
Constraint Hierarchies in Constraint Logic

Programming Languages

Mouhssine Bouzoubaa

Departmenet of Optimisation SINTEF

Postboks 124, Blindern, Norway

mbo@math.sintef.no

Abstract

Houria is an incremental solver that proposes a new implementation of constraint hierarchies.

Houria uses local propagation to maintain sets of required and preferential constraints. It

represents constraints between variables by sets of short procedures (methods) and incremen-

tally re-satis�es the set of constraints when individual constraints are added and removed.

The criteria of comparison used in this solver are global. They allow the comparison of val-

uations, which are not comparable by local criteria used in existing solvers. The solution

found by Houria satis�es more constraints than the one produced by other solvers and that

for the same over-constrained problems while respecting the semantics of the hierarchy. We

also propose an e�cient algorithm that integrates the Houria solver in the CLP paradigm.

Keywords: Constraint-Based Reasoning, Logic and Constraint Programming.

1 Introduction

Local propagation is an e�cient constraint satisfaction algorithm that takes advantage

of potential locality of constraint systems [11]. The solver in Garnet [9] is based on

local propagation and handles one-way constraints. A one-way constraint always out-

puts a value to a certain variable. However, one-way constraints are often insu�cient

because they cannot change dependencies among variables. Multi-way constraints are

proposed in [10]. A multi-way constraint has multiple methods for one constraint. A

system of multi-way constraints is solved as follows : one method is selected from

each constraint, a solution graph is generated out of the system so that the graph has

no conicts and no cycles then, local propagation is applied to the solution graph.

Multi-way constraints also embody the problem that output variables are not deter-

mined uniquely and it would easily result in over-constrained systems. Borning et al.

in [5, 6] proposed constraint hierarchies to cope with the problem of over-constrained

systems. A constraint hierarchy is a system of constraints with hierarchical strengths.

29

30 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

If the system is over-constrained, it is solved so that there are as many satis�ed strong

constraints as possible. For example the constraints v2 = 1 and v2 = 2 are in conict.

However, if v2 = 1 , v2 = 2 are respectively associated with strengths strong and

weak, the constraint system is solved by satisfying only v2 = 1.

The existing solvers (Blue, DeltaBlue, SkyBlue [12, 8, 4]) for over-constrained

systems, are based on local criteria: valuation comparison. According to these local

criteria, a lot of valuations might not be comparable (i.e. two di�erent valuations

satisfying two disjoint constraint sets are not comparable) and regarding the semantics

of the hierarchy, the best valuation can not be obtained. In order to be able to

�nd a valuation which satis�es more constraints than the one produced by these

solvers. We propose an e�cient solver based on a global criterion to solve a constraint

hierarchy. Thus, we are able to compare the valuation sets that are incomparable

by a local criterion. A constraint hierarchy consists of a set of constraints, each

labeled as either hard or soft at some strength, and each soft constraint is weighted

by a real-valued weight. Existing hierarchical solvers require that all constraints

within a speci�c level in the hierarchy have the same weight. Houria surmounts this

restriction by accommodating some extended de�nitions. It produces solution graphs,

and applies local propagation to them. The planning (for obtaining the best solution

graph(s)) and execution (for obtaining the valuation) time is acceptable for some

random over-constrained problems. We present also a second algorithm based on

Houria for comparisons between the hierarchies that arise from alternate rule choices

in a program writing in CLP language.

2 Theory of Functional Constraint Hierarchies

Each functional constraint has a set of methods that can be invoked to satisfy the con-

straint. For example, the constraint v1 = v2�v3 has three methods: v1 v2�v3 (i.e.

calculates the value of v1 from the values of v2 and v3), v2 v1+v3 and v3 v2�v1.

In [3], a functional constraint hierarchy is a triplet (V;D;C) de�ned by a set of n

variables: V = fv1; v2; :::::; vng. Each variable vi ranges over a domain di . The set

of domains di is noted by D : D = fd1; d2; :::dng and a constraint system C. A con-

straint is an n-ary relation among a subset of V . Each constraint has some methods.

A method uses some of the constraint variables as inputs called \antecedents" and

computes the remainder as outputs called \consequents". A method may only be ex-

ecuted when all of its input variables are determined by at least one other constraint,

and none of its outputs have been determined by other constraints. Each constraint

is associated with a strength i where: 0 � i � m. Strength 0 represents the strength

of required constraints, C is partitioned into sets C0; C1; C2; :::; Cm where Ci contains

the constraints with strength i . C1 contains the most strongly preferred constraints.

C2 the next weaker level, and so forth through Cm, where m is the number of distinct

non-required strengths. Solutions S to a constraint hierarchy are de�ned as a set of

valuations, each valuation in S must be such that it satis�es all constraints in C0. In

addition, we desire each valuation in S to be such that it satis�es the non-required

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 31

constraints C1; C2; :::; Cm as well as possible, with respect to their relative strengths.

To formally de�ne this set of solutions, we �rst present the set S0 of valuations

such that each valuation in this set satisfy C0. Then, using S0, we present the desired

set S by eliminating all potential valuations that are worse than some other potential

valuations using the comparator predicate better. (Sat is a boolean predicate, its

value is true when the valuation � satis�es every constraint in C0, otherwise its value

is false).

