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Abstract

In this paper we describe a scheduling problem for certain types of tournaments. It is for-

mulated as a discrete minimization problem. Using a tabu search method we solve various

problem instances of di�erent size and complexity. The in
uence of the tabu list size on

the performance of the algorithm is studied. Tabu search is also compared with previous

optimization techniques, which are available in related literature.

Keywords: Scheduling problem, discrete optimization, tabu search.

1 Introduction

A number of exact and heuristic methods of constructing schedules for di�erent types

of tournaments have been described in the Operation Research literature. However,

the scheduling problem considered in this work has been poorly analyzed. The prob-

lem can be stated as follows: A sports club organizes a tournament which will be

played during r meetings among t teams. At each meeting teams are divided into g

groups of k teams (t = kg). Each of the k teams then plays against the remaining k�1

teams in its group. The club has requested a tournament schedule with the following

property: The number of times any team competes against any opposing team should

be the same for all teams. If no such schedule exists, then the club requests at least

one where the number of times any team plays against any other team is as close as

possible to the same for all teams.

There are
�
k

2

�
games in each group and g

�
k

2

�
games per meeting. Hence, the num-

ber of matches in the tournament will be rg
�
k
2

�
. Since each team plays r times against

k � 1 opposing teams, there are r(k � 1) potential opposing teams. Each team has
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t� 1 di�erent possible opponents, because no team plays itself. So the club requires

a schedule which ensures that the number of times any team plays against any other

team is very close to � = r(k�1)=(t�1) (the \ideal" number of times that two teams

should meet).

The instance problem t = 12, r = 8, g = 3 and k = 4 was presented in [3]. The

authors studied this instance as an optimization problem and tried to solve it. They

used the following discrete optimization techniques: a greedy algorithm, branch and

bound, steepest descent, and simulated annealing. None of these methods produced

a schedule required by the sports club. They also dealt with this instance as the

construction of an experimental incomplete block design, but the required design is

not available in the catalogues. In general, as we will see in the next section, there is

a correspondence between the scheduling problem and the construction of a regular

resolvable partially balanced incomplete block design with two distinct concurrences

(see [6] for the de�nition of these designs). In [5] this instance was constructed using a

hill-climbing technique. The others instance problems studied in [5] were constructed

using techniques other than optimization.

The aim of this paper is the construction of required schedules using a tabu search

technique (TS). In Section 2, we formulate the scheduling problem as a discrete opti-

mization problem. For this problem, it is easy to �nd the value of an optimal solution

but di�cult to �nd an optimal solution. Section 3 describes the implementation of

a TS method for this problem. TS was tested on 14 problem instances of di�erent

size and complexity. The numerical experiences obtained from TS will be given in

Section 4. The in
uence of the tabu list length on the performance of the algorithm

is also analyzed. The results were compared with those from the literature about

optimization methods. Finally, conclusions are given in the last section.

2 Two Approaches to Solving the Scheduling Problem

In order to enumerate all possible schedules, we labelled the g groups at each meeting

as A;B;C; : : :, where each group contains k teams. The number of all assignments of

the t(= gk) teams to these g groups is given by the multinomial coe�cient
�

t

k1���kg

�

where ki = k for i = 1; : : : ; g. But since the g! labels on groups are arbitrary, the

number of possibilities for each meeting is the multinomial coe�cient divided by g!,

this is, p = t!=gk!g!. Since there are r meetings in the tournament and the same

schedule can be chosen at di�erent meetings, the number of all possible schedules is

p
r. Therefore, it is not computationally feasible to use the exhaustive method for a

problem of signi�cant size.

The scheduling problem can be seen as the arrangement of t teams in b = rg

groups (blocks) in such way that

(1) each block contains k teams

c
 Investigaci�on Operativa 1998



Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 129

(2) each team occurs in r blocks

(3) every pair of teams occurs together in � blocks, and

(4) the blocks are divided into r sets such that each team occurs exactly once in the

blocks of any set. Each set contains g blocks.

Notice that � is the number of times that any one team plays against any other,

and b is the total number of groups formed during the r meetings.

An arrangement of t elements in b blocks that satis�es conditions (1) and (2) is

called an incomplete block design. Designs which satisfy (3) and (4) are called balanced

and resolvable design, respectively. The terms t; b; r; k; � are known as the parameters

of a balanced incomplete block design. It is not hard to see that

bk = tr; r(k � 1) = l(t� 1):

In order to see the scheduling problem as a discrete optimization problem, we

de�ne the competition matrix of a schedule as a t� t matrix C where Cij = Cji is the

number of times that team i plays against team j in this schedule and Cij = 0 for

i = j. The scheduling problem can therefore be formulated as the problem of �nding

a schedule whose competition matrix C minimizes the following cost function:

f =

tX

i<j

(Cij � �)2: (1)

Since matrix C is symmetric, only t(t � 1)=2 entries below (or above) the main

diagonal need to be examined. Note that f � 0 and f = 0 if and only if Cij = � for

all i 6= j. So, the number of times any team competes against any other team is the

same for all teams.

