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Abstract

A general algorithm for minimizing a quadratic function with bounds on the variables is

presented. The new algorithm can use di�erent unconstrained minimization techniques on

di�erent faces. At every face, the minimization technique can be chosen according to he

structure of the Hessian and the dimension of the face. The strategy for leaving the face is

based on a simple scheme that exploits the properties of the \chopped gradient" introduced

by Friedlander and Mart��nez in 1989. This strategy guarantees global convergence even in

the presence of dual degeneracy, and �nite identi�cation in the nondegenerate case. A slight

modi�cation of the algorithm satis�es, in addition, an identi�cation property in the case of

dual degeneracy. Numerical experiments combining this new strategy with conjugate gradi-

ents, gradient with retards and direct solvers are presented.

Keywords: Quadratic programming, conjugate gradients, gradient with retards, active set

methods, sparse Cholesky factorization.

1 Introduction

Many practical problems require the minimization of quadratic functions with bounds

on the variables. Frequently, the number of variables is large, and the problem is chal-

lenging even for advanced computers. See [6], [13], [14], [19], [20], [21], [24], [11] and

references therein. Moreover, many times, quadratic minimization problems with box

constraints must be solved in the context of sophisticated algorithms for nonlinear
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programming. See, for example, [16], [22].

Some e�ective techniques for solving quadratic box-constrainedminimization prob-

lems are based on gradient projections (see [3]) and conjugate gradients. See, for

example, [13], [21]. By this we mean that the feasible box is implicitly divided into

disjoint faces, the conjugate gradient method [18] is used within the faces, where the

problem is essentially unconstrained, and the projections of half-lines de�ned by suit-

able descent directions are used for leaving a face, when this is necessary. In [21] the

convergence of one of these methods is proved in the case of a strictly convex quadratic

and �nite convergence is proved when the limit point is not dual-degenerate. Fried-

lander and Mart��nez [13] used the properties of the \chopped gradient" to introduce

a method that has �nite convergence even when the Hessian is singular and in the

presence of dual-degeneracy.

Looking at the the solution of very large minimization problems, Barzilai and

Borwein [2] introduced a nonmonotone method for unconstrained quadratic mini-

mization where only gradient directions are used and the memory requirements are

minimal. Raydan [23] proved the convergence of the method for general strictly con-

vex quadratics and Friedlander, Mart��nez and Raydan [14] extended the proof to

singular problems and applied the Barzilai-Borwein technique to the box-constrained

quadratic problem. The same authors [15] introduced generalizations of the original

Barzilai-Borwein method that exploit the asynchronous philosophy in parallel envi-

ronments.

One motivation of the present work is the observation that, in a single practical

large-scale problem, faces of di�erent dimensions can be explored. So, the most ap-

propriate unconstrained technique within one face might not be the optimal technique

for a face of di�erent dimension. In particular, we wish to consider the following un-

constrained techniques:

(a) Cholesky factorization of the reduced Hessian (dense or sparse);

(b) conjugate gradients;

(c) Barzilai-Borwein method and the generalizations given in [15] (gradient meth-

ods with retards).

Roughly speaking, for faces of small dimension, the dense Cholesky factorization

should be used and, as the dimension increases, we should try sparse Cholesky fac-

torization, conjugate gradients and, �nally, gradient methods with retards. However,

depending on the structure of the problem, the most \natural" choice may not be the

most e�cient one.

Let us now briey review the convergence results that have been obtained for pre-

decessors of the method introduced in this paper:
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(a) Mor�e and Toraldo [21] proved convergence of their method for strictly convex

box-constrained quadratic minimization and �nite convergence when dual-degeneracy

is excluded.

(b) Friedlander and Mart��nez [13] proved �nite convergence of their method for

(not necessarily strictly) convex box-constrained quadratic minimization even when

the problem is dual-degenerate.

(c) Friedlander, Mart��nez and Raydan [14] proved convergence of their algorithm

for (not necessarily strictly) convex box-constrained quadratic minimization, using

the Barzilai-Borwein method within the faces.

The �nite convergence results of [21] and [13] follow from the fact that the con-

jugate gradient method converges in a �nite number of iterations for unconstrained

quadratic problems. Moreover, the �nite convergence in degenerate problems of [13]

uses a bound of the norm of the quadratic Hessian. Clearly, since the Barzilai-Borwein

method is not �nitely convergent, it is not possible to obtain �nite convergence results

when this algorithm is used as an unconstrained minimizer in the box-constrained

problem. On the other hand, we observe that computable bounds of the quadratic

Hessian can be very unrealistic in many cases, so we decided not to use this type of

bounds in the new algorithm. Namely, we are going to prove the following results for

the adaptive algorithm:

(1) A limit point of the sequence generated by the algorithm exists, that is a sta-

tionary point of the problem.

(2) In the (not necessarily strictly) convex box-constrained quadratic case, the

following results hold:

(a) every limit point of a sequence generated by the algorithm is a solution;

(b) either the sequence generated by the algorithm converges to a non-degenerate

solution x
� with �nite identi�cation of the active constraints at x�, or there will nec-

essarily be dual degenerate solutions among its limit points.

(c) Even in the dual-degenerate case, a modi�cation of the main algorithm sat-

is�es the following \weak identi�cation property": There exists a set of constraints

S such that, eventually, the sequence of iterates satis�es exactly the constraints of

that set. In this case the sequence is convergent and the constraints at S are active

at the limit points. (However, the existence of an active constraint in the limit not

belonging to S is possible in the dual-degenerate case.)

This paper is organized as follows: in Sections 2 and 3 we describe the algorithm

and we prove the convergence results. In Section 4 we describe the strategies used

for unconstrained minimization within the faces, emphasizing the recently introduced

gradient methods with retards. In Section 5, we show the numerical experiments. In
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Section 6, we give some conclusions and we state the lines for future research.

2 Main Model Algorithm

We consider the problem of minimizing a quadratic function with bound constrained

variables

Minimize 	(x)

subject to x 2 
; (2.1)

where 
 = fx 2 IR
n j l � x � u ; l < ug, 	(x) = 1

2
x
T
Hx+ b

T
x and l ; u 2 IR

n.

We denote  = minfui � li ; i = 1; : : : ; ng and
�g(x) � �r	(x) � �(Hx+ b)

for all x 2 IR
n. Let L > 0 be such that kHk � L. (k � k denotes the 2-norm of vectors

or matrices.) Therefore, for all x; z 2 IR
n, we have that

	(z)�	(x)�r	(x)T (z � x) =
1

2
(z � x)TH(z � x) � L

2
kz � xk2: (2.2)

Clearly, if 	 is convex,

	(z)�	(x)�r	(x)T (z � x) � 0: (2.3)

We de�ne an open face of 
 as a set FI � 
 such that I is a (possibly empty)

subset of f1; 2; : : : ; 2ng such that i and n + i cannot belong simultaneously to I for

any i 2 f1; 2; : : : ; ng; and such that

FI = fx 2 
 j xi = li if i 2 I; xi = ui if n+ i 2 I; li < xi < ui otherwise g :
Let us call �FI the closure of each open face, [FI ] the smallest linear manifold that

contains FI , S(FI) the parallel subspace to [FI ] and dim FI the dimension of S(FI ).

Clearly, dim FI = n � jI j. For each x 2 
 let us de�ne the (negative) projected

gradient �gP (x) 2 IR
n as

�gP (x)i =

8>>><
>>>:

0 if xi = li and @	
@xi

(x) > 0

0 if xi = ui and @	
@xi

(x) < 0

� @	
@xi

(x) else:

(2.4)

A necessary condition for x being a global solution of (2.1) (su�cient in the convex

case) is that

�gP (x) = 0 : (2.5)
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For each x 2 �FI let us de�ne �gI(x) 2 IR
n as

�gI(x)i =

�
0 if i 2 I or n+ i 2 I

� @	
@xi

(x) else:
(2.6)

Observe that �gI(x) is the orthogonal projection of �r	(x) on S(FI). We also

de�ne for x 2 �FI ,

�gC
I
(x)i =

8>>>>><
>>>>>:

0 if i =2 I and n+ i =2 I

0 if i 2 I and @	
@xi

(x) > 0

0 if n+ i 2 I and @	
@xi

(x) < 0

� @	
@xi

(x) else:

(2.7)

The vector �gC
I
(x) was introduced in [12], and named chopped gradient. Observe

that for all x 2 FI we have

�gP (x) = �gI(x) + �gC
I
(x) :

We say that a sequence fzkg � IR
n has the Property C, related to the quadratic

Q(z) if at least one of the following conditions hold:

(a) IfrQ(z0) 6= 0, there exist z� 2 IR
n, a limit point of fzkg, such thatrQ(z�) = 0

and Q(z�) < Q(z0);

(b) limk!1Q(zk) = �1.

