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Abstract

In this work we present a truncated Newton method able to deal with large scale bound con-

strained optimization problems. These problems are posed during the process of identifying

parameters in mathematical models. Speci�cally, we propose a new termination rule for the

inner iteration, that is e�ective in this class of applications. Preliminary numerical experi-

mentation is presented in order to illustrate the merits of the rule.

1 Introduction

In this paper we present a numerical method able to deal with very large, non-linear,

unstable, bound constrained optimization problems. These problems arise when the

parameters of a mathematical model that describes certain physical phenomena, have

to be identi�ed. Generally these calibration problems have a dynamical behaviour

modelled with partial di�erential equations.

This situation can be formulated through the following optimization problem

minimize f(x) = jj�(x) � d jj; � : Rn ! R
m; d 2 Rm (1)

subject to l � x � u; l; x; u 2 Rn;
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where the unknown parameters are the decision variables and the objective function

is some norm of the di�erence between the vector of observed data d and the vector of
model predictions �(x). Thus, the computed parameters are the best in the sense that

the error in the predictions is minimized. Then problem (1) is an inverse problem,

which in general is badly posed in the Hadamard sense: i) there can be multiple local

solutions (a situation that will not be addressed in this paper), ii) the problem is ill

conditioned.

Frequently the vector of observations has a signi�cant amount of error in the mea-

sured data. This represents a complicating factor from the numerical point of view

due to the ill conditioning. In addition, the number of parameters may be quite large

as a consequence of the discretization of the di�erential model.

Therefore, suitable numerical methods must be able to solve (1) in a stable way

using reasonable amounts of computational resources. The optimization approach

has shown to be successful to solve this class of problems. For example, an imple-

mentation of the limited memory quasi-Newton (LMQN) method developed by Byrd,

Zhu, Lu and Nocedal [12] has been used to calibrate a hydraulic model and a seismic

model (see [1], [2]).

On the other hand, truncated Newton (TN) methods are well suited to deal with

optimization problems in the large scale setting. In practice, they perform well and

are relatively easy to implement. Furthermore, under some conditions they are able

to retain most of the nice convergence properties of original Newton's method. When

the local quadratic model is ill-conditioned, a well known potential disadvantage is

due to the fact that the conjugate gradient (CG) based inner iteration requires some

preconditioning technique in order to accelerate its convergence. However, for the ap-

plications already described, problem-oriented preconditioners can be generated (for

example using multiscale grids) to alleviate ill-conditioning. In this spirit, it is known

that LMQN methods do not work well if the distribution of eigenvalues is ill, and it

is not yet clear how to incorporate preconditioners in them. Finally, the stabilization

properties of the CG method could be useful to deal with the stabilization problem,

see for instance Nemirovskii [8] and Plato [9]. Therefore, TN methods seem worth to

be explored in the context of parameter identi�cation problems.

In this work we propose and study a TN method that uses the CG method to

solve the system of linear equations de�ning the descent direction at each Newton

step. Since in our approach the overall performance of the method strongly depends

on the CG iteration, special attention has been devoted to the termination rule. A

new rule has been developed to identify when the inner iteration has computed a

satisfactory descent direction. The rule has been tested on two classes of problems:

(a) a set of di�cult academic problems, (b) a synthetic example of an inverse parame-

ter identi�cation problem that calibrates an aquifer model based on the ux equations.

In this paper the development of the new stopping condition for the CG iteration

of a TN method is presented. The development of ad-hoc preconditioners and the
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analysis of the stabilization properties of the method, are the subject of current re-

search and will be reported in forthcoming papers. The paper is organized as follows:

section 2 deals with basic issues in the truncated Newton method. In section 3 the

test problems are described along with numerical experimentation on both sets of

problems. Some remarks and comments are given in section 4.

