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Abstract

This paper deals with a queue with a Markov renewal arrival process (MRP) which is autocor-

related. Our choice of models for the arrival process has been motivated by the need to keep

the marginal distributions the same as far as possible. By doing so, it is possible to better

expose the pure e�ects of the parameters in the arrival process on the correlation coe�cient

and thence on the mean queue length. We consider the various e�ects of 4 parameters: the

\stickiness" of the underlying Markov chain (p), di�erences in the mean interarrival times

of each type (mi�mj), the variance of the arrival times of each type (vj), and the number of

states (n). We show that p and mi �mj interact in such a way that the rate of convergence

of mean queue length to in�nity is faster for large mi �mj as a function of p. It is possible

for the queue length process to be in steady state but the mean queue length to be arbitrary

large solely due to correlations. We also show that decreases in vj increase correlations but

can decrease the mean queue length. Also, the number of states, acting through the correla-

tion coe�cient can have additional e�ects on the mean queue length especially in the case of

\sticky" MRP's. It would appear that more attention should be paid to the correlations es-

pecially in situations where the tra�c intensity is high and where correlations can be present

and can be large.

Keywords: Markov renewal process, single server queue, autocorrelation.
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1 Introduction

The theory and most published applications of queueing theory start with three major

assumptions: the arrival process is a sequence of i.i.d. random variables; the service

times are i.i.d.; the arrival sequence and service time sequence are independent. These

are ideas that have served well for nearly 90 years. But new demands being put on

queueing through quality control, reliability, manufacturing and communications are

showing that these models are no longer adequate. The new areas are not calling for

new ever more complicated inter-event distributions but rather are calling for new

process structures which incorporate dependencies.

In computer/communications modeling there is increasing emphasis on using non-

renewal processes in models (see, for example, Paxon and Floyd(1994)). Some kinds

of tra�c in these systems has been identi�ed as self similar (see Willinger, Taqqu,

Leland and Wilson(1995)). A SM/G/1 queue (similar to our model but in discrete

time) has been used by Hasslinger and Adams (1996) in the performance analysis of

ATM tra�c.

In this paper we study a queue with a Markov renewal arrival process (MRP).

This class of MRP's has been chosen so that some of the characteristics of the ar-

rival process can be kept �xed while others (especially the correlational structure) are

varied. For much of the paper we will concentrate on a two-state process. The nu-

merical techniques we use can deal with higher-state processes. However, the number

of parameters then becomes confusing. Also a frequently described characteristic of

a non-renewal communications tra�c is that it basically moves between two states{a

quiet state and an extremely busy state. Thus we hope that even our simple two-state

model may provide some insight into the characteristics of such systems.

Some of the theoretical results we use come from Szekli, Disney and Hur (1994a

or 1994b). We summarize these results here so that this paper is self contained.

In Section 3 we need to consider the various e�ects of 4 parameters on the cor-

relation coe�cient and thence on the mean queue length. In Subsection 3.1 we look

at the e�ect of p, the one step transition probability for the Markov chain underlying

our basic Markov renewal arrival process. In Section 3.2 we consider the e�ect of the

mean values of the separate interarrival processes. In Section 3.3 we look at the e�ects

of the variances of the separate interarrival process. In Section 3.4 we consider the

dimensionalilty of the problem and in Section 3.5 the e�ects of the correlations of all

orders as they de�ne the index of dispersion for intervals (IDI) as de�ned in Sriram

and Whitt (1986). In these sections our investigations necessarily are numerical and

graphical.

Our choice of models for the arrival process has been motivated by the need to

keep the marginal distributions the same (as far as possible) in order to better expose

the pure e�ects of the parameters. Because of condition (i) in section 3.4 we still have

the same marginals as in Section 3.1. However, by the changes in sections 3.2, 3.3
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and 3.5 we are basically changing the marginal distributions. Thus, comparisions due

purely to changes in the correlation coe�cient can no longer be made as they were in

sections 3.1 and 3.4.

We are interested in the steady state mean number in the system seen by an ar-

rival, ENa, but since the continuous time queue length process has a mean related

to ENa as Lt = EN
t = �(ENa + 1), any comment that we make about one applies

equally to the other. Similarly, by Little's result, any comment we make about the

mean queue length applies equally well to the mean waiting times.

