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Abstract

Given a system of equations Ax = b, where A is a full rank n � n matrix, usually large and

sparse, a starting point x0, and a direction vector p, a new result is presented which allow

us to �nd the closest point of the form x0 + �p to the unknown solution x� in the metric

de�ned by ATA. From that result several algorithms had been developed, initially for sym-

metric positive de�nite matrices. The basic idea is to optimize free parameters determining

the search directions for approximating Newton's method. The main algorithm is of the Cim-

mino's type, where the directions given by the projections onto the hyperplanes are combined

in an optimal way. The version for positive de�nite systems is being applied to large scale

nonlinear optimization problems. Finally, a couple of numerical experiences are presented.

Keywords: Sparse systems, projection methods, nonlinear optimization.

1 Introduction

Given a linear system Ax = b, where A 2 <n�n is large, sparse and nonsingular, and
a point x0 2 <n, we de�ne the residual vector r(x0) = Ax0 � b. Let us consider the
quadratic function f(x) = 1

2
xTAx� xT b and its gradient g(x) = 1

2
(A+AT )x � b. If

A = AT , then g(x0) = r(x0).

The leading iterative methods for solving systems of linear equations are:
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For positive de�nite symmetric systems

The Conjugate Gradients Algorithm, is in general a very e�ective method.

However, since the number of required iterations is theoretically given by the num-
ber of distinct eigenvalues, the usual approach is to compute a matrix M (called the
preconditioner matrix ) such that the system MAx = Mb is solved, where MA has
as many equal eigenvalues as possible. Unfortunately, no universal method exists for
computing M .

If the condition number �(A) is close to one, convergence is very fast However,
large condition numbers severely a�ect performance. See [6].

For nonsymmetric systems of equations

Many parameter free iterative methods have been proposed. The main ones are:

1. CGN. The Conjugate Gradients Method applied to the normal equations.

The obvious shortcoming comes from the fact that �(ATA) = [�(A)]2.

2. GCR. (Generalized Conjugate Residuals), Orthomin, Orthodir, which, like CG,
generate a Krylov subspace K using only matrix-vector products and enforce
some minimizations or orthogonality property on K. They di�er primarily
in how the basis of K is formed and which inner product is used to de�ne
orthogonality or minimality. Elman proved in [3] that restarted versions of

these algorithms converge provided that A+AT

2
is positive de�nite. Obviously

this condition not always holds as shown by a matrix

A =

�
0 1
�1 0

�
:

GMRES was developed for overcoming this restriction and it never breaks down.
However, the required storage grows with the number of iterations and therefore
all these methods are often used in a truncated or restarted form.

GMRES(k) constructs a sequence fxig such that

xk 2 x0 + [r0; Ar0; : : : ; Ak�1r0]

satisfying that krkk is minimum. More precisely we have that

xk = x0 + zk; where zk = Vky
k; yk = H�1

k
kr0ke1

and Hk = V T

k
AVk and Vk = ( v1 : : : vk ), where the vectors vi are obtained

by an Arnoldi construction of an orthonormal basis for the Krylov space.
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3. Matrix Splitting Methods. They include the earliest iterative methods and
are based on splitting the coe�cient matrix as A = M � N . This category
includes Jacobi, Gauss-Seidel, and SOR's. Convergence is assured if the spectral
radius �(M�1N) < 1. See [7].

The three categories are restricted in applicability. In general, most nonsymmetric
solvers either require storage and computation that grow excessively with iteration
number, special properties of the spectrum of A to guarantee convergence, or a sym-
metrization proccess with potentially disastrous e�ects on the system.

One group of methods that avoids these di�culties is that of row projection al-
gorithms. The idea goes back to S. Kaczmarz [8] and G. Cimmino [2] who proposed
iterative algorithms for solving a linear system of equations by cyclically projecting
on the hyperplane de�ned by one equation. More generally, partition A 2 <n�n

into m block rows AT = (A1; : : : ; Am) and b accordingly. A row projection algorithm
requires the computation of the orthogonal projections Pix = Ai(A

T

i
Ai)

�1AT

i
x of a

vector x onto Range(Ai), i = 1; : : : ; n. Note that the nonsingularity of A implies that
each Ai has full rank.