2 Truncated Newton Methods

In essence, TN methods attempt to retain the rapid quadratic convergence of the

classical Newton method while making storage and computation feasible for large scale

applications. In the absence of constraints, Newton methods are iterative techniques

that �nd local minima by minimizing local quadratic models of the objective function

f in (1). Thus, at the k-th iteration, the following subproblem is solved

minimize
pk

f(xk + pk) � Qk(pk) = f(xk) + gTk pk +
1

2
pTkHkpk; (2)

where gk andHk denote the gradient and Hessian, respectively, of f at xk. Its solution
pk, which is computed by solving the system of linear equations

Hkpk = �gk; (3)

is then used to generate the next iterate with the rule xk+1 = xk + pk.

In practice, however, Newton's method requires some modi�cations in order to

be e�ective. First of all, the actual matrix of coe�cients in the system of linear

equations (3) may be some modi�cation �Hk of the true Hessian which ensures that a

descent direction is always computed. Second, under certain conditions, for example

when the iterates are far away from the local optimum, the system (3) may be solved

only approximately. When pk is just an approximate solution of (3) without any

reference to the procedure used to compute it, the resulting method is referred to

as an inexact Newton method. If the procedure used to compute pk is an iterative

technique, then the term truncated Newton is used instead. We will discuss in the

following subsections some details of the implementation of a TN method that are

crucial to deal with our applications.

2.1 Computing Feasible Descent Directions

We will assume that the elements of the Hessian matrix are not available. Therefore,

the CG method seems appropriate to solve (3) since it does not require the Hessian

explicitly. We always start the method with the initial approximation p
(0)

k
= 0. Then

at each iteration a new approximation is computed p
(i)

k
. The computational cost

involved is some linear algebra operations and a matrix-vector product Hkv. This

product is approximated using di�erences of the gradient vector as follows

c Investigaci�on Operativa 1997



142 G�omez, S. and Morales, J. L. � A Truncated Newton Method ...

Hkv � g(xk + hv)� g(xk)

h
; (4)

where h = (1 + jjxkjj)p�M , and �M is the relative machine precision.

Then, the cost of one CG iteration is dominated by the computation of g(xk+hv).
In practical situations this fact has an important consequence: the overall performance

of the method will strongly depend on the rule to stop the CG iteration.

In our applications, the parameters are generally subject to satisfy some bounds

imposed by the physical problem. The algorithms deal with this situation as follows.

At each Newton iteration, a variable at its bound is kept �xed only if the corre-

sponding component of the gradient vector points inside the feasible region. Then an

unbounded step on the free variables is computed by solving the Newton equations (3)

with the preconditioned (see next subsection) CG method. During this computation,

some precautions are needed to prematurely stop the CG loop, for example when an

inde�nite Hessian is detected. In this particular case, the implementation tests the

double product d(i)THkd
(i) at each inner iteration; where d(i) is the current direction

computed by the CG method. If this quantity is less than a prescribed tolerance

�; (� = 10�10 in our implementation), then the procedure is terminated. In any case

the stopping rules ensure that the CG iteration always �nishes with a descent direc-

tion. Then a line search is performed along the descent direction.

It could happen however, that the computed direction is infeasible for a variable

at its bound. To deal with this situation, before the line search is performed, the

maximum allowable feasible step is determined which will be zero, if an infeasible

direction has been computed. Then the active set is modi�ed, and a new search

direction will be computed based on this new active set. The line search routine is an

implementation of the Mor�e and Thuente [4] algorithm. It uses quadratic and cubic

interpolation to iteratively compute a su�cient decrease stepsize �k. The search is

terminated when �k satis�es the following, strong Wolfe conditions,

jg(xk + �kpk)
T pkj � �jg(xk)T pkj; (5)

f(xk)� f(xk + �kpk) � ���kpTk g(xk); (6)

where � = 10�4, and � = 0:9. Then the trial point, �xk+1 = xk + �kpk is computed,

and the active set of bound-constraints is updated.

2.2 Preconditioning

In spite of its �nite termination property, the CG method is not e�ective as it stands.

This algorithm, as many others of its class intended to solve systems of linear equations

of the form Ax = b, is very sensitive to the eigenvalue distribution of the coe�cients

c Investigaci�on Operativa 1997



Investigacion Operativa � Volume 7, Number 1{2, January{June 1997 143

matrix A. Speci�cally, the CG method converges linearly with rate (�1=2�1)=(�1=2+
1), where � is the spectral condition number of A. Therefore, the basic goal in

preconditioning is to improve the eigenvalue distribution of A. The standard approach
consists in premultiplying the original system by a non singular matrix M that is a

good approximation of the inverse of A, i.e.