2 The MRP Arrival Queue

2.1 MR Arrival Processes

We consider the homogeneous MR/M/1 queue where the mean service time is �. The

Markov renewal arrival process has kernel Q(t) where

Q(i; j; t) = p(i; j)F (i; j; t) i; j 2 E; t � 0:

Here E is a countable state space of the process, p(i; j) is the one step probability

for the Markov chain embedded in the MRP. F (i; j; t) is, for each i; j, a distribution

of the sojourn time spent in state i given the next state is j.

A Markov renewal process whose kernel has the form:

Q(t) =

2
664

pF1(t)
1�p
n�1

F2(t) � � � 1�p
n�1

Fn(t)
1�p
n�1

F1(t) pF2(t) � � � 1�p
n�1

Fn(t)

� � � � � �
1�p
n�1

F1(t)
1�p
n�1

F2(t) � � � pFn(t)

3
775 (1)

�rst introduced in Szekli, Disney and Hur (1994a), is particularly suitable for investi-

gating the e�ects of correlation in the arrival process, since, as we shall show below,

the correlation can be altered without changing the marginal distributions of the ar-

rival process.

Thus, the sojourn time in state i only depends on the next state to be visited.

If Q(i; j; t) depended only on i (and not j) then the arrival process would be the

superposition of n independent renewal processes thereby negating the e�ect of our

primary interest, i.e., correlation in the arrival process. Change-over time problems

in manufacturing may come close to our model.

Let mj and vj be the mean and variance of the sojourns when the next state is j.

Then,

�j =
1

�mj

c
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is the tra�c intensity for arrivals from state j.

We need the following de�nition later. Consequences of this and many other of

these stochastic comparision theorems can be found in Stoyan (1983).

De�nition 1: A distribution function F is smaller with respect to the increasing convex

ordering than the distribution function G (symbollically F �icx G) if for all increasing

convex functions f for which the integrals exist we haveZ
1

�1

f(x) dF (x) �
Z
1

�1

f(x) dG(x): (2)

Also, if EX = EY then Ef(X) = Ef(Y ) for any convex function increasing or

not. For our purposes, the important result is that if F �icx G and EX � EY then

VarX � VarY . We will see how this applies to our MRP arrival queue in Section 3.3.

2.2 Preliminary Results

We have the following preliminary results.

(a) Let Dk be the time between arrival k and k� 1 regardless of their types. The

sequence D = fDk : k = 1; 2; � � �g is the overall interarrival time process irrespective
of the state of the arrival process. For any n-state homogeneous MRP of the type

described above

P (Dk � t) =
1

n

nX
j=1

Fj(t);

independent of p. This result is important since it allows us to change p without

changing the marginal interarrival distributions (compare this to Patuwo, Disney and

McNickle (1993)).

(b) For any �nite r, and any homogeneous MRP

Corr(r) =
E [DkDk+r]�E [Dk]E [Dk+r]

VarDk

;

depending only on r. For the class of MRP's in equation (1):

Corr(r) =

1
n2

P
i<j

(mi �mj)
2

1
n

nP
j=1

vj +
1
n2

P
i<j

(mi �mj)
2
�n

r (3)

(See Szekli, Disney and Hur (1994b) for the proof). Here, as elsewhere �n =

(np � 1)=(n� 1) is the subdominant eigenvalue of the transition matrix for the em-

bedded Markov chain. The importance of the correlation function above is that it
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depends, explicitily, on all of the parameters of the system. However, because of the

construction of the MR arrival process, the correlation can be changed by changing p

without changing the other parameters and, hence, the marginal interarrival distribu-

tion. This means that one can change the correlation in the arrival process without

changing the interarrival times distributions.

(c) It is interesting to note that with an obvious manipulation, the correlation

function in (3) can be written as

Corr(r) =
�n

r�
n
P

n

j=1 vj=
P

i<j
(mi �mj)2 + 1

� ;
where the denominator seems to suggest some type of mean coe�cient of variation

as occurs in other queueing problems (e.g., the Pollaczek-Khinchin formula). Unfor-

tunately, we have yet to �nd a way to exploit this relation and in the remainder of

this paper, we make no more of it.

For p = 1=n the correlation vanishes for all r. More importantly, it follows from

Szekli, Disney and Hur (1994b) that the arrival process is a non-delayed renewal pro-

cess with an interrenewal hyperexponential distribution. For p = 1, the embedded

Markov chain consists of closed sets of states and thus is not irreducible. Therefore

we need p < 1. We will require positive correlation so we need 1=n < p < 1:

(d) The queue length process has a tra�c intensity

� =

2
4 1
n

nX
j=1

1

�j

3
5
�1

;

the harmonic mean of the individual tra�c intensities. A steady state queue length

exists if � < 1 (see Szekli, Disney and Hur (1994b)).