S0 = f� : Sat(�; C0)g and S = f� : � 2 S0 ^ 8� 2 S0:betterC(�; �)g:

Many alternate de�nitions for comparators are given in [3, 5, 6], \better" is ir-

reexive and transitive. However, better will not provide a total ordering, so, there

may exist � and � in S such that :betterC(�; �) and :betterC(�; �). In [3, 7] sev-

eral di�erent comparators are de�ned. The error function e(c�) is used. This error

function returns a non-negative real number indicating how nearly constraint c is sat-

is�ed for a valuation � . This function has the property that e(c�) = 0 if and only if

Sat(�; c). For any domain D, the trivial error function that returns 0 if the constraint

is satis�ed and 1 if it is not, can be used. The �rst of the comparators, locally-better,

considers each constraint in C individually. The de�nition of this local comparator

is:

De�nition 1. A valuation � is locally-better than another valuation � if, for each of

the constraints through some level k � 1, the error after applying � is equal to that

after applying � , and at level k the error is strictly less for at least one constraint

and less than or equal for all the rest.

locally-better(�; �; C) , 9k > 0 such that : 8i 2 1:::k � 1 8p 2 Ci e(p�) =

e(p�) ^ 9q 2 Ck e(q�) < e(q�) ^ 8r 2 Ck e(r�) � e(r�):

Next, the globally-better schema for global comparators is parameterized by a

function g that combines the errors of all the constraints Ci at a given level. The

de�nition of this global comparator is:

De�nition 2. A valuation � is globally-better than another valuation � if, for each

level through some level k � 1, the combined errors of the constraints after applying

� is equal to that after applying � , and at level k it is strictly less.

globally-better(�; �; C; g) , 9k > 0 such that : 8i 2 1:::k � 1 g(�; Ci) =

g(�; Ci) ^ g(�; Ck) < g(�; Ck):

Solvers as SkyBlue or DeltaBlue use the \locally-predicate-better" comparator,

variation of locally-better comparator. It may produce a very large set S of valuations.

This criterion cannot compare (i.e. order) two valuations which satisfy two disjoint

constraint set at a given level. A local criterion often �nds solutions, that are optimal

for itself, but not for the user: it is indeed too weak to discriminate which solutions

c Investigaci�on Operativa 1998

32 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

in S are really expected.To cope with this problem, we propose an incremental solver,

based on a global criterion.

3 Houria System

3.1 The Criteria of Comparison used

The �rst criterion implemented by Houria is based on the satisfied-count-better

comparator (1). This criterion �nds solutions which satisfy the maximal number of

constraints in each level of the hierarchy. This criterion uses the cardinality of the set

of constraints satis�ed in each level. The second criterion implemented by Houria is

based on the satisfied-count-best-case-predicate-better comparator (2). This com-

parator uses the number of satis�ed constraints associated with the highest label

and the largest satisfaction index. The size of the set of valuations produced using

this comparator is generally smaller than the one produced with the global criterion

best-case-predicate-better. The third criterion implemented by Houria is based on

the weighted-sum-predicate-better comparator (3). This comparator uses the sum

of weights of constraints satis�ed in each level of the hierarchy. The size of the set

of valuations produced using one of these criteria is generally smaller than the one

produced by the local criterion locally � predicate-better. These criteria are global

and �nd intuitively plausible solutions at reasonable computational cost.

satisfied-count-better(�; �; C) , globally-better(�; �; C; g) where g(�;Ci) = jc : c 2

Ci ^ :Sat(�; c)j: (1)

satisfied-count-best-case-predicate-better(�; �; C), globally-better(�; �; C; g);

where g(�;Ci) � (Max fc e(c�)=(c 2 Ci)g; jMax fc e(c�)=(c 2 Ci)gj)
1
: (2)

weighted-sum-predicate-better(�; �; C), globally-better(�; �; C; g)

where g(�; Ci) �

 X
c2Ci

c e (c�)

!
: (3)

By (1) (resp. (2), (3)) S will not contain any solution that is worse than any other

solution. S may contain multiple solutions, none of which is better than the others.

3.2 Lexicographic-Preference-Graph

In graph-theoretic terms, a constraint is considered to be satis�ed if it is enforced in

the solution graph. A constraint is enforced if it is included in the solution graph

(i.e. the solution graph assigns a method to satisfy it). A constraint is unenforced or

unsatis�ed, if it is not included in the solution graph (i.e. the solution graph does

not assign a method to satisfy it). A graph is admissible if it enforces all the hard

constraints (i.e., the constraints in C0). A constraint satis�er would like to choose the

best of these admissible graphs. In order to obtain the best valuation that satis�es the

1
c indicates the weight of the constraint c.