In particular, for the instance t = 12, r = 8, g = 3 and k = 4, each team plays

r(k � 1) = 24, but there are only t � 1 = 11 di�erent opponents. So, the value of

� (= 2:18 : : :) is not an integer. Hence a required schedule would have each team

playing with 9 other teams twice and with 2 other teams three times. Thus, each

row of its competition matrix C should consist of nine 2's and two 3's (with 0's on

the diagonal). Taking � = 2 in (1), the only non-zero summands in the cost function

f {for this schedule{ are those for which Cij = 3. In consequence, the cost of any

requested schedule is 12 = 12� 2=2.

The purpose of this paper is to study the construction of schedules where � =

r(k � 1)=(t� 1) is not an integer, but there are integers l1; l2; n1 and n2 such that

r(k � 1) = �1n1 + �2n2:
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More speci�cally, �1 is the integer part of r(k � 1)=(t � 1), �2 = �1 + 1 and

t� 1 = n1 + n2. Note that n2 = r(k � 1)� �1(t � 1). For these values, each pair of

teams plays �1 or �1 + 1 times. Hence, each row of the competition matrix C of a

requested schedule should have n1 �1's, n2 �2's and 0 on the diagonal. It is easy to

see that the cost of these schedules is tn2=2 when we take l = l1 in (1).

The corresponding incomplete block design for the scheduling problem with the

above property is not a balanced design, because every pair of teams occurs together

in either �1 or �2 blocks. If l2 = l1 + 1 the design is said to be regular. Thus, in

the language of blocks design, the scheduling problem is equivalent to constructing a

regular resolvable partially balanced incomplete block design with two concurrences.

Although there are procedures for constructing partially balanced designs, these pro-

cedures are usually restricted to very speci�c classes of problems, see for example [2].

Let f0 = b
�
k
2

�
� l1

�
t
2

�
. It is not hard to check that for regular designs, f0 = tn2=2.

In [1] it was proved that for any design, f � f0 and f = f0 if and only if the design is

a regular partially balanced incomplete block design (taking l = l1 in (1). This result

allows one to formulate the scheduling problem as an minimization problem with the

cost function:

f =

tX

i<j

(Cij � �1)
2
:

It follows that tn2=2 is the global minimum of f whenever an appropriate schedule

does exist.

3 Implementation of Tabu Search

TS is an iterative heuristic procedure for optimization. It has been designed to over-

come local optimality. It is distinguished from other methods because it incorporates

a tabu list of transitions (moves) that forbids the reinstatement of certain attributes

of previously visited solutions. These forbidden moves are called tabu. For a more

detailed presentation of TS see [4].

Let us now describe how we used tabu search to �nd an optimal schedule. In our

approach, a feasible solution would be any schedule, that is, the r assignments of t

teams into g groups of k teams each. A move is a transition from one schedule to

another. An attribute of a move is a triple (m; i; j) which exchanges two teams i and

j from di�erent groups in the same meeting m. The value of a move is the di�erence

between the cost function value before and after the move. At each iteration the best

move is chosen, even if it does not improve the cost function. The search is carried

out on all the moves (m; i; j) such that teams i and j do not belong in the same group.

The number of possible moves (m; i; j) in each iteration is r
�
g

2

�
kk, because there are

r di�erent meetings, and in each one there are
�
g

2

�
ways to choose the two groups
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involved in the change, and k ways to choose a team from each of the two groups.

The only entries of matrix C that change, after the move (m; i; j), are those be-

longing to the ith or jth row, or column. This allows us to calculate the cost of

a move in O(t) operations. By contrast, the entire function f can be calculated in

O(t2), because the order of C is t. Note that complexity has been reduced by a factor

of 1=t.

To prevent cycling, a tabu list T of length jT j is constructed and updated circularly

during the process. At each iteration we introduce the best found move (m; i; j) into

the tabu list. This means that for jT j iterations of TS, the teams i and j cannot be

exchanged in the meeting m. The tabu status of a move may be dropped whenever it

gives a cost function value that is strictly better than the best obtained so far. This

is the aspiration level criterion.

The search process will be stopped if an optimal solution (or schedule) is reached,

or if the number of iterations without improving the best solution is greater than a

nimax limit.