(e) For the 2-state case let Na be the steady state queue length with mean value

EN
a as seen by an arrival. Then, (Szekli, Disney and Hur 1994b)

EN
a =

�

1� �
+

1� 2(1�P0)

�1+�2

2 (1� p) (1� �)
; (4)

for the case where Fj is exponential. Here, P0 is the probability that an arriving

customer of either type �nds the queue empty. If the arithmetic mean (�1 + �2) =2 > 1

then EN
a ! 1 for p ! 1 even when � < 1. That is, even in the steady state case

the mean queue length can become arbitrarily large due to correlations in the arrival

process. This is a consequence of the correlation, not of the distributions otherwise.

3 The E�ects of the Parameters

The result (e) in Section 2.2 gives the behavior of ENa for p, but this requires further

explanation. That is the purpose of this section. From result (b) in Section 2.2 we see

c
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that the correlation depends on 4 parameters (p, di�erences in the mean interarrival

times of each type (mi �mj), the variance of the arrival times of each type (vj), and

the number of states n). In this section we show that these parameters interact so

the p-e�ect that we have discussed is not the only e�ect on EN
a. In fact, we show

that p and mi �mj interact in such a way that the rate of convergence of ENa to

in�nity is faster for large mi �mj as a function of p. We also show that decreases in

vj increase correlations but can decrease ENa
:

3.1 The E�ect of p

It should be noted that p is not only a measure of the correlation in (3), but p can

also be thought of as a measure of the \stickiness" of the Markov chain. If p is near

1, that Markov chain will tend to stay in whatever state it �nds itself at each step.

Consider the 2-state case. If (�1 + �2) =2 < 1, queues formed by either arrival

process will have stationary distributions as will the overall queue since then � < 1.

However, if (�1 + �2) =2 � 1, at least one of the arrival processes will produce a non-

stationary queue (call this the fast arrival queue) while the other will still produce a

queue with a stationary distribution. This is true even though the overall queueing

process will produce a steady state queue. For example, � < 1 implies

�1 + �2

2
> �1�2:

Then, set �1 = 0:5 and �2 = 10 to get

�1 + �2

2
= 5:25 but �1�2 = 5:

Then the system is in steady state (� < 1), the queue of type-1 arrivals is in steady

state (�1 < 1) but the queue of type-2 arrivals is transient. Therefore by 2.2(e) the

mean queue length will be large even though the system is in steady state. Also from

that section, larger values of p will generate larger values of the mean queue length in

this case. If p is large, the embedded Markov chain will tend to stick in the fast arrival

queue for long periods and the queue caused by those arrivals will increase without

limit, even though the overall queue will still have a steady state distribution. Of

course, the queue due to the slower arrivals compensates so as to make these results

possible.

To illustrate this behaviour further, we investigate now the queue length as seen

at the arrival of di�erent types of customer. First note that from Neuts (1978), the

state distribution Pk as seen by an arrival is:

Pk = �(I �R)Rk
;

where � is the statioinary distribution of the embedded Markov chain and R is the

solution of

R =

1X
n=0

R
n
An; An =

1Z
0

e
��t (�t)

n

n!
dQ(t):
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For exponential distributions i.e., Fj(t) = 1� e
��jt and two or three states these

matrix equations can be solved numerically. Calculating to the precision available in

MATLAB required approximating the in�nite sum in the �rst equation by a �nite

sum of (about 100) terms. The solution then converges in about 100 iterations. The

number of iterations required increases with the tra�c intensity, and with the serial

correlation of the arrival process. Checks on the numerical accuracy are available, for

example if we set p = 1=n this gives a hyperexponential arrival process.

Consider the state distribution at the end of a sequence of type-1 (say slow) ar-

rivals. Since the type of the next arrival is decided randomly this is in fact the

distribution as seen by an arbitrary type-1 arrival, so the k-th term is fPkg1=�(1).

From then on, type-2 arrivals occur as a renewal sequence until the type changes

again. Regarding this system during this sequence as a GI/M/1 queue, the transition

matrix for the imbedded Markov chain of the number in the system as seen by an

arriving customer has the form:

P =

2
6664

s 1� s 0 0 � � �
s
2 (1� s) s 1� s 0 � � �
s
3 (1� s) s2 (1� s) s 1� s � � �
...