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 33

hierarchy by using one of the criteria de�ned in paragraph 3.1, Houria plans a lexico-

graphic better graph, and applies the local propagation algorithm to this graph. Given

one of the criteria ((1), (2) or (3)) of the globally-better comparator, Houria uses the

constraint strengths and weights to construct a Lexicographic-Preference-Graph

(or LPG) correct solution graph. A solution graph(s) is LPG if and only if : there

are no method conicts and no cycles, and there are no unenforced method at the

k level, that if it becomes enforced then it generates a Lexicographic better solution

graph. For example, given an over-constrained constraint hierarchy and the criterion

(1). We suppose that each constraint contains one method. Houria may leave weaker

constraints unsatis�ed (unenforced in the solution graph) in order to satisfy stronger

constraints. Like in Figure 1.a. This solution graph is not LPG, because the strong

constraint c2 could be enforced by selecting the method that has consequents v4 and

v6, and revoking the medium constraint c3 and the weak constraint c4 , producing

Figure 1.b. Actually, this solution graph is not LPG either, because c5 could be

enforced, producing Figure 1.c. The solution graph in Figure 1.c is LPG since the

unenforced constraints cannot be enforced and produce a better solution graph than

the solution graph in Figure 1.c.

Figure 1.a - a non-LPG Solution Graph

Figure 1.b - a non-LPG Solution Graph

Given an over-constrained constraint hierarchy and the criterion (2) (resp. (3)).

For obtaining the LPG correct solution graph(s), Houria performs the following two

steps : In the same class, it leaves a constraint weighted by a small satisfaction index

(resp. weight) unsatis�ed (i.e. unenforced in the solution graph) in order to satisfy (i.e

enforce in the solution graph) the constraint weighted by a larger satisfaction index

(resp. weight) in the same class, or in the other classes. Between the classes, it leaves

a constraint labeled by a weaker strength and a small satisfaction index unsatis�ed

in order to satisfy the constraint labeled by a higher strength.

c Investigaci�on Operativa 1998

34 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

Figure 1.c - a LPG Solution Graph

3.3 General description of Houria

The set S can be seen as a set of LPG solution graphs. For obtaining a LPG solution

graph, Houria2 uses some tools. These tools are de�ned in paragraph 3.3.1. The

algorithmic approach for computing the set S is described in the paragraph 3.3.2.

In this paragraph we describe an improvement of this approach. The objective of

this improvement is to reduce the number of solutions graphs developed in the set S.

We describe another improvement based on the weight of the solution graphs. This

improvement reduces the computation cost of the LPG.

3.3.1 Houria Tools

Notations : ci is the pair (label; weight) where label is the strength of the constraint

ci and weight has a several signi�cation depending on the solution type used by the

user. If the criterion (1) is used then weight is equal to 1 for each constraint in the

hierarchy. If the criterion (2) is used then weight is the pair (index; jindexj) where

index is considered as a satisfaction index of the constraint c. If the criterion (3) is

used then weight is a real value associated to each constraint in the hierarchy. Mc is

the set of methods of constraint c. Each mjc in Mc is represented by a couple noted

by lwsg(sg; lw) , where the sg is: (Ant; Int; Cons) and lw is a list containing the pair

(label; weight) of the constraint c. Ant is a set containing the antecedents variables

of mjc. Int is a set of internal variables3. Cons is a set containing the consequent

variables of mjc.

Example. c = fv1 = v2 � v3g; c = (strong; 1);

Mc = f(v2 � v1 ! v3); (v2 � v3 ! v1); (v1 + v3 ! v2)g;

m1c = ((fv2 v1g; f g; fv3g); (strong; 1)); m2c = ((fv2 v3g; f g; fv1g); (strong; 1));

m3c = ((fv1v3g; f g; fv2g); (strong; 1)):

A solution graph can be seen as a couple (sg; lw), where sg is the representation

of the conjunction of the methods enforced in this solution graph, and lw is the list of

pairs (label; weight) of this solution graph. For obtaining this couple, we de�ne the

representation of the conjunction of one method and one method set by the following

de�nition:

2 For more details concerning Houria system, the reader, is invited to see [15, 16, 17].
3 The set of internal variables for one method is empty.

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 35

De�nition 3. let mjc = ((Ant(mjc); f g; Cons(mjc)); c)

and let s = ((Ant(s); Int(s); Cons(s)); s):

mjc ^ s =

0
BBB@

(Ant(mjc) [Ant(s)n(Cons(s) [Int(s));

Int(s) [(Ant(mjc) \ (Cons(s) [Int(s)))

[(Cons(mjc) \ (Cons(s) [Int(s)));

(Cons(mjc) [Cons(s))n(Ant(s) [Int(s)));

c� s)

1
CCCA

When the criterion (1) or (3) is used, the operator � appends two ordered lists

of pair (label; weight) into one ordered list of pairs (label; weight), by respectively

adding the weights associated with the same label. Alternatively, when the criterion

(2) is used, the operator � appends two ordered lists of pairs (label; (index; jindexj))

into one, by respectively grouping the largest satisfaction indices associated with the

same label.

The representation of the conjunction of one method and one method set is a

couple (sg; lw). Note that the Int contains the common variables set found in both

parts: the antecedent part of a method set and the consequence part of a method.

Example. m1c = ((fv2 v3g; f g; fv1g); (strong; 1)) and s = ((fv4g; f g; fv2g);

(medium; 1)); so ;m1c ^ s = ((fv3 v4g; fv2g; fv1g); ((strong; 1) (medium; 1))):

The motivation for selecting this representation mode is to be able to operate on

sets of variables instead of other complex data structures. We can simply compare a

set of variables to know if the conjunction of one method and one method set contains

conicting methods or cycles. To attempt this goal, we de�ne the consistency of one

method and one method set.