4 Computational Experience

The tabu search method was tested on 14 problem instances with parameters t =

12; 16; 20,24; 7 � r � 24 and k = 4; 5; 6. From our experiments, we see that there

are instances which are very easy to solve (always less than 150 iterations), whilst

others are di�cult (average of under 200 iterations) and some others are very hard

to solve (average of over 1000 iterations). Finally, from the 14 instances tested, there

were only two that the TS procedure could not solve optimally. All TS runs were

carried out with a random initial solution. The TS algorithm was implemented in C

programming language, and all computations were executed on a 66MHz 488 Pentium

PC.

In order to discover the in
uence of jT j and nimax on the performance of tabu

search, a number of runs were performed using di�erent values of jT j and nimax on

each instance tested. The best results obtained by TS are given in Table 1. Each

row in the table corresponds to an instance. Columns 2-8 show the parameters of the

instances. Column 10 gives the best tabu size. Columns 11, 12 and 13 respectively

show the average number of iterations where an optimal solution was found (ITO),

the percentage of runs with an optimal solution (POS) and CPU time.
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Table 1. Computational Results of Tabu Search
# t r k g �1 �2 n1 n2 j T j ITO POS CPU time (s)

1 12 8 4 3 2 3 9 2 27 192 100 1.19

2 12 9 4 3 2 3 6 5 6 19 100 0.13
3 12 10 4 3 2 3 3 8 18 141 100 3.55
4 16 7 4 4 1 2 9 6 6 22 100 0.27

5 16 8 4 4 1 2 6 9 6 31 100 0.43
6 16 9 4 4 1 2 3 12 39 2010 32 31.81

7 16 11 4 4 2 3 12 3 30 1317 56 25.44
8 16 12 4 4 2 3 9 6 6 38 100 0.80

9 20 7 4 5 1 2 17 2 33 1908 54 44.04
10 20 8 4 5 1 2 14 5 20 159 100 4.21
11 20 10 5 4 2 3 17 2 - - 0 -

12 20 12 5 4 2 3 9 10 27 1907 42 78.99
13 24 7 6 4 1 2 11 12 - - 0 -

14 24 19 4 6 2 3 12 11 6 71 100 7.35

For each tabu length: 1 � jT j � 10, TS was run 50 times using nimax = 100 on

the easy problem instances. TS always reached the global minimum tn2=2 for any

tabu list size greater than 6. Rows 2, 4, 5, 8 and 14 of the Table 1 give the best

results for the easy instances.

In each di�cult instance problem, TS was run 50 times using nimax values of

500, 700 and 1000 and varying the tabu size from 9 to 60 with a step size of 3. The

best results obtained for these instances are given in rows 1, 3 and 10 of Table 1.

Table 2 contains the in
uence of the tabu list size on the performance of TS for

the di�cult instance (12; 8; 4; 3). Row 1 gives the values used for the tabu size. Row

2 shows the percentage of these runs in which the TS method reached an optimal

solution for each value of jT j, using nimax = 700. Row 3 gives the average number

of iterations where an optimal solution was found. The table shows that the best

tabu length was about 27. For small tabu size (t � 12), there was a high probability

that cycling would be detected. When we used nimax = 1000, TS always reached an

optimal solution for any tabu list length greater than 24, while, for nimax = 500, the

TS algorithm never achieved 100% of successful runs.

Table 2. Performance of TS vs length of tabu list for instance (12; 8; 4; 3)
j T j 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

POS 38 52 70 76 94 96 100 98 96 96 100 100 96 96 100 98 96 100
ITO 81 95 144 168 169 186 192 215 179 208 192 198 216 193 175 198 174 219

Although some of our instance problems tested were also presented in [5], we

only compared our results with those obtained using an optimization method. The

only scheduling problem previously solved through discrete optimization is instance

(12; 8; 4; 3). Table 3 provides a comparison of six heuristic methods used to seek an

optimal schedule. Columns 2, 3 and 4 respectively show the best cost found, the

number of cost function evaluations, and the percentage of successful runs where the

global minimun 12 was reached. None of these methods, except the last two, pro-

duced an optimal solution. Nevertheless, TS appears to be superior to hill-climbing

algorithms, with respect to successful runs as well as the number of evaluations of the

cost function (see Columns 2, 3 and 4). An optimal schedule obtained by TS and its
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competition matrix for instance (12; 8; 4; 3) are given in Figure 1.