...
...

...
. . .

3
7775

where s = �=(�2 + �). Writing p0 = fp0; p1; : : :g for the state distribution as seen

by the �rst type-2 arrival, then the state distribution as seen by the (n+ 1)st type-2

arrival is:

pn = p0Pn
:

So

p
0

0 = p0s+ p1s
2 + p2s

3 + � � �
p
0

1 = p0 (1� s) + p1 (1� s) s+ p2 (1� s) s2 + � � �

= p
0

0

�
1� s

s

�
;

p
0

2 = p1 (1� s) + p2 (1� s) s+ p3 (1� s) s2 + � � �
=

�
p
0

1 � p0 (1� s)
�
=s;

p
0

3 = p2 (1� s) + p3 (1� s) s+ p4 (1� s) s2 + � � �
=

�
p
0

2 � p1 (1� s)
�
=s;

and so on, which gives us a general algorithm to go from pn to pn+1.

In fact if �2 � � these probabilities have to be calculated by direct summation, as

the di�erence expressions do not converge. However it is easy enough to calculate the

distribution by summing the expressions out to about 20 terms and hence calculate

the mean queue length as seen by the �rst fast arrival, second fast arrival and so on.

c
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A check on the calculation is possible in that provided �2 < � as the mean number

should converge to the appropriate M/M/1 value.

Fig. 3.1 is the best way of illustrating these e�ects that we have found. We start

from the state distribution as seen by the last customer of type 1. This is a rep-

resentation of the kind of thing we could expect to see. The graph then plots the

mean number in the system as seen by the �rst, second, third etc. type-2 arrivals.

Since p = 0:8 we could expect the arrival process to stay in a particular state for

1=(1 � p) = 5 arrivals, so we plot out for these 5 arrivals. Since �2 > 1 the mean

number in the system increases almost linearly. Now starting from the distribution

of the number of customers as seen by the last fast arrival, we plot the mean number

in the system as seen by the �rst 5 slow arrivals.

Not surprisingly the mean number as seen by the �fth (average number) of fast

arrivals is almost exactly the mean number at the end of an average fast arrival time

(note that there are two almost identical points at the peaks of the graph.) But of

course the mean number after exactly 5 slow arrivals does not coincide with the mean

number at the end of an average slow arrival period, since the response of of the

overall mean queue length, L, is non-linear for �1 < 1.

Also plotted on the graph is the mean number as seen by an arrival to an H2/M/1

queue with parameters �1 = 0:3; �2 = 2:0, mixing probability 0.5 and � = 1.

Fig. 3.1 - An illustration of the e�ect of fast and slow arrivals

The graph illustrates the conditions under which the mean number in the system

can become unbounded as p ! 1. If both �1 < 1 and �2 < 1 then even during the

c
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fast arrivals the mean number in the system is still bounded. The graph tends up

towards the value of L for an M/M/1 queue with parameters �2 and � during a fast

arrival period, but cannot exceed it.

If, on the other hand one of �1 or �2 > � (say �2 > 1 ), then the average number of

arrivals during a fast arrival period will increase without limit as p! 1, so the upwards

climb of the mean number in the system is also unlimited (at least in distribution)

So the condition for the possibility of unbounded mean number in the system is that

either �1 or �2 > 1 . The stronger condition in the Theorem in Section 2.2(e), of

course, implies this condition.

3.2 The Mean Value E�ects

Without loss of generality, we hereafter assumem2�m1 > 0:The condition (�1 + �2) =2

> 1 in result (e) in Section 2.2 can be restated in terms of the di�erence of mean values

as the following theorem shows:

Theorem 1: For given � < 1; the condition (�1 + �2) =2 > 1 will occur when the

di�erence m2 �m1is large enough.

Proof. We havem1+m2 = 2= (��). Now, the condition (�1 + �2) =2 > 1 is equivalent

to 1
m1

+ 1
m2

> 2� and in turn,

m1m2 <
m1 +m2

2�
=

1

�2�
:

For convenience, let m2 � m1 = d > 0: Then m2 = 1
2

�
2
��

+ d

�
and m1 =

1
2

�
2
��
� d

�
. So the equation above becomes

1

4

 �
2

��

�2

� d
2

!
<

1

�2�
:

Rearranging both sides and noting d > 0, we have

d >
2

��

p
1� � = 2m

p
1� � where m = (m1 +m2)=2;

which completes the proof. 2

Now we can explain the queueing behaviour in terms of m2�m1 and � as follows.