De�nition 4. let s be the representation of one method set, and Cs the representa-

tion set of connected components in s . Let m be the representation of one method.

Conflict-Consistent(s;m), ((8� 2 Cs)

Cons(�) \ Cons(m) = � ^ Int(�) \ Cons(m) = �

^ Int(m) \ Cons(�) = �):

Cycle-Consistent(s;m), ((8� 2 Cs)

:((Ant(�) \ (Cons(m) [Int(m)) 6= �)

^ (Ant(m) \ (Cons(�) [Int(�)) 6= �))

_ ((8vi 2 (Ant(m) \ (Cons(�) [Int(�)))

^ (8vj 2 (Ant(�) \ (Cons(m) [Int(m))))

) :Path(vi; vj))):

Consistents(s;m), Conflict-Consistent(s;m)

^ Cycle-Consistent(s;m) :

c Investigaci�on Operativa 1998

36 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

Regarding the �rst condition of LPG solution graph in paragraph 3.2. The de�ni-

tion 4 means that : the method m is not in conict with the method set s if and only

if the predicate Conflict-Consistent is true. There are no cycles between m and s if

and only if the predicate Cycle-Consistent is true. s is consistent with m if and only

if both predicates are true (i.e. the conjunction of s and m is not consistent if and

only if it contains conicting methods or cycles).

3.3.2 The Set S Computation

S is a set of lwsg : (sg; lw) where sg is a solution graph and lw is the list of pairs

(label; weight) of this solution graph. Initially, the set S of solution graphs con-

tains the set of solution graphs corresponding to the constraints in C0 (i.e. the hard

constraints). Houria is invoked by calling two procedures, add-constraint to add a

constraint to each solution graph in S, and remove-constraint to remove a constraint

from each solution graph in S. As constraints are added and removed, Houria incre-

mentally updates each solution graph in S and sorts the set S to �nd the LPG solution

graphs. The approach of Houria can be described by the following statements: - A

constraint c is added to the hierarchical system. - If a method m of a constraint c is

consistent with the solution graph in any lwsg 2 S, then Houria forms a new lwsg

and adds it to S. This new lwsg will have the following form: (the solution graph

in lwsg ^ the method m of the constraint c , the ordered list of pairs (label; weight)

obtained by computing lw � (c)).

Houria tries to add each method in the constraint c to each lwsg in S. This ap-

proach is complete but costly. We propose two improvements to reduce respectively

the space complexity of the set S and the computational cost of the set S. The both

improvements are valid for any global predicate comparator.

Improvement for reducing the space complexity of S

The �rst improvement to this approach consists in keeping in S only the maximal

elements, i:e: when Houria tries to addm to the lwsg , (m is one method of constraint

c , lwsg is one couple in S) we can make the following distinctions:

When m is consistent with the solution graph in lwsg , Houria updates lwsg by

addingm to the solution graph in lwsg , and adding (c) to lw by using the operator�.

When m is not consistent with the solution graph in lwsg , Houria updates S by

executing the following steps:

- Extract from the solution graph in lwsg a set of lwsg (noted S
0), where m is

consistent with the solution graph in each lwsg in S
0.

- For any lwsg 2 S0, the solver forms a new lwsg by considering the method m.

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 37

- Add this new lwsg to S if it is maximal (i:e: if it does not exist another lwsg

in S, which contains this new lwsg).

This improvement reduces the size of S, while still preserving the completeness of

the solver.

Improvement for reducing the computational cost of S

Another improvement to this approach aims at reducing the cost of the solver,

this enhancement used the list of pairs (label; weight) of all lwsg in S.

S is partitioned into subsets, where each subset contains the lwsg that have an

equal list of pairs (label; weight). Each subset is associated with a queue called

queue of constraints to add. Each subset has two weights: current-label-weight

and potential-label-weight. The current-label-weight of a subset is equal to the lw

of one lwsg in this subset. The potential-label-weight of a subset is equal to an

ordered list of pairs (label; weight). This ordered list is obtained by applying the op-

erator � on the current-label-weight and all pairs (label; weight) of the constraints

in the associated queue of this subset. All subsets in S will be lexicographically

ordered on respect to their potential-label-weight. The current-label-weight and

potential-label-weight with the �rst subset in S are always equal. When a constraint

c is added to the system, Houria tries to add it to each lwsg in the �rst subset of S,

and keeps this constraint c in all queues associated to the other subsets of S. Houria

halts when the current-label-weight of the �rst subset in S is not lower than the

potential-label-weight of the second subset in S. Otherwise, Houria tries to add all

constraints in the queue of the second subset to any lwsg in this second subset. The

result subset of this tentative is ordered and placed in S.

The goal of this improvement is to delay the computations as much as possible,

and to not enumerate all the LPG solution graphs. This means that Houria performs

the computations only if we are certain that a better solution graph may exist.

Another heuristic is considered by this approach. This heuristic consists to perform

on priority the subset which has the highest current-label-weight from all subsets

which have the same potential-label-weight. In average this improvement reduces

the complexity of computing the LPG solution graphs while still being complete.

3.3.3 Removing Constraints

In order to remove a constraint c, Houria partitions the set S into two sets S0 and S00.