Table 3. Comparison of Methods for instance (12; 8; 4; 3)
Method No. of Evaluations Lowest Cost % successful runs

Greedy Algorithm [3] 40397 22 0
Partial Branch and Bound [3] 100000 20 0

Steepest Descent [3] 75000 14 0

Simulated Annealing [3] 50000 14 0
Hill-climbing technique [5] 1000000 12 2

Tabu Search 73728 12 100

Schedule Competition Matrix

(entries are group label assigned to team) (entries are # of times team plays opponent)

Team Meeting # Team Opponent #

# 1 2 3 4 5 6 7 8 # 1 2 3 4 5 6 7 8 9 10 11 12
1 B C C B B A B B 1 0 2 2 2 2 3 2 2 3 2 2 2

2 A B C C C B B A 2 2 0 2 2 2 2 2 3 2 2 3 2
3 C A C B A B C C 3 2 2 0 2 2 2 2 3 2 2 3 2

4 A A A B C C A B 4 2 2 2 0 3 2 3 2 2 2 2 2
5 B A A A C A C A 5 2 2 2 3 0 2 2 2 2 2 2 3
6 C B B B B A A A 6 3 2 2 2 2 0 2 2 2 3 2 2

7 C C B C C C C B 7 2 2 2 3 2 2 0 2 2 2 2 3
8 A A B C A A B C 8 2 3 3 2 2 2 2 0 2 2 2 2

9 B C A C B B A C 9 3 2 2 2 2 2 2 2 0 3 2 2
10 B B B A A B A B 10 2 2 2 2 2 3 2 2 3 0 2 2
11 A B C A B C C C 11 2 3 3 2 2 2 2 2 2 2 0 2

12 C C A A A C B A 12 2 2 2 2 3 2 3 2 2 2 2 0

Figure 1. An optimal schedule and its competition matrix for instance (12; 8; 4; 3)

Finally, for each very hard instance, we used nimax values of 1000 and 1500, and

for each of these values the range of jT j was from 9 to 60 with step size of 3. TS was

run 50 times for each value of nimax and jT j. Table 4 shows the percentage of these

runs in which TS reached an optimal solution for the very hard instance (16; 9; 4; 4),

and the average number of iterations where an optimal solution was found, using

nimax = 1500. For this instance, the best tabu sizes seem to be integers somewhere

between 24 and 51.

Table 4. Performance of TS vs length of tabu list for instance (16; 9; 4; 4)
j T j 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

POS 4 8 12 18 16 20 4 12 14 10 10 12 12 14 20 16 10 10

ITO 243 1156 1179 1227 1124 987 276 895 924 686 1214 888 1054 1032 1075 1110 1167 973

In each very hard instance, we observed irregular behavior, in the percentage of

successful runs of TS, in the best range of jT j (see row 2 of Table 4), while, this

behavior was regular in the di�cult instances (see row 2 of Table 2). Additionally

experimentation for each very hard instance using nimax = 3000 in the best range of

tabu size showed that the percentage of successful runs can be increased. Neverthe-

less, the behavior remains irregular. Rows 6, 7 and 9 of Table 1 give the best result

for very hard instances, using nimax = 3000.

Even starting from di�erent initial solutions and modifying the values of jT j and

nimax, TS did not produce the theoretical optimal solution for problem instances
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(20; 10; 5; 4) and (24; 7; 6; 4).

Comparing the results obtained from instances 6 with 7; 12 with 13; and 13 with

14, we can see that instances where r is similar to k seem to be harder than those

instances where r is relatively greater than k. We also have from computational re-

sults that the di�culty of a instance seems to increase when the absolute di�erence

between n1 and n2 grows. A problem may be solved in a few iterations when r is

signi�cantly greater than k and jn1 �n2j is small, see instances 2, 4, 5, 8 and 14. On

the contrary, if at least one of theses conditions fails, the instance seems harder to

solve, and in some others TS does not produce the theoretical optimal solution, see

for example instances 6, 7, 9, 11 and 13.

In our experiments we have also seen that, for a �xed tabu length, the number of

necessary iterations to �nd a good solution in all instances, strongly depends on the

initial solution. For example, an optimal solution for instance (12; 8; 4; 3) was found

in 9 iterations with an initial solution, while about 400 iterations were required to

reach an optimal schedule using a di�erent initial schedule.

5 Conclusions

In this paper we have de�ned the problem of constructing appropriate schedules for a

speci�c type of tournament. The problem was formulated as a discrete minimization

problem. We have presented an adaptation of tabu search to seek a good solution.

The in
uence of the length of the tabu list on the behavior of the method was also

analyzed. Of the 14 instances tested, TS was able to solve 12, many of them with a

frequency of 100% of successful runs. For instance (12; 8; 4; 3), in particular TS gave

better results in e�ciency and the number of evaluations of the cost function than

previously reported in earlier papers. From the experimental results, we have seen

that an instances is relatively easy to solve when r is signi�cantly greater than k and

jn1 � n2j is small,

Likewise, we have seen that the construction of an optimal schedule is equivalent

to proving the existence of a regular resolvable partially balanced incomplete block

design with two concurrences. Some of the designs constructed were not available in

the catalogues of incomplete block designs.
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