We say (m1;m2) is in a \critical region" if m2 �m1 > c where c = 2m
p
1� �; in the

sense that the mean queue length increases to in�nity if � is close to one. Denote the

critical region by

C =
n
m2 �m1 : m2 �m1 > 2m

p
1� �

o
:

c
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Since we assumed m2 > m1;

0 < m1 < m < m2 < 2m:

There is no chance for the mean queue length to be in�nitely large if �1 < 1 and

�2 < 1, that is,

m1 > m�; and m2 > m�:

Combining the last two results we have

0 < m2 �m1 < (2m�m�)�m� = 2m (1� �) :

So we say (m1;m2) is in a \safety region" when 0 < m2�m1 < 2m (1� �), in the

sense that the mean queue length never grows to in�nity. Denote the safety region by

S = fm2 �m1 : 0 < m2 �m1 < 2m (1� �)g :

We now use a numerical example to illustrate the joint e�ect of m2 �m1 and p

and see how the critical and safety regions move as the tra�c intensity varies. We

consider an MR/M/1 queue where F1 and F2 are exponential with means m1 and

m2, respectively. We �x the mean value m of the marginal interarrival times to be 5.

Since m1+m2 = 10, let m2 > m1; 5 < m2 < 10 and 0 < m1 < 5: Then c = 10
p
1� �

and thus the critical region is C =
�
m2 �m1 : m2 �m1 > 10

p
1� �

	
: The safety

region is S = fm2 �m1 : 0 < m2 �m1 < 10 (1� �)g.

The following table summarizes the critical and safety regions for di�erent tra�c

intensities.

� Safety Region (S) Critical Region (C)

0.1 0 < m2 �m1 < 9 9:49 < m2 �m1 < 10

0.5 0 < m2 �m1 < 5 7:07 < m2 �m1 < 10

0.9 0 < m2 �m1 < 1 3:16 < m2 �m1 < 10

Therefore, if the tra�c intensity gets larger, then the critical region C becomes

wider, while the safety region S shrinks. On the contrary, if the tra�c intensity gets

smaller, we have a smaller critical region and a larger safety region.

Thus, we conclude that under heavy tra�c, we have more chance for the queue

length to be arbitrarily large, while under light tra�c, the queue tends to be stable.

Note that between the critical and the safety regions the behaviour of the queue

has not been identi�ed, which is believed to be possible after P0 is found. We have

shown then that the increase of the correlation coe�cient in the arrival process via

the parameter p, jointly with m2 �m1, the distance between mean values, can make

the queue quite unstable.

c
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3.3 The Variance E�ects

As we have seen in the previous two sections, the parameter p and the di�erences in

the mean values can have major e�ects on the mean queue length and the mean wait-

ing times. Our purpose in this section is to show that large increases in mean queue

length are not necessary consequences of the correlation coe�cient. We demonstrate

this by showing that increases in the correlation coe�cient caused by decreases in the

variances can cause decreases in the mean queue length. We state this as a theorem

and follow it with a numerical example.

Consider two stationary Markov renewal arrival processes to a single server queue

with i.i.d. exponentially distributed service times. Symbolize these arrival processes

as [An(p);F] and [An(p);F
0], where An(p) is the transition matrix for the embedded

Markov chain (1) and F = [F1; F2; � � � ; Fn]. Then we have

Theorem 2: Suppose that for each j 2 E, Fj �icx F
0

j
and the corresponding expected

values are the same (see section 2 for the de�nitions and consequences here) then

Corr[An(p);F] � Corr[An(p);F
0]

and

EW [An(p);F] � EW [An(p);F
0]:

Proof. The proof of the second part of the theorem is a direct consequence of Rolski

(1983). The �rst part is a simple observation on (2) in Section 2.1. 2

Consider the discussion of the increasing convex property in the beginning of sec-

tion 2. There we showed that with the properties given to the distributions assumed

here, the variances in the [An(p);F] are smaller than those in the [An(p);F
0] process.

The result here simply says that decreasing the variance while increasing the corre-

lation coe�cient decreases the mean waiting time and consequently the mean queue

length. Here's a numerical example of the variance e�ect.

