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Abstract

In this paper, we consider a perturbed Markov decision process with the discounted reward

criterion .The transition probabilities and discount factor are perturbed slightly.We assume

that the underlying process is completely decomposable in �nite number of separate irreducible

processes .We introduce the limit Markov control problem which is the optimization problem

that should be solved in case of singular perturbations. In order to solve the limit Markov con-

trol problem, we propose an aggregation-disaggregation policy improvement algorithm which

converges in a �nite number of iterations to an optimal deterministic strategy.

1 Introduction

Finite state and action Markov decision processes (MDPs for short ) are dynamic,

stochastic, systems controlled by some controller, sometimes referred to as \decision

make". These models have been extensively studied since 1950's by applied proba-

bilists, operations researchers, and engineers.

Engineers typically refer to these models as \Markov control problems", and in

this paper we shall use these labels interchangeably. The early MDP models were

studied by Howard [21] and Blackwell [9] and, following the latter, are sometimes

referred to as \Discrete Dynamic Programming".
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During the 1960's and 1970's the theory of classical MDP's evolved to the extent

that there is now a complete existence theory, and a number of good algorithms for

computing optimal policies, with respect to criteria such as maximization of limiting

average expected output, or the discounted expected output (eg. see [7], [13], [17],

[20], [23]). These models were applied in a variety of contexts, ranging from water-

ressource models, through communication networks, to inventory and maintenance

models.

One class of problems that began to be addressed in recent years focussed around

the following question:

How is the analysis of an MDP model a�ected by perturbations (typically small)

of the problem data?

If the perturbation of a Markov chain alters the ergodic structure of that chain,

then stationary distribution of the perturbed processus has a discontinuity at the zero

value of the disturbance parameter.

This phenomenon was illustrated by Schweitzer [18] with the following example:

Let P� =

�
1� �=2 �=2

�=2 1� �=2

�
be the perturbed Markov chain whose stationary

distribution matrix is:

P �

�
=

�
1=2 1=2

1=2 1=2

�
for all � 2 [0; 2]. Thus we have:

Lim
�!0

P �

�
=

�
1=2 1=2

1=2 1=2

�
6= P �

0 =

�
1 0

0 1

�
, where P �

0 is the stationary distri-

bution matrix of the unperturbed Markov chain P0.

Some authors [1], [2], [3], [5], [8] considered a singularly perturbed MDP with the

limiting average reward criterion.

In this paper we consider a singular perturbation with the discounted expected

criterion. We give explicitly the limit Markov control problem (limit MCP) that is

entirely di�erent from the original unperturbed MDP, which forms an appropriate

asymptotic to a whole family of perturbed problems; thus only the single limit MCP

needs to be solved . We construct an aggregation-disaggregation algorithm for solving

the limit MCP, which is the main contribution of this paper.

2 De�nitions and Preliminaries

A discrete Markovian decision process (MDP, for short) is observed at discrete time

points t = 0; 1; 2; :::. The state space is denoted by S = f1; 2; :::; Ng . With each state

s 2 S we associate a �nite action set A(s) = f1; 2; :::;m(s)g. At any time point t, the
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process is in one of the states s and the controller chooses an action a 2 A(s) ; as

a result the following occur : i) an immediate reward r(s; a) is accrued , and ii) the

process moves to state s0 2 S with transition probability

p(s0=s; a); where p(s0=s; a) � 0 and
X
s02S

p(s0=s; a) = 1:

Henceforth, such an MDP will be synonymous with the four-uple:

� = < S; [A(s); s 2 S]; [r(s; a); s 2 S; a 2 A(s)]; [p(s0=s; a); s; s0 2 S; a 2 A(s) > :

While a general control state in � may depend on the complete state-action his-

tories of the process, in this paper we shall concern ourselves only with the class

FS of all stationary strategies . A stationary strategy � 2 FS is the vector: � =

(�(s; a)=(s; a) 2 S � A(s)) where �(s; a) is the probability that controller chooses

action a 2 A(s) in state s whenever that state is visited; of course;
X

a2A(s)

�(s; a) = 1

for all s.

A strategy � 2 FS will be called deterministic if �(s; a) 2 f0; 1g for all (s; a) 2

S �A(s).

With every � 2 FS we associate the following quantities : r(�) = (r1(�); :::; rN (�))
T ;

the vector of single stage expected rewards in which rs(�) :=
X

a2A(s)

r(s; a)�(s; a) for

each s 2 S; a Markovmatrix P (�) = (Pss0 (�)
N

s;s0=1); where Pss0(�) :=
X

a2A(s)

P (s0=s; a)

�(s; a) for all s; s0 2 S; the generator of the corresponding Markov chain, namely, the

matrix G(�) := P (�)� I ; the corresponding Cesaro-limit matrix is de�ned by:

P �(�) := (P �
ss0
(�)n

s;s0=1) := lim
t!+1

1=t + 1

tX
k=0

P k(�) , where P 0(�) := IN , an

N �N identity matrix.