Accordingly, we say that an algorithm designed to minimize unconstrained quadrat-

ics is a C�algorithm if, for all z0 2 IR
n, it generates a sequence fzkg with the Property

C.

It has been proved (see [16]) that the conjugate gradient algorithm for minimizing

quadratics �nds, in a �nite number of iterations a stationary point of the function,

or a direction along which the quadratic tends to �1. Therefore, after a trivial

modi�cation, we can say that it is a C�algorithm. The same can be said about di-

rect methods for unconstrained quadratic minimization provided that some device is

introduced to detect negative curvature directions when local minimizers do not exist.

Finally, gradient methods with retards are C�algorithms if Q is convex and ad-

mits stationary points. See [14], [15].

Now we are ready to present the main algorithm. The description will be \high

level" in the sense that the speci�cations of the internal procedures are postponed

for further sections. Nevertheless, the theoretical properties of the algorithm will be
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discussed within this \high level" framework.

Algorithm 2.1 (Main Model Algorithm)

Let 0 < � < 1 be given independently of k, and let x0 2 
 be an arbitrary initial

point. The algorithm de�nes a sequence fxkg in 
 and stops when k�gP (xk)k = 0. Let

us assume that xk 2 
 is such that k�gP (xk)k 6= 0. Let I = I(xk) be such that xk 2 FI

(observe that there exists only one subset I � f1; 2; : : : ; 2ng with this property), and

let the function �(x) be de�ned as

�(x) = argminf	(y) j y = x+ ��gC
I
(x) and y 2 
g : (2.8)

The following steps de�ne the procedure for obtaining xk+1.

Step 1: If

k�gC
I
(xk)k > � k�gP (xk)k ; (2.9)

then set xk+1 = �(xk). Else go to Step 2.

Step 2: Compute, using a C�algorithm for minimizing unconstrained quadratic

functions, a point zk 2 [FI ] such that 	(zk) < 	(xk). (If k � 1 and x
k�1 2 FI ,

use, at this step, the same C�algorithm employed to compute x
k in the previous

iteration.) If zk 2 �FI then set xk+1 = z
k. Else go to Step 3.

Step 3: Find x
k+1 2 �FI � FI such that 	(xk+1) < 	(xk).

In Step 2 we use any C�algorithm for unconstrained minimization of quadratic

functions on the manifold [FI ]. This freedom of choice plays an important role in the

behavior of the algorithm, and will be discussed in Section 4. Observe that di�erent

C�algorithms can be used at di�erent iterations of the main algorithm. However,

to change the C�algorithm is admitted only when the current iterate lies within a

di�erent face than the previous one. Step 3, on the other hand, drives us to the

boundary of FI when z
k is not feasible. The condition in Step 1 allows for non exact

minimization in the faces, preserving the required arguments for obtaining conver-

gence. Our next result establishes the existence of computable points that satisfy the

requirements of Steps 1, 2 and 3.

Theorem 2.1: Algorithm 2.1 is well de�ned.

Proof. If the condition (2.9) at Step 1 is satis�ed, then �gC
I
(xk) 6= 0, so �(xk) is well

de�ned. If the condition in Step 1 fails then we execute Step 2. Since we are using

a C�algorithm, the existence of zk 2 [FI ] such that 	(zk) < 	(xk) is guaranteed.
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Now, if zk =2 �FI , since '(�) � 	(xk + �(zk � x
k)) is a one-dimensional quadratic,

then

	(xk + �
+
break

(zk � x
k)) < 	(xk) ;

or

	(xk + �
�

break
(zk � x

k)) < 	(xk) ;

where

�
+
break

= maxf� � 0 j [xk; xk + �(zk � x
k)] � �FIg

and

�
�

break
= maxf� � 0 j [xk; xk + �(zk � x

k)] � �FIg:

Therefore, the choice of xk+1 2 �FI � FI satisfying 	(xk+1) < 	(xk), in Step 3, is

possible. 2

The following lemma establishes a su�cient decrease obtained in the objective

function every time the condition in Step 1 is satis�ed. This su�cient decrease will

be used in our convergence results.

Lemma 2.1: If xk+1 is obtained at Step 1 of Algorithm 2.1 then

	(xk)�	(xk+1) � minf� 
2
k�gP (xk)k ; �

2

2L
k�gP (xk)k2g :

Proof. Since xk+1 is obtained at Step 1, then �gC
I
(xk) 6= 0. Hence, xk +��gC

I
(xk) 2 


for all � 2 [0; ~�], where ~� = /k�gC
I
(xk)k. Let us consider the quadratic function given

by

�(�) = 	(xk + ��gC
I
(xk)) = 	(xk) + �r	(xk)T �gC

I
(xk) +

1

2
�
2�gC

I
(xk)TH�gC

I
(xk) :

If �gC
I
(xk)TH�gC

I
(xk) > 0 then the unique minimizer of �(�) is given by

�
� =

k�gC
I
(xk)k2

�gC
I
(xk)TH�gC

I
(xk)

:

If xk + �
��gC

I
(xk) is not feasible, then x

k+1 = �(xk) is attained at some �� such

that ~� � �� < �
�, and

	(xk + ~��gC
I
(xk) � 	(xk + ���gC

I
(xk)) : (2.10)

Substituting ~� in �(�), we obtain

�(~�) = 	(xk)� k�gC
I
(xk)k+ 

2 �gC
I
(xk)H�gC

I
(xk)

2 k�gC
I
(xk)k2 : (2.11)
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Using (2.11) and the fact that �� > ~�, it follows that

	(xk + ~��gC
I
(xk))�	(xk) < �

2
k�gC

I
(xk)k : (2.12)

Combining (2.10) and (2.12), we have

	(xk)�	(xk+1) >


2
k�gC

I
(xk)k > � 

2
k�gP (xk)k : (2.13)

Now, if xk + �
��gC

I
(xk) is feasible, then it becomes xk+1, and we obtain

	(xk+1)�	(xk) = � k�gC
I
(xk)k4

2 �gC
I
(xk)H�gC

I
(xk)

: (2.14)

Using (2.2) and (2.14), we have that

	(xk)�	(xk+1) >
1

2L
k�gC

I
(xk)k2 > �

2

2L
k�gP (xk)k2 : (2.15)

Finally, if �gC
I
(xk)TH�gC

I
(xk) � 0, then

�(�) � 	(xk) + �r	(xk)T �gC
I
(xk) ;

and 	(xk+1) < �(~�) = 	(xk)� k�gC
I
(xk)k. Therefore,

	(xk)�	(xk+1) > k�gC
I
(xk)k > �k�gP (xk)k : (2.16)

Summing up, there exist three possible cases: xk + �
��gC

I
(xk) is feasible, or it is

not feasible, or �gC
I
(xk)TH�gC

I
(xk) � 0. In each case we obtain, respectively, (2.13),

(2.15) and (2.16), and the result holds. 2

The global convergence of Algorithm 2.1 is proved in the following theorem.

Theorem 2.2: Let the in�nite sequence fxkg be generated by Algorithm 2.1. Then

there exists x
�, a limit point of fxkg, such that �gP (x

�) = 0. If 	 is convex (H

positive semide�nite), all the limit points of fxkg are stationary points of problem

(2.1).

Proof. The sequence fxkg remains in 
, and 
 is a closed and bounded set of IRn.

Hence, the sequence fxkg has limit points. First, we establish that, at least, one of

those limit points is a stationary point of (2.1). Suppose, by contradiction, that there

exists � > 0 such that

k�gP (xk)k > � for all k : (2.17)

We consider two cases:

(a) The condition (2.9) is satis�ed at a �nite number of iterations.
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(b) There exists an in�nite set of indices K1 � IN such that (2.9) is satis�ed for

all k 2 K1.

If (a) holds, then there exists k0 such that xk 2 FI for a �xed I , and for all k � k0.

Hence, the sequence is generated at Step 2, for all k � k0, by an unconstrained min-

imization technique that converges in �FI . Therefore, �gI(x
k) converges to zero as k

goes to in�nity. Thus, using (2.17), it follows that for some �k � k0, su�ciently large,

the condition in Step 1 must be satis�ed. This contradicts the assumption (a).