MAx = Mb; �A = MA; �b =Mb: (7)

Then the new system �Ax = �b, the preconditioned system, is solved; observe that

in this case the CG method will require matrix-products of the form MAv =Mv0.

The implementated algorithm uses the preconditioner developed by Nash [5]. This

preconditioner is based on two steps of the LMQN-BFGS method and a diagonal

scaling built with information collected during the inner iteration. Therefore, the

matrix M is never stored explicitly. A detailed description of the preconditioner and

the scaling can be found in [5].

2.3 Stopping the CG Method

There are several theoretically supported truncation rules that give good results in

practical situations. For example the following rule, due to Dembo and Steighaug [3],

jjrk jj � �kjjgkjj; �k = minfc=k; jjgkjjg; c � 1; (8)

where rk = �Hkpk�gk is the residual, and �k is called the forcing sequence. In [3] the
authors prove that the outer iteration achieves asymptotic superlinear convergence if

the precision in the inner iteration is forced using (8). However in our context, this

condition can be overly restrictive if, for example, the problem is ill conditioned and

a good preconditioner is not available. In this case the experiments show that the

number of outer iterations is low but in contrast, the corresponding of CG iterations

may be una�ordable.

Other rules try to avoid an excessive number of inner iterations by limiting the

rate of convergence of the outer algorithm. The quadratic stopping condition due

to Nash [5], uses a measure of the quality of the local quadratic model generated by

Newton's method to assess the approximation to the Newton step. The inner iteration

is terminated when the following test is satis�ed

i

 
1� Qk(p

(i�1)

k
)

Qk(p
(i)

k
)

!
� 0:5; (9)

where Qk is de�ned in (2), and p(i) is the current approximation to the Newton direc-

tion computed by the CG method at step i. Experimentally, this condition combines
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a very reasonable number of inner iterations with a potentially large number of outer

iterations. These results are supported by the fact that with this rule the outer iter-

ation is expected to have linear convergence [7].

As an alternative, we present in this paper another way to decide when to stop the

CG iteration. This rule is not based on the rate of convergence, instead it estimates

the quality of the approximation produced by the CG method with respect to the

Newton direction. In order to do so, we suggest to compute the angle between the

vectors Hkp
(i) and �gk i.e.,

cos �(i) =
�gT

k
Hkp

(i)

jjgkjj jjHkp(i)jj : (10)

Observe that this is an indirect way to estimate the alignment between the New-

ton direction pN = �H�1
k

gk and the computed direction p
(i)

k
.

In order to de�ne the stopping condition we start with two simple observations.

First we note that 1 � cos �(i) ! 0 as the CG method approaches the solution pN .
Second, the Newton direction also satis�es the relation gT

k
HkpN + gT

k
gk = 0. These

observations suggest to stop the CG method when the following test is satis�ed:

j1� cos �(i)j �
�

TOL if k = 0;

jgT
k
Hkp

(i) � gT
k
gkj=jjgkjj2 otherwise;

(11)

where TOL is de�ned as follows

TOL = maxf10�7; �0jjg0jjg; �0 = jjg0jj: (12)

The quantity j1 � cos �(i)j does not tend monotonically to zero. However, our

numerical experiments have shown that good directions can be computed when for

example j1� cos �(i)j � 10�1.

3 Test Problems and Numerical Experiments

In this section we describe the two classes of problems and the numerical experimen-

tation conducted so far.

3.1 Modelling an Aquifer in 2-D

Consider an unsteady ow in an inhomogeneous, isotropic and con�ned aquifer with

the following partial di�erential equation governing the ux
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@

@x

�
T (x; y)

@h

@x

�
+

@

@y

�
(T (x; y)

@h

@y

�
= S

@h

@t
+Q; (13)

with the following initial and boundary conditions:

h(x; y; 0) = h0(x; y); 8 x; y 2 
; (14)

h(x; y; t) = h1(x; y; t); 8 x; y 2 �
1; (15)

T
@h

@n
= h2(x; y; t); 8 x; y 2 �
2; (16)

where h is the hydraulic head; T is the transmisivity, S is the storage coe�cient; Q
is the source and sink term (assumed to be known); 
 is the ow region; �
, the
boundary of the aquifer, is given by �
1 [ �
2; @=@n denotes the normal derivative;

�nally h0; h1; h2 are speci�ed functions.

