that x� is not a strict local minimizer of P (x; �). Therefore,

there exists a sequence fxkg converging to x� such that P (xk; �) � P (x�; �) for all
k � 0. Thus,

P (xk ; �)� P (x�; �) = f(xk)� f(x�) + �kh(xk); g+(xk)k � 0 : (12)
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De�ne the sequence dk = (xk �x�)=kxk �x�k and take a convergent subsequence

such that fdkg converges to d with kdk = 1. Taking the limit in (12), we obtain

rf(x�)T d+ �kJh(x
�)d; Jg+(x

�)dk � 0 ; (13)

where

Jg+(x
�)d = [rg+1 (x

�)T d; : : : ;rg+m2
(x�)T d]T ;

with

rg+
j
(x�)T d =

�
0 ; gj(x

�) < 0

maxfrgj(x
�)T d; 0g ; gj(x

�) = 0
:

Using equation (8) in (13), we �nd

�kJh(x
�)d; Jg+(x

�)dk � (��)T Jh(x
�)d� (��)T Jg(x

�)d � 0 ; (14)

which implies,

�kJh(x
�)d; Jg+(x

�)dk � (��)T Jh(x
�)d� (��)T Jg+(x

�)d � 0 ;

since (��)TJg(x
�)d � (��)TJg+(x

�)d. Now, using the generalized Cauchy inequality

(11), we conclude that

(�� k��; ��k0)kJh(x
�)d; Jg+(x

�)dk � 0 :

Because � > k��; ��k0, it follows that Jh(x
�)d = 0 and Jg+(x

�)d = 0. Moreover,

from inequality (14), rgj(x
�)T d = 0 for j 2 J = fj j gj(x

�) = 0; ��
j
> 0g. From

equation (10) of Theorem 2, it follows that dTr2
xxL(x

�; ��; ��)d > 0, which implies

that for k su�ciently large

L(xk ; ��; ��) > L(x�; ��; ��) :

As a result,
P (xk; �) = f(xk) + �kh(xk); g+(xk)k

� f(xk) + k��; ��k0kh(xk); g+(xk)k
� f(xk) + h(xk)T�� + (g+(xk))T��

� f(xk) + h(xk)T�� + g(xk)T��

= L(xk ; ��; ��)
> L(x�; ��; ��)
= f(x�)
= P (x�; �)
� P (xk; �) ;

which is a contradiction. 2
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Theorem 3 guarantees that, under second-order su�ciency, if x� is a local min-

imizer of (NLP) then x� is also a local minimizer of the penalty subproblem. The

practical interest is the converse of this theorem. For the convex case, the characteri-

zation of solutions to (NLP) through the solutions to the penalty subproblem is fully

satisfactory since, in this case, every local minimum is also global, and the optimal

solution sets of the original problem and of the subproblems are identical (see [5, 17]).

In the nonconvex case, the study of properties that ensure that local (global) solutions

to the penalty subproblem are local (global) solutions to the constrained problem are

of great interest.

Theorem 3 remains true if we use di�erent penalty parameters for each constraint.

There is no di�culty in reorganizing the theory to account for this change. Thus,

assuming that 
 is de�ned by a set of equalities and inequalities (making sense to

refer to the Lagrange multipliers associated to 
), it is possible to state Theorem 4

below, which illustrates the use of di�erent penalty parameters for the constraints h
and g, and for the set 
.

Theorem 4: Assume that x� 2 IRn
satis�es the second-order su�cient conditions

for a local minimizer of problem (1). Let �� 2 IRm1 , �� 2 IRm2

+ and �� be the La-

grange multiplier vectors associated to h, g and the constraint set 
, respectively. Let

k � k be any vector norm with k � k0 its dual norm. Then, for � > �� = k��; ��k0;
and �1 > ��1 = k��k0; x� is a strict unconstrained local minimizer of P (x; �; �1) =
f(x) + �kh(x); g+(x)k+ �1R(x), where R(x) is the penalty function for 
.

Proof: Analogous to Theorem 3. 2

Theorem 3 shows that P (x; �) is exact for problem (1) with 
 = IRn. An anal-

ogous result is given by Theorem 4, where the set 
 was included in the penalty

function. In the following theorem, we show that there exists a �nite lower bound for

the penalty parameter in the case that problem (1) is penalized only with respect to

h and g, so that the penalty subproblems remain constrained to 
. Observe that in

the classical theory for exact penalty functions the subproblems are unconstrained.

Theorem 5: Let x� 2 IRn
satisfy the second-order su�cient conditions for a local

minimizer of problem (1). Let �� 2 IRm1 and �� 2 IRm2

+ be the corresponding La-

grange multipliers of constraints h and g, and k � k be any vector norm with k � k0 its

dual norm. There exists 0 < �� <1 such that for � > ��, x� is a strict local minimizer

of problem (7).

Proof: Consider the problem

min f(x) + �kh(x); g+(x)k+ �1R(x)
s.t. x 2 IRn ;

(15)

where �; �1 > 0 and R(x) is as de�ned in Theorem 4. Since x� satis�es the second-

order su�cient conditions for problem (1), from Theorem 4, there exist �� = k��; ��k0
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and ��1 = k��k0 such that for � > �� and �1 > ��1, x
� is a strict local minimizer of

(15). Therefore, for � > �� and �1 > ��1 there exists " � "(�; �1) > 0 such that for all

x 2 B(x�; ") � fx 2 IRn j kx� x�k � "g,

f(x�) < f(x) + �kh(x); g+(x)k+ �1R(x) for all x 2 B(x
�; ") \ 
 ;

since R(x) = 0 for all x 2 
. Thus, for � > �� = k��; ��k0, x� is a strict local minimizer
of

min f(x) + �kh(x); g+(x)k
s.t. x 2 
 ;

and the proof is complete. 2

The importance of Theorem 5 is to guarantee the existence of a �nite penalty

parameter that depends on the Lagrange multipliers associated to constraints h and

g only, and not to the set 
. Such result allows us to develop algorithms for solving

problem (1) using the function P (x; �) when the penalty subproblems remain con-

strained to 
. Note that, since the lower bound for the penalty parameter is �nite,

the sequence of penalty subproblems is also �nite.

4 Final Remarks

The result given by Theorem 5 suggests that we can work with exact penalty functions

even for constrained subproblems. Although solving constrained problems is more

complex than solving unconstrained ones, the approach of dealing with constrained

penalty subproblems aims to take advantage of the geometry of the constraint set


. This idea makes possible the usage of already established numerical algorithms

for nonlinear programming problems with simple constraints (e.g. [15, 22]) to solve

the penalty subproblems. Moreover, new algorithms might be developed exploiting

particular properties of the chosen exact penalty function and the set 
.

Exact penalty methods require the solution of a �nite sequence of penalty sub-

problems, contrary to the classical non-exact approach, for which an in�nite sequence

is needed. Unfortunately, the exact penalty functions are either nondi�erentiable or

di�erentiable, but with a considerable degree of complexity. Therefore, it is necessary

to develop e�cient methods for nonsmooth optimization and/or to propose simpler

exact penalty functions. Due to the importance of exact penalty methods in nonlinear

programming it is also of great interest to investigate properties relating local (global)

minimizers of the penalty function and local (global) solutions to the original problem.
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