Assume now that (b) holds. Let kj be the j-th index in K1, j 2 IN . Using (2.17),

Lemma 2.2 and the fact that f	(xk)g is monotonically decreasing, we obtain

	(xkj )�	(xk1) =

kj�1X
l=k1

(	(xl+1)�	(xl))

�
kj�1X

l2K1; l=k1

(	(xl+1)�	(xl))

�
kj�1X

l2K1; l=k1

�minf� 
2
k�gP (xl)k; �

2

2L
k�gP (xl)k2g

< �j minf� 
2
�;

�
2

2L
�
2g (2.18)

Using (2.18) we conclude that

lim
j!1

	(xkj ) = �1 ;

which contradicts the fact that the quadratic function 	 is bounded below on 
.

Therefore, since k�gP ( � )k is lower semicontinuous, then at least one of the limit points

of fxkg, say x
�, is a stationary point of (2.1).

Let �x 6= x
� be also a limit point of the sequence fxkg. Since the sequence f	(xk)g

generated by the Algorithm 2.1 is monotonically decreasing, then

	(�x) = 	(x�) :

If 	 is convex, both x
� and �x are global minimizers, then

�gP (�x) = 0 ;

and the result is established. 2

For the next results of this section, namely Corollaries 2.1, 2.2 and 2.3, and The-

orem 2.3, we assume that 	 is convex.

As a direct consequence of Theorem 2.2, we obtain the following result.
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Corollary 2.1: If Problem (2.1) has a unique solution x
�, then the sequence fxkg gen-

erated by Algorithm 2.1 converges to x�.

Our next result states that, in the nondegenerate case, Algorithm 2.1 achieves the

optimal face in a �nite number of iterations if the sequence converges.

Corollary 2.2: Let fxkg be a convergent sequence generated by Algorithm 2.1, say

lim
k!1

x
k = x

�
:

If x� is a nondegenerate stationary point then there exists k̂ 2 IN such that

x
k 2 FI� , i.e., I(x

k) = I(x�) = I
� for k � k̂.

Proof. Follows directly from Theorem 2.2 and Corollary 3.6 in Burke and Mor�e [4]. 2

Finally, the next theorem generalizes Corollary 2.2.

Theorem 2.3: If all the limit points of a sequence fxkg generated by Algorithm 2.1

are non-degenerate, then there exists k 2 IN and a face FI such that xk 2 FI for all

k � k.

Proof. Suppose, by contradiction, that the thesis is false. Then, there exists a face FJ
and an in�nite set K1 � IN such that xk 2 FJ and x

k+1
=2 FJ for k 2 K1. Therefore,

for all k 2 K1, x
k+1 is obtained by Step 1 of Algorithm 2.1. This implies that one of

the constraints that de�ne FJ must be relaxed in an in�nite subsetK2 � K1. We may

suppose, without loss of generality, that this constraint is xj = lj . So, for k 2 K2, we

have j 2 I(xk) and j =2 I(xk+1). This means that

� @	

@xj
(xk) > 0: (2.19)

Let x� be a limit point of fxkgk2K2
. Then x

�

j
= lj and, by (2.19),

� @	

@xj
(x�) � 0:

By Theorem 2.1, x� is a stationary point, so we must have � @	
@xj

(x�) = 0, which

contradicts the fact that x� is nondegenerate. 2

Corollary 2.3: If Algorithm 2.1 generates a sequence fxkg with more than one limit

point, then necessarily at least one limit point is degenerate.

Proof. This is a consequence of Theorem 2.3 and the de�nition of Step 2 of the

algorithm. 2
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3 The Case of Dual Degeneracy

Throughout this section, we assume that 	 is convex. If Algorithm 2.1 converges,

it has the desirable feature of being able to identify, in the nondegenerate case, the

optimal face in a �nite number of iterations. In that case, the algorithm reduces

eventually to an unconstrained minimization technique, and fast convergence might

be observed at the last stage of the process. We now present a modi�ed version of

the algorithm that has the same desirable feature even in the presence of dual degen-

eracy. This algorithm will be denoted, from now on, as Algorithm 3.1, and the only

di�erence with respect to Algorithm 2.1 is at Step 1, which is now given by

Step 1: Given 0 < � < 1, and � > 0 independently of k,

if

k�gC
I
(xk)k > � k�gP (xk)k ;

and

	(�(xk)) < 	(xk)� � k�gI(xk)k ; (3.1)

then set xk+1 = �(xk). Else go to Step 2.

Steps 2 and 3 in this new algorithm are identical to Steps 2 and 3 in Algorithm

2.1. It is easy to verify that the convergence properties established for Algorithm 2.1,

in Section 2, also hold for Algorithm 3.1. In addition, we will establish that the

sequence generated by Algorithm 3.1 converges to a solution of (2.1), even in the

presence of dual degeneracy and in the case of in�nitely many solutions. First, we

need to establish the following lemma.

Lemma 3.1: Assume that x
k 2 FI and that x

k+1 is obtained at Step 1 of Algo-

rithm 3.1. If x 2 �FI is such that kx� x
kk � �, then 	(xk+1) < 	(x).

Proof. The convexity of 	 (see (2.3)) implies that, for all x 2 �FI ,

	(x) � 	(xk)� �gI(x
k)T (x� x

k) :

Then, using the Cauchy-Schwarz inequality and (3.1), we obtain for all x 2 �FI
such that kx� x

kk � �,

	(x) � 	(xk)� � k�gI(xk)k > 	(xk+1)

2

Since the sequence 	(xk) generated by Algorithm 3.1 is monotonically decreasing,

then Lemma (3.1) states that when a closed face �FI is abandoned, no future iterate

produced by Algorithm 3.1, will belong to a ball with center xk and radius � in �FI .

This is the key property of Algorithm 3.1 that allows us to establish the strong con-

vergence results in the next theorem. See [13] for more details on the properties of
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the condition (3.1).

Theorem 3.1: Let fxkg be the sequence generated by Algorithm 3.1. Then fxkg con-
verges to a global solution x

� of problem (2.1). Moreover, there is a face FI and

k0 > 0 such that xk 2 FI for all k � k0 and x
� 2 �FI . If x

� is not dual-degenerate then

x
� 2 FI . If the linear solver is the conjugate gradient method or a direct method,

there exists k � k0 such that xk = x
�.

Proof. By Lemma 3.1 and the fact that the number of faces in 
 is �nite, we have

that there exists k0 and FI such that xk 2 FI for all k � k0. Hence, from k0 onward

the sequence fxkg is generated by an unconstrained minimization method that con-

verges in �FI . Using Theorem 2.2 it follows that fxkg converges to a stationary point

x
� 2 �FI of (2.1). So we have established the global convergence and the �nite identi-

�cation even in the presence of dual degeneracy. Finally, if x� is not dual degenerate,

then x� 2 FI and we also have the identi�cation of the optimal active set for k � k0. 2

Remark

The role of the condition (3.1) can be better understood considering an example.

Let us consider the two-dimensional quadratic de�ned by

	(x) =
1

2
x
T
Hx+ b

T
x

with b = ("(1 �M);�1 �M"
2)T , H = (hij), h11 = M(1 � "); h12 = h21 = "(M �

1); h22 =M"
2 +1. For M large enough and " small enough, 	 is strictly convex and

its global minimizer is (0; 1)T . Level sets of 	 for M = 10 and " = 0:3 are despicted

in Figure 1.
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Figure 1: Level sets with degeneracy

Suppose that 
 = fx 2 IR
2 j 0 � x � 100g. Then, (0; 1)T is a dual degenerate

solution of (2.1). Now, after some elementary calculations, we see that, for all y < 1,

�y = (0; y)T ,
k�gC(�y)k
k�gP (�y)k =

"(M � 1)p
["(M � 1)]2 + (M"2 + 1)2

: (3.2)

So,

lim
M!1

k�gC(�y)k
k�gP (�y)k =

1p
1 + "2

: (3.3)

So, if

� <
"(M � 1)p

["(M � 1)]2 + (M"2 + 1)2
� 1p

1 + "2
;

and (0; yk)
T is an iterate of Algorithm 2.1 with yk < 1, the criterion (2.9) will indi-

cate to abandon the correct face, independently of the proximity of the iterate to the
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solution. For example, in the caseM = 10; " = 0:3 this unfortunate decision will take

place whenever � < 0:14. On the other hand, if we also use (3.1), the decision will

be to stay in the correct face if jyk � 1j < �. Of course, the consequences of incor-

rect decisions of this type in a two-dimensional problem are not serious, but we can

easily develop an example using the ideas above with an arbitrarily large number of

variables, where the correct one-dimensional face is abandoned for iterates arbitrarily

close to the solution. In this case, if we are using conjugate gradients, the practical

consequences can be very serious: either the process becomes in�nite or at least n

iterations will be necessary to reach the solution. This is the undesirable e�ect that

tends to be eliminated by (3.1).