S
00 contains the subsets which associated queues include the constraint c to remove.

The procedure removes the constraint c by substracting this constraint from any queue

of the subset in S
00. S0 contains some subsets where an lwsg in each subset contains

one method of the constraint c to be removed. The procedure Remove-constraint

removes all methods of the constraint c from all lwsg in each subset in S0 , and keeps

each lwsg in each subset of S0 maximal consistent. The two sets S0 and S00 are sorted

c Investigaci�on Operativa 1998

38 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

by considering the potential-label-weight of their subsets. The procedure returns the

�rst subset of S, this �rst subset contains the LPG solution graph.

3.4 Implementation and Measurements

In the worst case, Houria is exponential in time since it is based on the best-�rst search

strategy and it handles a global criterion. But in practice, the observed running time

of Houria is actually acceptable giving an upper-bound number of constraints.

Houria is implemented in Lisp. In order to assess out the performance of our

solver, we generate a random constraint system based on two parameters: the con-

straint number cn and the constraint arity ca.

We have run two sets of experiments, the �rst with ca=2 (Figure 2.a) the second

with ca=3 (Figure 2.b). With ca=2 the number of generated methods is 2 and with

ca=3, the the number of generated methods is randomly chosen in f2..6g. For each

set generated, the number of constraints range from 10 to 100 by steps of 10. In

each test, the number of variables is the third (i.e. 1/3) of the number of constraints

generated each steps.

The performance reported for Houria includes the amount of time required to �nd

the LPG solution graphs4. We have repeated the test for 50 di�erent random over-

constrained problems, reporting the average of the results. The graphs (in seconds)

in Figures 2.a and 2.b can be interpreted as follows : with ca =2 or ca =3, the solver

time to plan a LPG solution graph is acceptable. When the size of the problem is

too large(> 100), the solver time to plan a LPG solution graph is long.

Figure 2.a - planning time ca = 2 Figure 2.b - planning time ca = 3

4 The empirical test for planning the LPG by using the criterion (2).

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 39

4 The Use of Houria in CLP Languages

As mentioned by Wilson in [13] experience with writing programs in HCLP (R; lo-

cally-better) has provided many examples where the local comparator may rule out

non-intuitive solutions. This results from the restriction of the comparator to select

among valuations arising from a single constraint hierarchy.

4.1 Extended Theory of Constraint Hierarchies

Wilson and Borning extend in [13] the constraint hierarchy theory to multiple con-

straint hierarchies. This extension consists of de�ning the set of solutions to many

constraint hierarchies. This lays the theoretical foundation for inter-hierarchy com-

parators and will allow to rule out the non-intuitive solutions and to eliminate the

undesirable solutions. A solution to a set of constraint hierarchies H will consist of

a valuation for all free variables in H . Normally, the set H will consist of hierarchies

that arise from alternate rule choices in a program and the set S of solutions contains

all solutions to H , rather than just to a single hierarchy. Since the locally-better

comparators consider each constraint in the hierarchy individually to compare how

well di�erent valuations satisfy that constraint, they are not rede�ned to compare

solutions between di�erent hierarchies. In other words, locally-better is de�ned only

if H consists of a single hierarchy. Because the globally-better comparators take some

aggregate measure to combine the errors obtained in each level of the hierarchy, they

are extended to compare valuations arising from di�erent hierarchies.

De�nition 5. A valuation �h is globally-better than another valuation �h0 if, for

each level through some level k � 1 , the combined error g of the constraints after

applying � to the constraints in hierarchy h 2 H is equal to that after applying � to

the constraints in hierarchy h
0
2 H and at level k it is strictly less. (h and h

0 can

be either the same or di�erent hierarchies. If they are the same, then the following

de�nition is equivalent to the one for intra-hierarchy comparison.)

4.2 Algorithm for Inter-hierarchy Comparisons

Based on this extension of comparison and on Houria system, we present an e�-

cient algorithm for comparisons between the hierarchies that arise from alternate rule

choices in a program. This algorithm consists on two procedures (Initialization and

Best-Desirable-Solution) and is based on the Houria system since Houria system,

which, based on global criteria, allows inter-hierarchy comparisons.

The �rst step in the Initialization procedure is to form the set H = fh1; h2; :::hng

of the hierarchies resulting from the alternate rule choices in a program, after goals

have been successfully reduced. This �rst step can be achieved as in CLP, temporarily

ignoring the soft constraints, except to accumulate them and form the set H . The

procedure initializes the variable Comp with the criterion of the global comparator

used in the program ((1) (2) or (3)). Subsequently, the procedure examines the set

H of hierarchies and associates to each hierarchy a variable V -free that contains

c Investigaci�on Operativa 1998

40 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

the set of the free variables in the hierarchy (i.e. the set of variables, that have not

been yet determined by the �rst step). A variable CN is associated with each hi-

erarchy in H and it contains the set of the constraints of this hierarchy. A list of

the eligible constraints, denoted CN -eligible; is associated with each hierarchy in H .