Consider the Erlang density function

f(x) = k�(k�x)k�1e�k�x=(k � 1)!; � > 0; k = 1; 2; � � �

By keeping the � �xed but increasing k the variance decreases. Now let the arrival

process to a queue be a 2-state Markov renewal process with an underlying Markov

chain whose one step matrix is A2(0:85), i.e.,

A =

�
0:85 0:15

0:15 0:85

�

and F1 be the Erlang distribution function with � = 1=3; k = 1; 2; � � � arbitrary.
Let F2 be the Erlang distribution function with �

0

= 1=7 and the same k as in F1:

Let � = 0:5: Then the lag 1 correlation coe�cient is

Corr =
11:2k

16k + 116

c
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which is increasing and concave in k. For k
0 � k we have the convexity property of

De�nition 1 and hence EW (k) � EW (k
0

): Then by Little's result, Lt(k) � L
t(k

0

);

that is Lt decreases in k as the following Fig. 3.2 illustrates.

Fig. 3.2 - The behavior of mean queue length and lag-1 correlation as k

changes

3.4 The E�ect of the Number of States

We will now investigate the e�ect of the parameter n, the number of di�erent types of

arrivals (call this the dimension of the arrival process). If we change this dimension

keeping the marginal interarrival times distributions �xed and look at the change of

the correlation coe�cient and performance measures (e.g., mean queue length), then

we can see the pure e�ect of changing the dimension of the arrival process on the

queueing properties. This e�ect may re
ect the feasibility of grouping and reducing

the number of di�erent customer types to be considered in a system's design.

Consider two n and n0 dimensional MRP's denoted by [An(p);F] and [An0(p
0);G];

where F = [F1; � � � ; Fn] and G = [G1; � � � ; Gn0 ]. We need two conditions to extract

pure e�ects due to the changing of the dimension. We'll call them (i) the same

marginal condition and (ii) the same eigenvalue condition, to be explained below.

(i) Same Marginal Condition

We suppose the marginal distribution of the interarrival times of the two MRP's

c
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are the same, that is for all k and t 2 R+

P (Dk � t) =
1

n

nX
i=1

Fi(t) =
1

n
0

n
0X

i=1

Gi(t):

We have not been able to satisfy this in general but if n
0

is an integer multiple

of n (or vice versa), then we can achieve the condition by letting F be a mixture

of G0s. For example, if n = 2 and n
0 = 6, then let F1 = 1

3
(G1 + G2 + G3) and

F2 =
1
3
(G4 +G5 +G6) to obtain

P (Dk � t) =
1

2
(F1 + F2) (t) =

1

6
(G1 + � � �+G6) (t):

(ii) Same Eigenvalue Condition

To get the subdominant eigenvalues the same (see Section 2.2) we'll require

�p(n) =
np� 1

n� 1
=
n
0

p
0 � 1

n
0 � 1

= �
p
0 (n0):

This condition can be achieved by adjusting p and p
0

, for given n and n
0. Then

we ask: Is Corr(n) < Corr(n0) when n < n
0

? The answer is \yes" whenever n0 is an

integer multiple of n (a proof is given in Hur(1993)). As a consequence if an MRP

has more types of customers than another, under conditions (i) and (ii), the queue

with more types is more correlated than the other. It is, however, not true that

Corr(n) < Corr(n0) for arbitrary n and n
0

: Counterexamples can be constructed as

the following illustrates. Let n = 2 and n
0

= 3 and the mean sojourn times be (4, 6)

and (1, 6, 8) respectively. Then,

Corr(2)

Corr(3)
=

�
3

2

�2
(4� 6)

2

(1� 6)
2
+ (6� 8)

2
+ (6� 8)

2
=

36

312
< 1:

Thus, Corr(2) < Corr(3), but with mean sojourn times (1, 9) and (1, 6, 8) the

corresponding result is Corr(2) > Corr(3). To avoid such a result in a study of pure

e�ects of dimensionallity, conditions (i) and (ii) are necessary.

To further study the e�ects of dimensionality we turn to a numerical procedure.

We start with a 48-dimensional MRP and keep mixing the distribution functions

pairwise to get 24, 12, 6, and 3-dimensional MRP's. For the 48-dimensional process

we take Fj(t) to be an Erlang distribution with mean mj = 2j=49 and j = 1; 2; : : : 48:

The mj are chosen to make the overall mean value of the arrival process, m, to be 1.