4 Strategies within the Faces

In this section, we describe the di�erent strategies to be used inside the faces in

Algorithms 2.1 and 3.1. The main idea is to use iterative methods that require few

storage locations and few oating point operations, whenever the dimension of the

current face FI is large. If the dimension of FI is not so large and the Hessian

H has some preestablished sparsity structure, then we will use the sparse Cholesky

factorization to solve the system

Ĥz
k = �b̂ ; (4.1)

and obtain z
k in Step 2. The matrix Ĥ and the vector b̂ are the reductions of H and

b associated with the active index I . If the matrix H has no sparsity structure and

the dimension of FI is small, we will use the dense Cholesky factorization to solve

(4.1), and obtain z
k in Step 2. The terms large, not so large and small will be given

a real meaning in Section 5.

If we have used a direct solver to obtain zk, it is clear that we have found a global

minimizer of 	(x) subject to x 2 [FI ]. Hence, 	(zk) < 	(xk) and the condition in

Step 2 is satis�ed. On the other hand, if we use an iterative method that converges

to a minimizer of 	(x) in [FI ] then in a �nite number of inner steps we must obtain

z
k 2 [FI ] (not necessarily a minimizer) such that 	(zk) < 	(xk), and once again the

condition in Step 2 is satis�ed.

The iterative methods considered in this work are the conjugate gradient (CG)

method of Hestenes and Stiefel [18], and the family of gradient method with retards

(GR) recently introduced by Friedlander, Mart��nez and Raydan [15] that have global

convergence for the unconstrained minimization of convex quadratic functions. The

GR family can be viewed as a generalization of the classical steepest descent and the

Barzilai-Borwein [2] methods. Given a positive integer m, the GR iteration is given

by

x
k+1 = x

k � �(x�(k))�gI(x
k) ; (4.2)

where �(k) might be arbitrary chosen in the set fk; k � 1; : : : ;maxf0; k �mgg, and
�(x) is the minimizer of 	(x� � �gI(x)). For instance, if �(k) = k then (4.2) becomes
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the steepest descent method, and if �(k) = k�1 then we obtain the Barzilai-Borwein

method. In the experimental research of Section 5, we de�ne �k = maxf0; k�mg, and
we consider, besides the Barzilai-Borwein method, the following choice:

�(k) = random between �k and k (random);

Now, whether we use iterative methods or direct solvers to obtain z
k, it might

happen that zk is not in �FI . In that case, at Step 3 of both algorithms, we have to

�nd xk+1 2 �FI�FI such that 	(xk+1) < 	(xk). This Step will be implemented using

a backtracking search along the polygonal path de�ned by the search direction. For

further details in how to perform this step in the CG case, see [13]. In the case of the

Barzilai-Borwein method the details can be found in [14]. Since the nonmonotonicity

is present in all the GR methods, the same technique, for performing Step 3, can be

applied for the entire family of GR methods.

5 Numerical Results

In our numerical experiments, the criterion for deciding on the algorithm to be used for

unconstrained steps within the faces FI was based only on the dimension of the face.

Moreover, although gradient methods with retards can be used in larger problems

than conjugate gradients, we decided to use any of them when the dimension of the

face is large and to study the relative e�ciency of di�erent choices. Finally, although

the relative e�ciency of dense Cholesky factorization relative to sparse Cholesky fac-

torization depends on the structure of the problem, we decided to use always \dense

Cholesky" when the dimension of the face is less than or equal to 30 and \sparse

Cholesky" when the dimension is larger than 30.

We also decided to study the e�ciency and reliability of the methods as depending

of the parameter � at Step 1 of Algorithm 2.1. Finally, the modi�cation of Algorithm

2.1 that uses condition (3.1) was also tested against the \pure" algorithm. Summing

up, we began our tests trying to answer the following questions:

(a) For what dimension is it convenient to pass from Cholesky's factorizations to

iterative methods for minimization within the faces?

(b) How do gradient methods with retards compare between them and against

conjugate gradients?

(c) Which is the best value for the parameter � at Step 1 of Algorithm 2.1?

(d) Is the modi�cation based on (3.1) worthwhile from a practical point of view?

Ideally, we should like to detect, on average, the best values for �, �, dimchol (the

face dimension under which we use Cholesky) and the best iterative linear method

within the faces. However, to test all the possibilities for each problem would lead

to an unacceptable large number of experiments. So, for each set of problems, we
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proceeded performing four sequences of experiments:

(a) Using � = 0, dimchol = 0 and conjugate gradients, we determined the \best

�" trying the values 10�10, 10�2, 0:1 and 0:9 for this parameter.

(b) Using dimchol = 0, conjugate gradients, and the best � obtained in (a), we

determined the \best �" testing the values 0, 10�4, 0:1 and 1.

(c) Using conjugate gradients, and the best � and � obtained in (a) and (b), we

determined the \best dimchol" testing the values 0, 10, 100 and 1000.

(d) Using the best �, � and dimchol obtained in (a), (b) and (c), we determined

the \best linear iterative method", trying conjugate gradients, Barzilai-Borwein, gra-

dient method with random retard (m = 3) and the gradient method with random

retard (m = 6).

All the codes were written in Fortran and ran in a PC-486 with a clock of 66 MHz.

Test 1. Obstacle problems. See [5] (pp. 287-296), [8], [21], [13]. This problem con-

sists of �nding the equilibrium position of an elastic membrane which passes through

a curve �. We considered the three problems described in [8], which correspond to

di�erent bounds on the solution. We denote by u(x; y) and v(x; y) the lower obstacle

function and the upper obstacle function, respectively. In Case A we set

u(x; y) = p1[sin(3:2x)sin(3:3y)]
p2

and

v(x; y) = 2000:

In Case B,

u(x; y) = [sin(9:2x)sin(9:3y)]p2

and

v(x; y) = u(x; y) + 0:02:

In Case C,

u(x; y) = [16x(1� x)y(1� y)]p1

and

v(x; y) = u(x; y) + 0:01:
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We used the �ve-point �nite-di�erence approximation to the Laplace operator.

After discretization, the obstacle problem becomes a quadratic programming prob-

lem with box constraints. We used the following starting points:

(a) x0 = ` = (`1; : : : ; `n)
T ;

(b) x0 = 1 = (1; : : : ; 1)T ;

(c) x0 = u = (u1; : : : ; un)
T .

(d) x0 = (`+ u)=2.

Finally, we de�ned 30 obstacle problems, as reported in the following Table 1.
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Problem Case n x
0

p1 p2

1 A 2601 ` 1 1

2 0 1

3 1 2

4 1 3

5 1 1 1

6 0 1

7 1 2

8 1 3

9 A 5041 ` 1 1

10 0 1

11 1 2

12 1 3

13 1 1 1

14 0 1

15 1 2

16 1 3

17 A 10000 ` 1 1

18 0 1

19 1 2

20 1 3

21 1 1 1

22 0 1

23 1 2

24 1 3

25 B 5041 u 3 2

26 ` 3 2

27 (`+ u)=2 3 2

28 C 5041 u 3 2

29 ` 3 2

30 (`+ u)=2 3 2

Table 1: De�nition of 30 obstacle problems

In Table 1.a, we report the results of the family of experiments (a), which consists

in �xing � = 0; dimchol = 0 and conjugate gradients, varying �. For each experiment,

we report (it; time) where it is the number of iterations that were necessary to achieve

the convergence criterion

k�gP (xk)k � TOLk�gP (x0)k; (4.3)

(with TOL = 10�5) and time is the computer time, in seconds.
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Problem � = 10�10 � = 10�2 � = 0:1 � = 0:9