The procedure examines each constraint c in h. If the set of variables constrained

by c contains at least one free variable (in V -free) then the constraint c is added to

the list of the eligible constraints. This list will be used in order to determine the

values of the free variables. The procedure forms another list noted by CN -check for

each hierarchy. This list contains the set of constraints, that do not constrain a free

variable (i.e. all the variables constrained are bound). After that, since the objective

of our approach is to �nd the \preferred" hierarchy (i.e the hierarchy that produces

the best valuation to satisfy the soft constraints), we must consider the strength and

the weight of the constraints satis�ed in the list CN -check. In fact, this operation is

achieved by the procedure. The procedure associates to each hierarchy in H a vari-

able noted by initial-label-weight initialized by the list of pairs (label; weight) of the

constraints satis�ed in the list CN -check. Some of the eligible constraints in the list

CN -eligiblemay constrain bound variables (i.e. not free variables). These bound vari-

ables are marked by the read-only annotation5, because they have been determined by

the hard constraints (the predicates in the program) in the �rst step of the procedure.

In the Best-Desirable-Solution procedure, we �rst eliminate fromH the set of the

hierarchies where the sum of the initial-label-weight and the label-weight(CN -eligible)

of each hierarchy in this set is strictly less than the initial-label-weight of another hier-

archy in H (since we need that the free variables must be computed by the strongest

hierarchy (i.e. that have the maximum label-weight)). The resulting set H after

this operation is ordered by the criterion sum of the initial-label-weight and the

label-weight(CN -eligible) decreasing. For a hierarchy in the ordered set H , the pro-

cedure calls Houria solver in order to determine the maximum subset of the constraints

in the CN -eligible (of this hierarchy) that can be solved and produce the best valua-

tion by respecting the criterion used. The consequence of this call is the assignment of

the variables Gr and label-weight-Gr that contain, respectively, the best graph of the

methods of the constraints in the list CN -eligible; and the list of pairs (label; weight)

of this graph. This operation is executed until the set H is empty or until the sum of

the initial-label-weight and the label-weight-Gr of the graph resulting from the last

call for a hierarchy in H is lexico-graphically greater or equal than the sum of the

initial-label-weight and label-weight(CN -eligible) of the next hierarchy in H (i.e. if

this condition is satis�ed then it is not possible to �nd a hierarchy from the rest of

the hierarchies in H that gives a better solution since H is ordered). This second case

is an improvement which reduces the number of calls to Houria, while still preserving

the completeness of the algorithm. All the hierarchies performed in the precedent

operation are stored in H
0. The procedure keeps in H

0 only the set of hierarchies

where the sum of the label-weight-Gr and the initial-label-weight of each hierarchy

in this set is maximal. The procedure calls Houria solver to solve each hierarchy in

H
0. This resolution consists of the execution of the methods in the graph and the free

5 The read-only annotation has been introduced in [5].

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 41

variables are computed. The set of variables of the hierarchy is returned containing

the desirable answer of the program.

In theory the extended de�nition allows inter-hierarchy comparisons. The algo-

rithm proposed in this section is based on these extended de�nitions and on the

versions of the Houria solver. This algorithm can be incorporated in the CLP lan-

guages to allow the ability to execute inter-hierarchy comparisons. Thus, we can

obtain the elimination of the undesirable solutions in many applications that contain

constraint hierarchies. This algorithm looks particularly promising when the number

of the alternate rule choices of each predicate in the program is not very large since

the more the solution is to the right in the tree search, the better this procedure is. In

the opposite, Houria can be used in a simple Branch and Bound algorithm since the

more the solution is to the left in the tree search, the more this procedure converges

to the Branch and Bound. For more details concerning this approach, the reader is

invited to see[18].

4.3 Example of a HCLP Program

The following is an example of a HCLP program that illustrates the work of the

two procedures in the previous section. The comparator used in this program is the

satisfied-count-better(1).

F (x; y; z) :- G(x); (strong; 1) x = 2y+ z; (medium; 1) x = 2y; (weak; 1) x > 4:

F (x; y; z) :- G(x); (strong; 1) x > 8; (medium; 1) x = 2y+ z; (weak; 1) x = 2y:

F (x; y; z) :- K(x; y); (strong; 1) x = 2y; (medium; 1) x = 2y+z; (medium; 1) y =

2x+ z; (very-weak; 1) x > 4:

G(4):

G(8):

K(1; 3):

K(6; 3):

Given the goal F (A;B;H), the �rst step of the Initialization procedure would

return the set H that contains six hierarchies (h1::h6) resulting from the alternate

rule choices of the predicates G and K.

h1 = f required A = 4; (strong; 1) A = 2B+C; (medium; 1) A = 2B; (weak; 1)

A > 4g

h2 = f required A = 8; (strong; 1) A = 2B+C; (medium; 1) A = 2B; (weak; 1)

A > 4g

c Investigaci�on Operativa 1998

42 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

h3 = f required A = 4; (strong; 1) A > 8; (medium; 1) A = 2B+C; (weak; 1) A =

2Bg

h4 = f required A = 8; (strong; 1) A > 8; (medium; 1) A = 2B+C; (weak; 1) A =

2Bg

h5 = f required A = 1; required B = 3; (strong; 1) A = 2B; (medium; 1) A =

2B + C; (medium; 1) B = 2A+ C; (very-weak; 1) A > 4g

h6 = f required A = 6; required B = 3; (strong; 1) A = 2B; (medium; 1) A =

2B + C; (medium; 1) B = 2A+ C; (very-weak; 1) A > 4g:

The result of the initialization procedure on the hierarchies in the set H is the

following:

(V -freeh1; CN -eligibleh1; CN -checkh1; initial-label-weighth1) = (fB;Cg;

f(strong; 1) A = 2B + C; (medium; 1) A = 2Bg; f(weak; 1) A > 4g; fg):

(V -freeh2; CN -eligibleh2; CN -checkh2; initial-label-weighth2) = (fB;Cg;

f(strong; 1) A = 2B+C; (medium; 1) A = 2Bg; f(weak; 1) A > 4g; f(weak; 1)g):

(V -freeh3; CN -eligibleh3; CN -checkh3; initial-label-weighth3) = (fB;Cg;

f(medium; 1) A = 2B + C; (weak; 1) A = 2Bg; f(strong; 1) A > 8g; fg):

(V -freeh4; CN -eligibleh4; CN -checkh4; initial-label-weighth4) = (fB;Cg;

f(medium; 1) A = 2B + C; (weak; 1) A = 2Bg; f(strong; 1) A > 8g; fg):

(V -freeh5; CN -eligibleh5; CN -checkh5; initial-label-weighth5) = (fCg;

f(medium; 1) A = 2B + C; (medium; 1) B = 2A + Cg; f(strong; 1) A =

2B; (very-weak; 1) A > 4g; fg):

(V -freeh6; CN -eligibleh6; CN -checkh6; initial-label-weighth6) = (fCg;

f(medium; 1) A = 2B + C; (medium; 1) B = 2A + Cg; f(strong; 1) A =

2B; (very-weak; 1) A > 4g; f(strong; 1); (very-weak; 1)g):

Since initial-label-weighth6 >lex (weight(CN -eligibleh5)� initial-label-weighth5)

(i.e. ((strong; 1); (very-weak; 1)) >lex ((medium; 1); (medium; 1))) the Best-De-

sirable-Solution procedure eliminates the hierarchy h5 from H . Also, for the same

reasons the hierarchies h3 and h4 are eliminated from H . The resulting set H is or-

dered by the criterion decreasing sum of the initial-label-weighthi and the label-weight

(CN -eligiblehi), and contains now : fh6; h2; h1g. The procedure calls the Houria

solver in order to perform the eligible constraints in the hierarchy h6. For the con-

straints in CN -eligibleh6 , Houria returns the graph Grh6 that contains the only

method C A � 2B (i.e. the value of the variable C can be computed by con-

sidering the value of A and of B) (the other methods are not used because the

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 43

variables A and B are marked with the read-only annotation). The content of

label-weight-Grh6 returned by Houria is ((medium; 1)). (The other alternate graph

that contains the method C B � 2A can be returned by Houria, but since the

label-weight of both graphs is the same, we only give one solution). The hierar-

chy h6 is now eliminated from H and stored in H
0. Since the weight of the result-

ing graph is less than the total weight of the eligible constraints of the hierarchy h6

(i.e. label-weight-Grh6 <lex label-weight(CN -eligibleh6) because ((medium; 1)) <lex

((medium; 1); (medium; 1))), then we are not certain that the optimal solution

has been obtained. The procedure performs the previous operation on the hierar-

chy h2. The result from the Houria calls is : GRh2 that contains the methods:

C A � 2B and B An2. The content of label-weight-Grh2 returned by Houria

is ((strong; 1); (medium; 1)). The procedure halts to perform the rest of the

hierarchies in H , since the set H is ordered and the sum of label-weight-Grh2 and

initial-label-weighth2 is lexicographically greater than the sum of label-weight(CN -el-

igibleh1) and initial-label-weighth1 (i.e. we are certain that one of the \best" hierar-

chies has been performed). The set H 0 contains now both of the hierarchies h6 and h2.

The hierarchy h6 is eliminated from the set H 0 because the sum of label-weight-Grh6
and the initial-label-weighth6 is less than the sum of label-weight-Grh2 and the

initial-label-weighth2 (i.e. ((strong; 1); (medium; 1); (very-weak; 1) <lex ((strong;

1); (medium; 1); (weak; 1))). The procedure resolves GRh2 by applying the pro-

cedure in Houria which solves this graph and the desirable solution A = 8, B = 4,

C = 0, is returned.

5 Conclusions

Houria is a solver which incrementally handles a constraint hierarchy where each

class in the hierarchy can contain constraints weighted with di�erent weights. It is

particulary suitable in applications where the user desires to have more than one

solution, e.g. applications such as graphic design environments [14], where the user

wants to debug a constraint network, and explore alternative solutions. Houria can

be a good solution to commonly-encountered constraint problems in graphical lay-

out and visual languages. Also, Houria can be used via the algorithm proposed in

section 4. It allows inter-hierarchy comparisons then we obtain the elimination of

the undesirable solutions in many applications in CLP languages that contain func-

tional constraint hierarchies, such as geometric layout [2], physical simulations, and

user interface design [1], document formatting, algorithm animation, and design and

analysis of mechanical devices and electrical circuits.