The simplest method of this sort can be derived geometrically. Let

Hi = fx : AT

i x = big

be the a�ne set of solutions to the ith block row of equations. The solution x�

to Ax = b is the unique intersection point of those a�ne sets, and the method of
succesive projections gives the iterations

xk+1 = (I � Pm)(I � Pm�1) : : : (I � P1)xk + bu;

where
bu = bm + (I � Pm)bm�1 + : : :+ (I � Pm) : : : (I � P2)b1;

with
�bi = Ai(A

T

i Ai)
�1bi:

When each block row consists of a single row of A we get Kaczmarz's original
algorithm. See [1].

In the Cimmino's sort of algorithms xk+1 is obtained from xk minimizing along
a direction which is a convex combination of the directions given by the projections
onto the hyperplanes.

In [4], these ideas are extended for solving the convex feasibility problem. In a
particular algorithm based upon Cimmino's method, non-
convex combinations appear.
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Anyway, how to choose a suitable combination of the directions remains an open
question. In the following, we present results aiming at giving an answer to this
problem.

2 New Results

The key idea of this paper arises from the following result.

Theorem 2.1: Let us consider the linear system Ax = b, where A 2 <n�n has full
rank, and its unique solution x�. Given a point x0 2 <n and a direction p 2 <n, the
closest point of the line x0+�p to x� in the metric de�ned by the symmetric positive
de�nite matrix ATA is obtained for

� = �
< r0; Ap >

kApk2
(1)

Proof. Let us consider the function

f(�) = kx0 + �p� x�k2
ATA

= < A(x0 � x�) + �Ap;A(x0 � x�) + �Ap >

= < r0 + �Ap; r0 + �Ap >

= kr0k2 + 2� < r0; Ap > +�2kApk2;

then, from f 0(�) = 0, it follows that �� = �
<r

0
;Ap>

kApk2
.

Note that f 00(�) > 0. Moreover,

f(��) = jjr0jj2(1� cos2(r0; Ap)) (2)

= jjr0jj2sin2(r0; Ap):

Lemma 2.1: The merit function (2) is zero if and only if p coincides with the optimal
direction x0 � x�.

Proof. Elementary.

Suppose now we have two directions p1 and p2. We want to �nd � in such a way
that p(�) = �p1 + (1� �)p2 minimizes the merit function (2). This result is given in
the following

Theorem 2.2: Given the system Ax = b, where A 2 <m�n, m � n, is a full rank
matrix, and two directions p1; p2 2 <

n, then the value of � such that p(�) = �p1 +
(1� �)p2 which minimizes (2) is

� =
< A(p1 � p2); < g0; Ap2 > Ap2 � kAp2k

2g0 >

< A(p1 � p2); < g0; Ap1 > Ap2� < g0; Ap2 > Ap1 >
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Proof. Let us de�ne

H(�) =
< g0; Ap(�) >2

kAp(�)k2
�

P (�)

Q(�)
; (3)

and we will �nd its critical points. We have that

< g0; Ap(�) > = < g0; A(�(p1 � p2) + p2) >

= � < g0; A(p1 � p2) > + < g0; Ap2 > :

Then, de�ning

a1 = < g0; A(p1 � p2) >
2;

a2 = 2 < g0; A(p1 � p2) >< g0; Ap2 >; (4)

a3 = < g0; Ap2 >
2;

we get
P (�) =< g0; Ap(�) >2= a1�

2 + a2�+ a3:

Also

kAp(�)k2 = < Ap(�); Ap(�) >

= < �A(p1 � p2) +Ap2; �A(p1 � p2) +Ap2 >

= kA(p1 � p2)k
2�2 + 2 < A(p1 � p2); Ap2 > �

+kAp2k
2:

Therefore, de�ning

b1 = kA(p1 � p2)k
2

b2 = 2 < A(p1 � p2); Ap2 > (5)

b3 = kAp2k
2;

we can write

Q(�) = kAp(�)k2

= b1�
2 + b2�+ b3:
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From (3) it follows that

H 0(�) =
P 0(�)Q(�) � P (�)Q0(�)

Q2(�)
: (6)

Also, we can write

P (�) = (< g0; A(p1 � p2) > �+ < g0; Ap2 >)
2;

which can be written as

P (�) = (c1�+ c2)
2; (7)

with a1 = c21, a2 = 2c1c2, a3 = c22 . Thus, from (7) we get

P 0(�)Q(�) � P (�)Q0(�) =

= (c1�+ c2)[(b2c1 � 2b1c2)�+ (2c1b3 � c2b2)]: (8)