1 127, 5.80 88, 3.90 76, 3.20 75, 3.10

2 115, 5.30 78, 3.50 65, 2.80 64, 2.60

3 202, 8.80 153, 6.80 116, 5.40 116, 5.40

4 229, 10.20 152, 7.00 134, 6.40 137, 6.60

5 250, 11.40 212, 9.60 128, 5.90 146, 6.70

6 288, 13.20 254, 11.70 279, 13.00 175, 8.10

7 259, 11.80 211, 9.70 182, 8.70 217, 10.80

8 240, 11.40 229, 11.00 218, 10.80 274, 14.00

9 200, 19.10 148, 13.80 119, 10.70 120, 10.30

10 211, 20.60 123, 11.70 75, 6.90 96, 8.40

11 330, 30.80 262, 25.40 168, 16.90 166, 17.00

12 401, 37.50 286, 28.00 165, 17.00 219, 22.80

13 314, 30.60 328, 31.60 215, 21.50 171, 16.50

14 410, 39.10 364, 35.40 499, 49.70 478, 47.30

15 413, 39.20 356, 35.40 279, 29.00 335, 36.20

16 406, 39.50 392, 39.50 362, 37.70 388, 42.50

17 428, 90.60 220, 45.20 154, 30.30 171, 32.10

18 408, 87.60 181, 37.40 146, 29.30 158, 29.90

19 813, 165.40 430, 91.60 355, 79.30 230, 51.80

20 742, 150.90 499, 107.40 404, 91.10 314, 72.20

21 1226, 257.20 676, 147.70 351, 74.10 275, 59.30

22 1850, 388.80 1046, 224.30 732, 165.20 584, 129.80

23 765, 159.90 487, 107.90 552, 127.90 472, 114.50

24 850, 179.70 604, 134.10 680, 157.90 649, 159.10

25 454, 53.70 281, 34.00 190, 24.40 166, 21.20

26 490, 57.10 289, 34.90 222, 27.70 223, 28.10

27 234, 28.50 170, 21.50 143, 18.70 113, 15.30

28 276, 31.90 204, 23.80 181, 21.80 191, 23.00

29 187, 21.90 184, 22.10 184, 23.00 195, 24.90

30 227, 27.20 154, 18.40 142, 17.90 128, 16.60

Average 445, 67.80 302, 44.50 251, 37.80 235, 34.50

Table 1.a: Obstacle problems: variation of �

In Table 1.b we report the numerical results �xing � = 0:1; dimchol = 0 and con-

jugate gradients, for di�erent values of �. We �xed � = 0:1 (instead of 0:9) because

the �rst outperformed the second a (slightly) larger number of times.
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Problem � = 0 � = 10�4 � = 0:1 � = 1

1 76, 3.00 108, 5.40 370, 23.00 557, 34.90

2 65, 2.60 365, 22.60 698, 43.90 993, 62.70

3 116, 5.20 222, 12.60 1167, 79.40 1916, 130.60

4 134, 6.20 144, 7.30 580, 39.60 1232, 84.80

5 128, 5.60 152, 7.50 503, 33.30 656, 43.20

6 279, 12.60 544, 30.40 518, 34.90 589, 39.40

7 182, 8.40 200, 9.90 713, 48.90 1111, 76.40

8 218, 10.40 225, 10.90 566, 38.70 768, 52.70

9 119, 10.70 178, 20.90 782, 112.30 1254, 180.40

10 75, 7.00 182, 23.80 778, 111.30 1163, 166.60

11 168, 16.90 364, 48.80 2001, 305.60 2001, 304.70

12 165, 17.10 500, 70.80 1223, 186.60 2001, 306.70

13 215, 21.90 313, 38.20 1201, 181.40 1271, 191.60

14 499, 50.90 808, 98.70 1122, 169.70 1284, 193.30

15 279, 29.20 852, 121.20 1497, 232.10 2001, 311.50

16 362, 38.40 595, 79.40 1152, 180.10 1645, 257.40

17 154, 31.80 867, 280.60 1646, 548.60 2001, 671.40

18 146, 30.80 748, 245.60 2001, 672.30 2001, 672.50

19 355, 82.20 689, 215.10 2001, 690.90 2001, 684.70

20 404, 94.30 556, 167.50 2001, 697.00 2001, 690.30

21 351, 77.40 708, 208.20 2001, 699.20 2001, 698.50

22 732, 171.90 1321, 383.70 1886, 654.90 2001, 697.50

23 552, 132.70 973, 292.00 2001, 714.10 2001, 714.10

24 680, 163.80 949, 284.20 2001, 715.20 2001, 714.90

25 190, 24.40 361, 61.10 1608, 311.00 2001, 387.00

26 222, 27.70 529, 92.60 789, 149.10 1342, 255.60

27 143, 18.70 676, 130.90 2001, 402.90 2001, 402.60

28 181, 21.80 708, 124.30 2001, 371.10 2001, 368.90

29 184, 23.10 614, 110.70 1363, 257.60 2001, 377.70

30 142, 17.90 647, 119.50 1007, 193.30 1463, 283.00

Average 251, 38.80 537, 110.80 1053, 296.60 1203, 335.20

Table 1.b: Obstacle problems: variation of �

The experiments in Table 1.b with 2001 iterations represent cases where conver-

gence was not achieved. We included these cases in the Average row since they do

not a�ect the overall conclusion, which largely favors � = 0.

In Table 1.c we report the numerical results �xing � = 0:1; � = 0 and conjugate

gradients, for di�erent values of dimchol.
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Problem dimchol = 0 dimchol = 10 dimchol = 100 dimchol = 1000

1 76, 3.80 76, 3.20 76, 3.20 17, 18.00

2 65, 2.80 65, 2.80 65, 2.80 15, 14.60

3 116, 5.60 116, 5.60 116, 5.60 116, 5.60

4 134, 6.60 134, 6.60 134, 6.60 134, 6.60

5 128, 6.00 128, 6.00 128, 6.00 68, 23.00

6 279, 13.20 279, 13.20 279, 13.20 210, 30.90

7 182, 8.80 182, 8.80 182, 8.80 182, 8.80

8 218, 10.90 218, 10.90 218, 10.90 218, 10.90

9 119, 11.20 119, 10.90 119, 10.90 106, 29.80

10 75, 7.00 75, 7.00 75, 7.00 76, 27.00

11 168, 17.50 168, 17.50 168, 17.50 168, 17.50

12 165, 17.60 165, 17.60 165, 17.60 165, 17.60

13 215, 22.30 215, 22.30 215, 22.30 209, 30.70

14 499, 51.60 499, 51.60 499, 51.60 499, 51.60

15 279, 30.10 279, 30.10 279, 30.10 279, 30.10

16 362, 39.10 362, 39.10 362, 39.10 362, 39.10

17 154, 31.50 154, 31.00 154, 31.00 188, 69.20

18 146, 30.00 146, 30.00 146, 30.00 133, 60.00

19 355, 80.50 355, 80.50 355, 80.50 355, 80.50

20 404, 92.40 404, 92.40 404, 92.40 404, 92.40

21 351, 75.40 351, 75.40 351, 75.40 351, 75.40

22 732, 167.60 732, 167.60 732, 167.60 708, 197.40

23 552, 129.40 552, 129.40 552, 129.40 552, 129.40

24 680, 159.90 680, 159.90 680, 159.90 680, 159.90

25 190, 24.40 190, 24.40 190, 24.40 190, 24.40

26 222, 27.70 222, 27.70 222, 27.70 222, 27.70

27 143, 18.70 143, 18.70 143, 18.70 143, 18.70

28 181, 21.80 181, 21.80 181, 21.80 181, 21.80

29 184, 23.00 184, 23.00 184, 23.00 184, 23.00

30 142, 17.90 142, 17.90 142, 17.90 142, 17.90

Average 251, 38.50 251, 38.40 251, 38.40 242, 45.30

Table 1.c: Obstacle problems: variation of dimchol

Observe that the executions with dimchol � 100 are identical. This means that

all the faces visited have more than 100 free variables.