In order to exploit the aquifer it is necessary to solve (13) in h(x; y; t), the head
distribution at every point of the domain at any time. However, T (x; y) the trans-

misivity parameter is not known. Fortunately, some data measurements of the heads

h�(xi; yj ; tk) are known. Thus, this information can be used to calibrate the model

by �nding the transmisivity T that better reproduces these data. This can be carried

out by solving the following least squares problem,

minimize f(T ) =
X
i;j;k

[h(xi; yj ; tk;T (xi; yj))� h�(xi; yj ; tk)]
2

subject to Tmin � T � Tmax:

The interested reader can �nd a detailed description of this problem in [10], [11].

3.2 Academic Problems

We have chosen a standard subset of academic problems as a reference to compare the

complexity of our application problem. They are considered as di�cult problems and

normally used for testing purposes. A detailed description of some of these problems

can be found in [5]. They share some similarities, for example at the initial point their

Hessian matrices have the same set of eigenvalues: �i = i for i = 1; : : : ; N , where N
is the dimension of the problem. At the solution the Hessian matrices have, except

for problem SQRT, at least one eigenvalue very close to zero.

3.3 Numerical Results

All numerical experimentation was performed on an Alpha DECStation in double

precision with �M � 10�16. All subprograms and routines were written in Fortran.
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quadratic residual angle

iter f-g cg f-g + cg iter f-g cg f-g + cg iter f-g cg f-g + cg

271 501 3, 553 4, 054 273 502 11, 658 12, 160 389 501 595 1, 096

Tab. 1: Aquifer problem. Computational costs for three di�erent stopping conditions.

Number of variables, after discretization, 78.

problem quadratic residual angle

iter f-g cg iter f-g cg iter f-g cg

QOR 15 16 45 8 9 45 10 11 41

matrix SQRT 36 42 388 22 35 615 29 36 418

Tridiagonal 19 20 64 11 12 75 34 35 58

Trigonometric 39 84 354 39 75 3, 029 40 59 89

Calc of var 1 35 38 469 16 20 625 42 44 409

f-g + cg 1, 520 4, 540 1, 200

Tab. 2: Academic problems. Computational cost for three di�erent stopping condi-

tions. Number of variables = 100.

In the experiments we tested three stopping conditions for the CG inner iteration:

the rule based on the residual (8) due to Dembo and Steihaug [3], denoted by residual;

the rule (9) due to Nash and Sofer [6] denoted by quadratic, and the proposed rule

denoted by angle. A limit of 50 iterations CG per outer iteration was imposed in

all cases. With respect to the outer iteration, this was stopped with the following

condition

jjg(xk)jj1 < 10�6(1 + f(xk)): (17)

The numerical results are summarized in Tables 1, 2, where information is dis-

played as follows: (iter) is the number of Newton iterations, (f-g) is the number of

function and gradient evaluations, and (cg) is the number of conjugate gradient it-

erations needed. Note that the actual computational cost has to be calculated by

adding the number of function and gradient evaluations to the CG iterations. We

recall that the cost of one CG iteration is one gradient due to the �nite di�erences

approximation to the matrix-vector product (4).

Table 1 shows the performance for the three rules with the aquifer problem, where

the total cost appears in the fourth column. Table 2 displays the results for the aca-

demic problems, where the last row gives the acumulated computational cost for the

�ve problems.
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4 Some Final Remarks

Based on the limited numerical experiments presented here, we can assert that it is

possible to de�ne a practical stopping condition not based on the rate of convergence.

For ill conditioned problems this rule seems to behave better than the known rules.

The idea, based on geometric arguments, requires however a careful analysis in order

to establish its theoretical support.
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