Therefore, from (7) and (8) we obtain that one root is �1 = �c2=c1, but for this
value is p(�1) = 0. In other words, �1 is a maximizer of the merit function

F (�) = kr0k2(1� cos2(r0; Ap(�)): (9)

The remaining root is

�2 =
c2b2 � 2c1b3
b2c1 � 2b1c2

;

which after some straightforward calculations can be written as

�2 =
< A(p1 � p2); < g0; Ap2 > Ap2 � kAp2k

2g0 >

< A(p1 � p2); < g0; Ap1 > Ap2� < g0; Ap2 > Ap1 >

3 Algorithms

Given A 2 <m�n, 1 � p � m

0
@
A1

...
Ap

1
Ax =

0
@
b1
...
bp

1
A

Algorithm (Block Cimmino Method)
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Choose x0, set k = 0.

Repeat until convergence

begin

do in parallel i = 1; : : : p
�k
i
= A+

i
bi � PR(AT

i
)
xk

= AT
i
(bi �Aix

k)
end parallel.

xk+1 = xk +
Pp

i=1 wi�
k

i
; /
Pp

i=1 wi = 1.
set k = k + 1

end.

If p = m we get the original Cimmino's Algorithm.

One possible Cimmino's type (Algorithm 1)

Choose x0, �1; �2; �3; set k = 0, r0 = Ax0 � b.
Repeat until convergence

begin

do in parallel i = 1; : : : n
p1 = �rk

p2 = aT
i

if j cos(p1; p2)j < �2 skip ai (if all ai are rejected, p
k = �rk)

compute �i which minimizes

1� cos2(rk ; A(�p1 + (1� �p2))
if F (�) < �3 proceed to line search

end parallel

choose j such that F (�j) = mini F (�i)
pk = �j(�r

k) + (1� �j)a
T

j

Line search procedure

if A = AT > 0 then
�k = �

<r
k
;p>

<pk;Apk>

else

�k = �
<Ap

k
;r
k
>

kApkk2

end if

end

xk+1 = xk + �kpk

rk+1 = Axk+1 � b
if krk+1 < �1kr

0k stop
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set k = k + 1
end

Now, let us prove that Algorithm 1 is globally convergent for symmetric matrices.

Theorem 3.1: Given the system Ax = b, A 2 <n�n, A = AT > 0, then for any
starting point x0 2 <n, Algorithm 1 is globally convergent.

Proof. In the following, k : k will denote the l2 norm. Let us consider the function

f(x) =
1

2
xTAx� bTx (10)

and its gradient
gk = g(xk) = Axk � b (11)

which is Lipschitz continuous because

kg(x)� g(y)k = kA(x� y)k � �1kx� yk; (12)

where �1 = kAk is the largest singular value of A.

We de�ne

cos �k = �
< gk; pk >

kgkkkpkk
� � > 0

because of the way directions are chosen in Algorithm 1.

Due to the exact line search, we have that

< g(xk) + �kpk; pk >=< gk+1; pk >= 0 (13)

Hence, from (12) we get

< gk+1 � gk; pk >= � < gk; pk >= �k < Apk; pk > (14)

On the other hand, from (12)

< gk+1 � gk; pk >� �1�
k
kpkk2 (15)

Then, using (14) and (15) we obtain

�k � �
< gk; pk >

�1kpkk2
(16)
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Also

f(xk+1) = f(xk) + �k < gk; pk > +
(�k)2

2
< pk; Apk >

= f(xk)� �k < gk; pk > �
(�k)2

2
< pk; Apk >

because of (14).

De�ning

c =
kgkk2 < pk; Apk >

2�21

We �nally get

f(xk+1) � f(xk) + ckgkk2 cos2 �k (17)

Since f(x) is bounded below, it follows from (17) that

1X
k=1

kgkk2 cos2 �k <1 (The Zoutendijk condition [9])

Taking into account that cos2 �k � �02 > 0, we conclude that

lim
k!1

kgkk = 0:

4 Numerical Experiments

In order to test Algorithm 1, an experimental Fortran program was written. The fol-
lowing result were obtained using 486 DX2-66 Mhz PC and the Microsoft Fortran 5.1
compiler. We compare Algorithm 1 with PCG (Preconditioned Conjugate Gradients
Method as implemented in the IMSL library) and GMRES(n).