In Table 1.d we report the numerical results �xing � = 0:1; � = 0; dimchol = 0,

for di�erent iterative linear methods.
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Problem Conjugate gradients Barzilai-Borwein Retard m = 3 Retard m = 6

1 76, 3.00 88, 3.90 126, 5.80 100, 4.50

2 65, 2.60 88, 3.90 122, 5.40 98, 4.40

3 116, 5.40 143, 7.20 182, 9.00 219, 11.00

4 134, 6.40 201, 10.40 223, 11.90 212, 10.40

5 128, 5.60 170, 8.50 185, 9.20 160, 8.10

6 279, 12.50 201, 9.80 212, 11.00 219, 10.80

7 182, 8.60 232, 12.00 225, 11.50 258, 12.90

8 218, 10.70 216, 11.60 260, 13.60 329, 16.40

9 119, 10.20 149, 15.20 171, 17.40 146, 14.90

10 75, 6.60 112, 11.40 137, 13.70 165, 16.20

11 168, 16.30 251, 28.20 252, 29.90 280, 31.80

12 165, 16.40 251, 28.80 286, 33.30 294, 34.10

13 215, 20.70 215, 24.00 232, 26.10 280, 30.00

14 499, 48.10 284, 32.90 343, 38.50 308, 32.70

15 279, 28.00 302, 35.30 343, 40.10 374, 43.60

16 362, 36.50 379, 44.90 401, 47.20 398, 46.30

17 154, 30.30 232, 53.50 224, 51.70 267, 61.90

18 146, 29.30 173, 39.60 201, 46.50 223, 50.70

19 355, 79.40 292, 77.10 362, 95.20 341, 87.30

20 404, 91.20 363, 93.80 417, 114.10 408, 102.20

21 351, 74.00 320, 81.40 343, 87.20 379, 92.90

22 732, 165.30 427, 110.10 549, 146.60 466, 117.90

23 552, 127.90 419, 112.40 515, 139.30 586, 155.90

24 680, 158.10 551, 149.60 577, 156.30 601, 160.50

25 190, 24.40 222, 32.70 253, 37.30 273, 39.50

26 222, 27.70 195, 29.50 214, 31.90 266, 40.00

27 143, 18.70 162, 23.90 176, 26.90 175, 26.90

28 181, 21.80 187, 27.00 225, 32.80 255, 36.30

29 184, 23.00 196, 29.30 226, 33.10 238, 33.50

30 142, 17.90 176, 25.70 185, 28.40 220, 33.80

Average 251, 37.60 240, 39.10 272, 45.00 285, 45.60

Table 1.d: Obstacle problems: variation of the linear solver

Test 2. Function reconstruction from line integrals. See [13]. Assume that

the interval [0; 1] is divided into ndiv intervals of equal size, h = 1=ndiv, and, conse-

quently, the square [0; 1]� [0; 1] is divided into n � ndiv
2 pixels. In our experiments

ndiv = 256, so n = 65586. The problem is to �nd a function u : [0; 1]� [0; 1]! [`; u],

which is constant on each pixel, such that the line integrals along certain rays are

known.

We generate the following sets of rays:

a) Horizontal rays: ndiv rays, from (0; (i � 1)h + h=2) to (1; (i � 1)h + h=2); i =

1; : : : ; ndiv.
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b) Vertical rays: ndiv rays, from ((i � 1)h + h=2; 0) to ((i � 1)h + h=2; 1); i =

1; : : : ; ndiv.

c) Rays forming an angle of 135 degrees with the x� axis:

i) ndiv rays, from (ih; 0) to (0; ih); i = 1; : : : ; ndiv.

ii) ndiv � 1 rays, from (1; ih) to (ih; 1); i = 1; : : : ; ndiv � 1.

d) Rays forming an angle of 45 degrees with the x� axis:

i) ndiv rays, from ((i� 1)h; 0) to (1; 1� (i� 1)h); i = 1; : : : ; ndiv.

ii) ndiv � 1 rays, from (0; ih) to (1� ih; 1); i = 1; : : : ; ndiv � 1.

Each ray de�nes one equation where only the variables corresponding to the pixels

that are crossed by the ray are involved. Therefore, we have a sparse linear m�n sys-

tem �Ax = d, where m = 6ndiv� 2 and n = ndiv
2 with the constraints ` � xi � u for

all i = 1; : : : ; n. The unknowns xi correspond to the values of the unknown function

u on each pixel, numbered lexicographically. The quadratic function to be minimized

is k �Ax� dk22.

For generating the data (vector d) we de�ne a function

u� : [0; 1]� [0; 1]! [0; 1]

and a function u which is constant on each pixel and coincides with u� at the center

of the pixel. The data vector d is formed by the line integrals of u along the rays.

So, di�erent experiments are characterized by di�erent choices of u�. We used the

following functions:

Function 1

u�(x; y) � u1(x; y) = 1 if 0:25 � x � 0; 75 and 0:25 � y � 0:75; 0 otherwise:

Function 2

u�(x; y) � u2(x; y) = (x2 + y)=2:

Function 3

u�(x; y) = min f1; u1(x; y) + u2(x; y)g

Tables 2.a, 2.b and 2.c were constructed using similar criteria as those used in

previous tables. However, after the experiments reported in Table 2.a, we �xed � = 0:9

instead of � = 0:1. We do not report experiments with di�erent values of dimchol

because, in this case, no faces are visited with dimension inferior to 6000. Therefore,
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direct methods are not used at all. Observe that, in this case, the involved matrices

are, in general, singular, so we were prepared to use a Cholesky factorization that

included a small regularization parameter. For consistency with experiments in [13],

we used (4.3) with TOL = 10�4.

Problem � = 10�10 � = 10�2 � = 0:1 � = 0:9

1 70, 359.90 68, 323.20 47, 223.50 35, 159.20

2 22, 115.00 22, 114.70 19, 104.20 19, 104.20

3 222, 1015.5 144, 704.80 130, 653.00 147, 738.10

Average 105, 496.80 78, 380.90 65, 326.90 67, 333.80

Table 2.a: Reconstruction problems: variation of �

Problem � = 0 � = 10�4 � = 0:1 � = 1

1 35, 159.10 35, 159.40 35, 159.30 35, 159.40

2 19, 104.00 19, 104.10 19, 104.10 19, 104.10

3 147, 738.00 147, 738.30 147, 738.00 147, 738.50

Average 67, 333.70 67, 333.90 67, 333.80 67, 334.00

Table 2.b: Reconstruction problems: variation of � using � = 0:9,

dimchol = 0 and conjugate gradients

Problem Conjugate gradients Barzilai-Borwein Retard m = 3 Retard m = 6

1 35, 159.30 23, 148.90 26, 159.60 26, 158.10

2 19, 106.00 27, 177.60 28, 193.70 25, 165.70

3 147, 738.70 35, 226.00 45, 290.20 47, 298.00

Average 67, 334.70 28, 184.20 33, 214.50 33, 207.30

Table 2.c: Reconstruction problems: variation of the linear iterative method

using � = 0:9; � = 0; dimchol = 0

Test 3. Random problems. This is the set of problems described in [21] and

[13], with n = 1000. We call nsing the number of zero eigenvalues of the Hessian.

In the nonsingular cases, the condition number is 1000. Dual degenerate problems

depend on a parameter kdeg, which indicates the number of zeros of the gradient at

x
� corresponding to active components. Problems with kdeg > 0 are degenerate. If

kdeg = 0, the parameter ndeg is a measure of \near-degeneracy". The greater the

value of ndeg the more \near degenerate" the problem is. Finally, na(x�) and na(x0)

represent the number of active bounds at x� and x
0 respectively.

We have 22 problems of this class, which are de�ned in Table 3.
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Problem nsing kdeg na(x�) na(x0) ndeg

1 0 0 100 100 1

2 12

3 500 1

4 12

5 900 1

6 12

7 500 100 1

8 12

9 500 1

10 12

11 900 1

12 12

13 900 100 1

14 12

15 500 1

16 12

17 900 1

18 12

19 238 0 900 100 0

20 431

21 719

22 740 0

Table 3: De�nition of 22 random problems

Tables 3.a, 3.b and 3.c and 3.d were constructed using similar criteria as tables 1.a,

1.b, 1.c and 1.d. The stopping criterion was the same used in the obstacle problems.
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Problem � = 10�10 � = 10�2 � = 0:1 � = 0:9

1 355, 9.90 299, 8.60 285, 8.30 283, 8.30

2 764, 21.30 490, 14.10 406, 12.20 329, 9.60

3 320, 9.10 299, 8.60 298, 8.60 307, 9.00

4 765, 21.90 634, 17.80 480, 14.00 309, 9.10

5 362, 10.10 328, 9.30 315, 9.10 316, 9.20

6 838, 24.20 514, 14.40 470, 13.60 306, 9.00

7 375, 9.70 382, 9.80 336, 8.80 294, 7.60

8 1856, 52.50 660, 19.70 570, 15.70 377, 9.80

9 407, 10.40 373, 9.70 361, 9.30 310, 8.00

10 6827, 181.50 638, 18.20 543, 14.80 393, 10.20

11 397, 10.20 367, 9.50 355, 9.20 327, 8.40

12 3808, 101.50 650, 17.90 582, 16.20 374, 9.70

13 322, 7.70 350, 5.90 244, 5.70 240, 5.50

14 1690, 53.00 550, 15.80 495, 14.30 429, 9.80

15 328, 7.90 304, 7.20 287, 6.70 251, 5.70

16 3011, 90.60 673, 19.20 592, 16.60 421, 9.60

17 376, 9.10 309, 7.40 276, 6.40 301, 6.80

18 9526, 282.20 559, 15.40 700, 18.70 397, 8.90

19 250, 6.00 246, 5.90 248, 5.90 241, 5.70

20 4089, 117.90 502, 14.10 350, 9.00 305, 7.30

21 797, 22.70 482, 14.00 486, 14.30 328, 8.00

22 158, 4.00 158, 4.00 110, 2.70 134, 3.20

Average 1710, 48.30 444, 12.10 400, 10.90 317, 8.10

Table 3.a: Random problems: variation of �
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Problem � = 0 � = 10�4 � = 0:1 � = 1