Then, the 24-dimensional MRP W [A24(p
0);G] is constructed by taking

Gj(t) = (Fj + F24+j) =2; forj = 1; 2; � � � ; 24

and p
0

so that

�(p) =
48p� 1

47
=

24p
0 � 1

23
= �(p

0

)
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so that conditions (i) and (ii) are satis�ed.

Thus, we can produce a sequence of 5 Markov renewal cases, each with the same

marginal distributions and the same subdominant eigenvalue. From the results in

Section 2.2, the correlation is changing only through the change in the number of

states.

The mean number in the system at an arbitrary time in equillibrium was calcu-

lated as described in Section 3.1. For low tra�c intensities Lt increases weakly with

dimensionality. However, when the tra�c intensity is high, the e�ects are more strik-

ing. Fig. 3.3 plots Lt against the number of states for tra�c intensity of 0.9. The �ve

curves are for values of the subdominant eigenvalue � =0.1, 0.3, 0.5, 0.7, 0.9. Hence,

they correspond, in terms of the probability p to a range from \very sticky" (� = 0:9)

to \not very sticky" (� = 0:1):

Fig. 3.3 - Mean queue length as the dimension increases

Thus, dimensionality, acting through the correlation coe�cient can have additional

e�ects on the mean queue length especially in the case of \sticky" (large values of �)

of MRP's.

3.5 The In
uence of the Index of Dispersion for Intervals (IDI)

The Index of Dispersion for Intervals (IDI) is de�ned as

C
2
1

=
Var(Dr)

[E(Dr)]2
(1 + 2

1X
r=1

Corr(r)):
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Thus, the IDI takes account of the lagged correlation coe�cient for all lags (see

Sriram and Whitt(1986)). In our case this is easy to compute due to the special

structure of the correlations as given in Section 2.2(b). From those results we have

that the IDI is

C
2
1

=
2(�21 + �

2
2)

(1� p)(�1 + �2)
� p

1� p

In the following graphs (Fig. 3.4-3.6) we have computed the value of Lt against

the IDI for �2 = 0:3; 0:6; 2:1 and �1 has been chosen to keep the tra�c intensity at

0.2. The values of p are of the form 0.3, 0.4, etc.

Fig. 3.4 - The behavior of maen queue length versus IDI (�2 = 0:3)

What is clear from here is that the near linearity of the mean queue length versus

the IDI is due to either �1 or �2 > 1 and is not due to a large tra�c intensity as

previously supposed (Patuwo, Disney and McNickle (1993)).

4 Comments

There is a number of conclusions that one can draw from this study. Perhaps the

most important is that correlations can have major e�ects on queueing properties as

reasonable as the mean queue length.

(a) We have shown that correlation alone as determined by p can have a major e�ect

(2.2(e)). It would appear that more attention should be paid to the correlations

especially in situations where the tra�c intensity is high and where correlations

can be present and can be large. One can suppose that the true e�ect here

is dependence and correlation is a poor measure of this dependence in these
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Fig. 3.5 - The behavior of maen queue length versus IDI (�2 = 0:6)

Fig. 3.6 - The behavior of maen queue length versus IDI (�2 = 2:1)

non-linear systems. Perhaps other measures of dependence are needed.

(b) Since the harmonic mean is always greater than the arithmetic mean, it is possi-

ble for the queue length process to be in steady state but the mean queue length

to be arbitrary large solely due to correlations (because of p)(2.2(e)).
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(c) In Section 2.2(e) ENa appears to be made up of a term that is the mean queue

length for an M/M/1 queue plus a term that depends on the parameter p. That

extra term needs to be investigated. We have not been able to �nd P0 explicitly

so we do not know analytically how the extra term responds to changes in the

system's parameters.

(d) The MRP arrival process depends on 4 parameters (p, di�erences in the mean

interarrival times of each type (mi � mj), the variance of the arrival times of

each type (vj), and the number of states (n). Early investigations show that

these parameters interact so the p-e�ect that we've discussed is not the only ef-

fect. In fact, p and mi�mj interact in such a way that the rate of convergence

of ENa to in�nity is faster for large mi �mj as a function of p. But we can

also show that decreases in vj increase correlations but can decrease ENa.

(e) The linear dependence of the queue characteristics on the IDI, which we had

previously characterised as a heavy tra�c property, rather appears to depend

only on the property that the queue will occasionally move to a busy state.
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