MAT1: Let An = (aij) be the non symmetric matrix de�ned by

aij =

�
1; j � i
aj ; j < i.

The determinant of An is given by

det(An) = (1� a1)(1� a2) : : : (1� an�1)
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We chose n = 50 and aj = t for j = 1 : : : n� 1.

The system has x�
i
= 1, and x0

i
= 0:5 for j = 1 : : : n.

Method t CPU krk kx� x�k

New 0:8 0:17 0:130 10�9 0:991 10�10

PCG 0:8 2:09 0:134 10�9 0:251 10�9

GMRES 0:8 0:33 0:772 10�8 0:672 10�7

New 0:9 0:16 0:501 10�9 0:787 10�9

PCG 0:9 1:53 0:108 10�8 0:130 10�6

GMRES 0:9 0:28 0:765 10�9 0:186 10�6

MAT2: Let us consider the Hilbert matrix

An = (aij) = (
1

i+ j � 1
) i; j = 1; : : : ; n

and the linear system Anx = b for n = 7 and the same starting point and solution as
before.

The condition number is approximately e3:5n, and det(A7)=4:8358 10
�25

Method CPU krk kx� x�k

New 0:03 0:533 10�6 0:381 10�2

PCG 0:04 0:307 10�5 0:175 10�2

GMRES 0:03 0:268 10�6 0:746 10�2

Remark 4.1: PCG cannot reach lower values of krk because of numerical failure. Note
that closer iterates to x� not necessarily imply lower values of krk.

Reference: [5].

Conclusion: The results presented in this paper can be applied to a variety of
possible row action algorithms. Here we just compared an experimental program
implementing one possible algorithm against two professionally developed products.
These �rst results are very encouraging because they show the new algorithms can
deal with ill conditioned symmetric and non symmetric matrices e�ciently.

5 Applications to Nonlinear Optimization

Let us consider the unconstrained minimization problem

min
x2<n

f(x); (18)

and the variable metric methods for solving it:

p = �Hg (19)
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x+ = x+ �p; (20)

where x is the current estimator of the optimum, � is a steplength and g � rf(x).

The approximation to the inverse of the HessianH can be updated taking a matrix
from the Broyden family :

H+ = H �
H

TH


TH

+

��T

�T 

+ �
TH


�
�

�T 

�

H



TH


��
�

�T 

�

H



TH


�T
;

with � � x+ � x and 
 � g+ � g.

By choosing di�erent values for the parameter �, we obtain di�erent updates whose
performances di�er greately. (e.g. � = 0 corresponds to DFP method and � = 1 to
BFGS method).

Let us suppose now that we are at x+, and that we want to choose the search
direction

p(�) � �H+g+

that best resembles (in certain sense) Newton's direction pN � �A�1+ g+, where
A+ � r2f(x+).

We could try to do this by choosing the direction p(�) that minimizes the merit
function

F (p) = kg+k
2
�
1� cos2(g+; A+p)

�
� 0;

which attains its least value precisely at the Newton's direction pN.

Lemma 5.1: The value of � which minimizes F (p(�)) is

� =
�3�5 � �1�4

�1�2�6 � �2�4�5
;

where

�1 �< A+g+; Zg+ >, �2 � a < v; g+ >,

�3 � kA+Zg+k
2
, �4 �< A+Zg+; A+v >,

�5 �< g+; A+v >, �6 � kA+vk
2
,

and

H+ =

Zz }| {
H �

H

TH


TH

+

��T

�T 

+� 
TH
| {z }

a

vz }| {�
�

�T 

�

H



TH


��
�

�T 

�

H



TH


�T
:
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Another way of trying to approximate Newton's direction in some sense (due to
M.F. Marazzi) could be obtained by solving

min
�

kH+
r
2f(x)� Ik (21)

for some matrix norm. If the Hessian of f is not available, we may replace it by the
current approximation B � H�1, which is in hand, and solve

min
�

kH+B � Ik; (22)

instead of solving (21).

Lemma 5.2: The unique solution to (22) in the weighted Frobenius norm k : kH �

kH�1=2( : )H1=2k F is

� = �
�T 



TH

:

Remark 5.1: These results can be used with automatic di�erentiation.
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