6 Future Work

Houria will be extended to support also a non-functional constraints (i.e. numerical

constraints, interval constraints, etc.). Houria will develop solutions for addressing a

large sub-set of over-constrained problems and mixed-initiative resolution of complex,

constrained optimisation tasks.

c Investigaci�on Operativa 1998

44 Bouzoubaa, M. � Constraint Hierarchies in Constraint Logic Programming Languages

Acknowledgement

I thank the anonymous referees for their comments on a preliminary version of this

paper. I am grateful to Pr. Abdelhamid Benchakroun, Dr. Geir Hasle and to Dr.

Taou�k Bouzoubaa, for their help and support.

References

[1] M. Sannella & A. Borning, Multi-Garnet: Integrating multi-way constraints

with garnet, Tech. Rep. 92-07-01, Departement of Computer Science and Engi-

neering, University of Washington, Sep. 1992.

[2] A. B. Myers, D. Giuse, R. B. Dannenberg, B. Vander Zanden, D.

Kosbie, P. Marchal & E. Pervin, "Comprehensive support for graphical,

Highly-Interactive User Interfaces: The Garnet User Interface Development En-

vironment". IEEE Computer, 23(11):71-85, Nov. 1990.

[3] A. Borning, S. Maher, M. A. Martindale, & M. Wilson, Constraint

hierarchies and logic programing". In Proceedings of the Sixth International Logic

Programing Conference, pp 149-164, 1989.

[4] M. Sannella, The SkyBlue Constraint Solver. Tech. Rep. 92-07-02, Dep. of

Comp. Sc. and Eng. , University of Washington, Feb. 1993.

[5] A. Borning, B. Freeman-Benson, & M. Wilson, "Constraint hierarchies".

Lisp and Symbolic Computation, Vol. 5, pp. 221-268, 1992.

[6] A. Borning & M. Wilson, Hierarchical Constraint Logic Programing. Tech.

Rep. 93-01-02a, Departement of Computer Science and Engineering, University

of Washington, May. 1993.

[7] J. H. Maloney, A. Borning & B. N. Freeman-Benson, "Comstraint tech-

nology for user-interface construction in ThinglabII". In: Proceedings of the ACM

Conference on Objet-Oriented-Programing Systems Languages and Applications,

pp 381-388, Oct . 1989.

[8] M. Sannella, B. Freeman-Benson, J. Maloney & A. Borning,Multi-way

versus One-Way Constraints in User Interfaces: Experience With The Deltablue

solver. Tech. Rep. 92-07-05, Departement of Computer Science and Engineering,

University of Washington, July. 1992.

[9] B. A. Myers, D. A. Giuse, R. B. Dannenberg, B. Vander Zanden, D.

S. Kosbie, E. Pervin, A. Mickish & P. Marchal, "Garnet: Comprehensive

Support for Graphical, Highly Interactive User Interfaces". IEEE Computer, vol.

23, no. 11, pp. 71-85, Nov. 1990.

[10] A. Borning, "The Programming Languages Aspects of Thinglab, a Constraint-

Oriented Simulation Laboratory". ACM Transactions on Programming Lan-

guages and Systems, vol. 3, no. 4, pp. 353-387, Oct. 1981.

c Investigaci�on Operativa 1998

Investigacion Operativa � Volume 6, Numbers 1,2 and 3, January{December 1998 45

[11] H. Hosobe, K. Miyachit, S. Takahash, S. Matsuoka, A. Y, Locally Si-

multaneous Constraint Satisfaction LNCS 874: PPCP, Nov. 1994.

[12] G. J. Sussman, & G.L., Steele, "CONSTRAINTS-S langage for expressing

almost-hierarchical descriptions". A.I. 14, 1, pp 1-39, Jan. 80.

[13] A. Borning & M. Wilson, "Extending Hierarchical Constraint Logic Pro-

gramming: Nonmonotonicity and Inter-Hierarchy Comparison". In: Proceedings

of the North American Conf. on LP, Cleveland, Oct. 1989.

[14] J. H. Maloney, A. Borning & B. N. Freeman-Benson, "Comstraint tech-

nology for user-interface construction in thinglabII". In: Proceedings of the ACM

Conference on Objet-Oriented-Programing Systems Languages and Applications,

pp 381-388, Oct . 1989.

[15] M. Bouzoubaa, B. Neveu, G. Hasle, "Computer Science and Operations

Research: Recent Advences in The Interface", chapter Houria III: Planning of

Lexicographic Weight Sum Better Graph for Equational Constraints. INFORMS,

CSTS, Dallas, Texas, January 1996.

[16] M. Bouzoubaa, "The Houria constraint solver". In: Proc. of the Inter-

national Conference on Applications of Arti�cial Intelligence in Engineering

X(AIEng'95), Udine, Italy, July 1995.

[17] M. Bouzoubaa, B. Neveu, G. Hasle, "Houria II: A solver for hierarchical

systems, planning of lexicographic satis�ed count best case better graph for equa-

tional constraints". In: Constraint for Graphics and Visualization CP-95, Cassis,

France, September 1995.

[18] M. Bouzoubaa, "Functional Constraint Hierarchies". In: Proc. of the Principles

and Practice of Constraint Programming, CP-96, LNCS 1118, August 1996.

c Investigaci�on Operativa 1998