1 283, 8.30 283, 8.30 3295, 145.20 1785, 77.20

2 329, 9.60 329, 9.60 2199, 95.00 2553, 111.40

3 307, 9.00 307, 9.00 3223, 142.00 1641, 69.90

4 309, 9.10 309, 9.10 336, 10.70 6264, 279.70

5 316, 9.20 316, 9.20 4521, 200.10 2352, 102.70

6 306, 9.00 306, 9.00 653, 24.90 4516, 200.20

7 294, 7.60 294, 7.60 2219, 93.30 3121, 133.30

8 377, 9.80 377, 9.80 758, 26.30 1857, 76.60

9 310, 8.00 310, 8.00 328, 9.50 2030, 84.80

10 393, 10.20 393, 10.20 393, 10.20 1584, 64.30

11 327, 8.40 327, 8.40 1053, 41.10 2379, 98.60

12 374, 9.70 374, 9.70 673, 23.50 1336, 54.40

13 240, 5.50 240, 5.50 927, 35.30 1793, 71.50

14 429, 9.80 429, 9.80 459, 12.30 1222, 47.20

15 251, 5.70 251, 5.70 301, 7.70 613, 21.10

16 421, 9.60 421, 9.60 486, 14.00 566, 18.10

17 301, 6.90 301, 6.90 979, 36.10 2884, 116.50

18 397, 8.90 397, 8.90 541, 14.60 2843, 117.10

19 241, 5.70 241, 5.70 479, 15.90 1533, 62.20

20 305, 7.30 305, 7.30 739, 26.00 1991, 83.00

21 328, 8.00 328, 8.00 358, 11.10 1018, 39.30

22 134, 3.20 134, 3.20 285, 10.00 678, 27.20

Average 317, 8.10 317, 8.10 1146, 45.70 2116, 88.90

Table 3.b: Random problems: variation of � using � = 0:9, dimchol = 0 and

conjugate gradients
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Problem dimchol = 0 dimchol = 10 dimchol = 100 dimchol = 1000

1 283, 8.30 283, 8.30 283, 8.30 11, 840.80

2 329, 9.70 329, 9.70 329, 9.70 9, 773.90

3 307, 9.00 307, 9.00 307, 9.00 8, 496.80

4 309, 9.10 309, 9.10 309, 9.10 8, 659.00

5 316, 9.20 316, 9.20 316, 9.20 10, 672.60

6 306, 9.00 306, 9.00 306, 9.00 12, 955.90

7 294, 7.60 294, 7.60 294, 7.60 7, 271.90

8 377, 9.80 377, 9.80 377, 9.80 8, 394.20

9 310, 8.00 310, 8.00 310, 8.00 13, 305.60

10 393, 10.20 393, 10.20 393, 10.20 17, 552.80

11 327, 8.40 327, 8.40 327, 8.40 15, 341.50

12 374, 9.70 374, 9.70 374, 9.70 20, 608.50

13 240, 5.50 240, 5.50 240, 5.50 10, 199.20

14 429, 9.80 429, 9.80 429, 9.80 16, 288.40

15 251, 5.70 251, 5.70 251, 5.70 11, 123.30

16 421, 9.60 421, 9.60 421, 9.60 15, 217.70

17 301, 6.90 301, 6.80 301, 6.80 18, 161.00

18 397, 8.90 397, 8.90 397, 8.90 16, 226.10

19 241, 5.70 241, 5.70 241, 5.70 71, 1309.7

20 305, 7.30 305, 7.30 305, 7.30 51, 1052.4

21 328, 8.00 328, 8.00 328, 8.00 58, 1338.9

22 134, 3.20 134, 3.20 102, 28.60 35, 467.20

Average 317, 8.10 317, 8.10 315, 9.30 20, 557.20

Table 3.c: Random problems: variation of dimchol using � = 0:9, � = 0 and

conjugate gradients
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Problem Conjugate gradients Barzilai-Borwein Retard m = 3 Retard m = 6

1 283, 8.30 379, 11.50 417, 12.70 466, 12.50

2 329, 9.60 426, 12.80 468, 13.20 618, 15.60

3 307, 9.00 434, 13.00 412, 12.10 395, 11.40

4 309, 9.10 388, 12.00 394, 11.50 456, 12.90

5 316, 9.20 434, 13.30 405, 12.20 432, 11.80

6 306, 9.00 366, 11.40 390, 11.00 426, 12.70

7 294, 7.60 463, 13.00 511, 13.60 382, 10.10

8 377, 9.80 450, 12.40 451, 11.90 523, 13.50

9 310, 8.00 487, 13.70 494, 12.90 422, 11.40

10 393, 10.20 464, 12.80 381, 10.60 492, 12.60

11 327, 8.40 507, 13.30 497, 13.80 623, 15.00

12 374, 9.70 462, 13.00 510, 13.80 425, 10.90

13 240, 5.50 368, 9.60 385, 9.60 405, 9.90

14 429, 9.80 535, 13.80 413, 10.50 361, 9.00

15 251, 5.70 408, 10.40 382, 9.50 472, 11.20

16 421, 9.60 501, 12.90 501, 12.20 376, 9.30

17 301, 6.80 347, 9.10 383, 9.80 479, 11.30

18 397, 8.90 384, 9.90 453, 11.40 435, 10.80

19 241, 5.70 483, 12.10 466, 11.40 592, 13.60

20 305, 7.30 384, 10.30 369, 9.80 319, 7.80

21 328, 8.00 444, 12.40 377, 10.40 469, 12.00

22 134, 3.20 333, 9.00 354, 8.70 266, 6.70

Average 317, 8.10 429, 11.90 428, 11.50 447, 11.50

Table 3.d: Random problems: variation of the linear iterative method using

� = 0:9; � = 0; dimchol = 0

Test 4. Projections on polytopes. The projection of y 2 IR
n on a polytope given

by a set of inequalities is the solution of

Minimize
1

2
kw � yk2

subject to Aw � d:

Using duality, this problem is transformed in the following box constrained convex

minimization problem:

Minimize
1

2
x
T
AA

T
x� (Ay � d)Tx

subject to x � 0;

where w = y �A
T
x.

We consider two problems of this type:

Minimize
1

2
kw � yk2 s.t wi � wi+1; (4.4)
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i = 1; : : : ; n� 1, and

Minimize
1

2
kw � yk2 s.t wi � wi�1 + wi+1

2
; (4.5)

i = 2; : : : ; n�1. For each problem, we used the vector y given by yi = yj(0:01i)+"i; i =

1; : : : ; 100, where "i is a random number belonging to (�0:1; 0:1) and yj ; j = 1; : : : ; 5

are the following functions:

(a) y1(z) = z;

(b) y2(z) = log(z + 0:01);

(c) y3(z) = sin(1:5z);

(d) y4(z) = 1=(1 + 9exp(�6z));

(e) y5(z) = 1:6z2 � 0:7z + 0:1.

Consequently, we have 10 problems, the �rst �ve correspond to (4.4) and the last

�ve correspond to (4.5), for the functions y1; : : : ; y5 de�ned above.

Tables 4.a, 4.b and 4.c are constructed using the criteria of the previous ones.

Comparison of iterative linear methods is not meaningful here, because, as shown in

Table 4.c, the direct method is much better than iterative ones in this case. In these

tables, 50001 iterations correspond to cases where convergence was not achieved. The

Average rows in Table 4.a were computed considering only the cases of convergence.

In Table 4.b we computed the averages only for the two �rst columns since these

outperform clearly the last two. Finally, in Table 4.c we computed the averages only

for the last column, due to the same reasons as in Table 4.b. In (4.4) we used (4.3)

with TOL = 10�6 and in (4.5) we used TOL = 10�3.
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Problem � = 10�10 � = 10�2 � = 0:1 � = 0:9

1 47, 0.09 47, 0.09 40, 0.08 40, 0.08

2 82, 0.17 82, 0.17 92, 0.19 88, 0.19

3 140, 0.30 132, 0.29 125, 0.28 180, 0.40

4 107, 0.24 107, 0.24 108, 0.25 178, 0.40

5 184, 0.40 140, 0.31 161, 0.35 198, 0.44

6 138, 0.31 137, 0.31 139, 0.31 184, 0.42

7 78, 0.16 77, 0.16 81, 0.17 71, 0.15

8 167, 0.33 137, 0.28 130, 0.26 119, 0.25

9 61, 0.12 61, 0.12 54, 0.11 51, 0.11

10 145, 0.30 164, 0.34 128, 0.27 127, 0.27

11 7148, 18.10 5706, 14.40 5538, 14.10 7327, 18.70

12 8418, 21.50 7931, 20.30 8395, 21.50 8311, 21.30

13 5191, 12.90 4625, 11.50 4589, 11.50 4148, 10.40

14 4882, 12.20 4556, 11.40 5307, 13.30 4043, 10.20

15 3615, 9.00 3843, 9.60 3712, 9.30 2860, 7.20

16 3740, 9.40 3250, 8.20 3633, 9.20 3674, 9.30

17 50001, 126.90 50001, 126.80 50001, 127.30 50001, 127.50

18 50001, 127.20 50001, 127.20 50001, 127.60 50001, 127.50

19 3859, 9.60 3733, 9.30 3722, 9.30 3652, 9.20

20 3605, 9.10 3122, 7.90 3402, 8.60 3397, 8.60

Average 2311, 5.79 2103, 5.27 2186, 5.50 2147, 5.42

Table 4.a: Projection problems: variation of �
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Problem � = 0 � = 10�4 � = 0:1 � = 1

1 47, 0.09 46, 0.10 95, 0.27 113, 0.33

2 82, 0.17 94, 0.21 159, 0.47 216, 0.64

3 132, 0.29 132, 0.29 238, 0.63 765, 2.29

4 107, 0.24 107, 0.24 300, 0.85 492, 1.45

5 140, 0.31 172, 0.38 595, 1.75 1016, 3.06

6 137, 0.31 137, 0.31 521, 0.52 914, 2.75

7 77, 0.16 93, 0.21 381, 1.12 373, 1.11

8 137, 0.28 407, 1.13 552, 1.67 772, 2.36

9 61, 0.12 68, 1.54 126, 0.35 208, 0.62

10 164, 0.34 190, 0.41 482, 1.45 676, 0.25

11 5706, 14.40 7003, 18.50 50001, 187.30 50001, 186.90

12 7931, 20.30 8323, 21.40 8323, 21.40 8323, 21.40

13 4625, 11.50 5458, 14.90 50001, 186.80 50001, 186.90

14 4556, 11.40 7422, 20.70 50001, 68.40 50001, 93.40

15 3843, 9.60 6487, 19.00 50001, 185.90 50001, 186.20

16 3250, 8.20 4632, 13.30 50001, 74.60 50001, 104.80

17 50001, 126.80 50001, 158.60 50001, 186.40 50001, 186.40

18 50001, 127.30 50001, 134.60 50001, 186.70 50001, 186.80

19 3733, 9.30 4899, 13.40 50001, 58.80 50001, 85.90

20 3122, 7.90 3850, 9.90 50001, 186.70 50001, 186.70

Average 2103, 5.27 2751, 7.55 { {

Table 4.b: Projection problems: variation of � using � = 0:01, dimchol = 0

and conjugate gradients
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Problem dimchol = 0 dimchol = 10 dimchol = 100

1 47, 0.09 47, 0.09 8, 0.13

2 82, 0.17 82, 0.17 9, 0.22

3 132, 0.29 132, 0.29 10, 0.31

4 107, 0.24 107, 0.24 1, 0.09

5 140, 0.31 140, 0.31 11, 0.32

6 137, 0.31 137, 0.31 1, 0.09

7 77, 0.16 77, 0.16 9, 0.17

8 137, 0.28 137, 0.28 10, 0.26

9 61, 0.12 61, 0.12 8, 0.13

10 164, 0.34 164, 0.34 9, 0.22

11 5706, 14.40 5706, 14.40 12, 0.16

12 7931, 20.30 7931, 20.30 17, 0.26

13 4625, 11.50 4625, 11.50 24, 0.34

14 4556, 11.40 4556, 11.40 25, 0.38

15 3843, 9.60 3843, 9.60 22, 0.32

16 3250, 8.20 3250, 8.20 23, 0.35

17 50001, 126.80 50001, 126.80 53, 0.78

18 50001, 127.30 50001, 127.30 1, 0.04

19 3733, 9.30 3733, 9.30 18, 0.23

20 3122, 7.90 3122, 7.90 19, 0.26

Average { { 14.5, 0.25

Table 4.c: Projection problems: variation of dimchol using � = 0:01, � = 0

and conjugate gradients

6 Conclusions

Numerical experiments are, of course, quite dependent on the test problems used, so,

the answers of the questions formulated at the beginning of the former section do

not have an absolute value. However, we think that the experiments are conclusive

enough, if not to take de�nite decisions, at least to guide the lines for future research.

So, based on the numerical experiments actually performed, we can conclude that:

(a) With large values of � (namely, � � 0:1) we obtain, in general, better per-

formances than with small ones. Therefore, the strategy of maintaining the active

constraints whenever the \internal gradient" gI(x) dominates the projected gradient

gP (x) is correct. On the other hand, once a \large value" for � has been adopted, it

is not worthwhile to try \large" values for �. In fact, it seems that, in these cases,

the large value of � is su�cient to guarantee that faces are not repeated frequently,

independently of the choice �. The poor performance of the methods for some large

values of � is due to di�culties of the linear iterative solvers of achieving high preci-

sions in the unconstrained problems. We performed additional experiments (see also

[13]) where we veri�ed that the behavior of the sequence is not identical in the cases

� = 0 and � = (say)10�8. Roughly speaking, the performance for � = 0; � = 10�8 is

very similar to the performance for � = 0:9; � = 0 and much better than the alterna-
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tive � = 0; � = 0, in the obstacle problem.

The experiments and the considerations above could lead us to give up the cri-

terion (3.1), leaving the responsibility of deciding to stay in the current face or not,

exclusively to (2.9). However, the remark at the end of Section 3 recommends us to

be cautious at this respect. There we saw that even very large values of � could not

be large enough to guarantee identi�cation of the correct face in a simple degenerate

case. Table 3.a also sheds some light on the degenerate situation. The most degener-

ate problems on this set are 2; 4; 6; : : : ; 20 and 21. On the other hand, 1; 3; 5; : : : ; 19

and 22 are safely nondegenerate. We see that the di�erence between � = 10�10 and

� = 0:9 in the nondegenerate problems is negligible, but that di�erence is extremely

impressive in the (almost) degenerate cases. In these problems, � = 0:9 was large

enough to produce the same e�ect that (3.1) should produce. The example of Sec-

tion 3 warns us about situations in which the situation could not be easily solved by

a large �.

Anyway, the more e�cient relation between � and � should still be discovered, and

this is an interesting subject for future research. The conict between \identi�cation"

and \e�ciency of the linear solver" opens the possibility of de�ning strategies where

�, � or both could be dependent on k.

(b) The best choice of dimchol is dramatically dependent of the structure of the

problem. Iterative linear methods can produce much better or much worse results

than the direct (Cholesky) method. In our experiments, we did not detect very large

variations of the dimension of the faces visited by the algorithm. In such cases, it is

recommendable to choose the direct or the iterative linear alternative on the same

basis that we do when dealing with unconstrained problems of the same dimensions.

For example, not very large problems with many di�erent eigenvalues (as our projec-

tion problems) should be solved using direct methods. On the other hand, very large

and highly structured problems favor the utilization of iterative linear methods.

(c) Gradient methods with retards were competitive with conjugate gradients. The

Barzilai-Borwein method exhibited the best behavior among them. However, the po-

tentiality of these new methods has not been fully exploited, especially in connection

to their advantages in parallel computer environments. This will be one important

subject of future research.

This paper was presented at the ICIAM Conference held in Hamburg in July 1995.

At the same meeting, Dost�al [10] presented an algorithm that, essentially, uses the

chopped gradient and the strategy based on the criterion (2.9) for leaving the faces.

He proved that, for strictly convex quadratic functions, identi�cation holds under

degeneracy if the parameter � is large enough. Both theoretical and practical results

presented in [10] are complementary to the ones presented here.
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