The classical discount expected Markov decision problem is the optimisation prob-

lem:

Find �� 2 FS such that: V�(s; �
�) � V�(s; �) 8� 2 F;8s 2 S (1:1)

where; V�(s; �) =

+1X
t=0

�tEs�(Rt) ; � 2]0; 1[ is the discounted factor, Rt is the randon

variable which represents the reward at time t, and Es�(Rt) is the expected reward

at time t when the process begins at state s and the controller uses the strategy �.

The following theorem is well known (eg. see [15], [22]).

Theorem(1.1) V �
�
= max

�2F

V�(�) exists and V �
�
= max

�2FS

[r(�) + �P (�)V �
�
] where

c
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V�(�) = V�(s; �)
T

s2S
.

Remark (1.1)

Let � = 1=1 + �; � > 0 ; and V�(�) = (1� �)V�(�). Then:

i ) V�(�) = �(1+�)�1
+1X
m=0

(1+�)�mPm(�)r(�) = �(1+�)�1[IN�(1+�)
�1P (�)]�1r(�)

ii) V �
�
:= max

�2FS

V�(�) = (1� �) max
�2FS

V�(�)

iii) Lim
�!0

V�(�) = P �(�)r(�):

From theorem (1.1) and part (ii) of remark 1.1, we can get the following result:

Proposition (1.1) V �
�
satis�es the optimality equation:

��V �
�
+ max

�2FS

fG(�)V �
�
+ �r(�)g = 0:

A strategy �� satisfying the equation above will be called optimal. It is well known

that there always exist an optimal deterministic strategy and there is a number of

�nite algorithms for its computation (e.g; [15], [22]). In this paper, we shall assume

the following:

A1) S =

n[
i=1

Si;where Si \ Sj = ; if i 6= j; n > 1;

card Si = ni; n1 + n2 + :::+ nn = N

A2) p(s
0=s; a) = 0; whenever s 2 Si; s

0
2 Sj ; i 6= j and a 2 A(s)

Consequently we can think of � as being the union of n smaller MDP's �i , de�ned

on the state space Si for each i = 1; 2; :::n, respectively. Note that if Fi is the space of

stationary strategies in �i, then a strategy � 2 F in � can be written in the natural

way as � = (�1; �2; :::; �n) where �i 2 Fi.

The probability transition matrix in �i corresponding to �
i is of course de�ned by:

Pi(�
i) = (pss0(�

i))s;s02Si ; and the generator Gi(�
i) and the Cesaro-limit matrix

P �

i
(�i) can be de�ned in a manner analogous to that in the original process �.

In addition, we assume the following:

A3) For every i = 1; :::; n and for all strategy �i 2 Fi, the matrix Pi(�
i) is an

irreducible matrix.
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In view of A3) P �

i
(�i) is a matrix with identical rows. We shall denote any row

of P �

i
(�i) by p �

i
(�i).

Remark (1.2)

Note that for all � 2 Fs we have the following representation of P �(�) : P �(�) =

EM(�) where E is an N � n matrix with entries:

esj =

8>>>>>>><
>>>>>>>:

1 if

j�1X
k=1

nk < s �

jX
k=1

nk

0 otherwise

for s = 1; 2; :::; N and j = 1; 2; :::n ; and M(f) is an n�N matrix with entries:

mjs(�) =

8>>>>>>><
>>>>>>>:

[p�
j
(�j)]s if

j�1X
k=1

nk < s �

jX
k=1

nk

0 otherwise

of j = 1; 2; :::n and s = 1; 2; :::; N .

Of course we set

0X
k=1

nk := 0. Note also that from the above de�nitions we conclude

that ; M(�)E = In.

3 Perturbations

In order to analyse the perturbed Markov control problem, we must �rst understand

the uncontrolled case that is equivalent to the controller having only a single strategy

at his disposal. This sub-topic is sometimes called the perturbation theory of Markov

chains (M.Cs.) and is of interest in its own right.

In what follows, we concentrate only on a specially structured case that has re-

ceived the most attention in the litterature. A nearly decomposable M.C is de�ned

by an N �N irreducible transition probability matrix P (�),

P (�) = P + �D; where

P =

2
66664

P1 0:::::::::::::::::::: 0

0 P2 0::::::::::::::::: 0

:

:

0 0 ::::::::::::::::::::Pn

3
77775
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and Pi is an ni � ni irreducible transition probability matrix i = 1; 2; :::; n.

This class arises naturally in many applications of large scale �nite state Markov

chains. It is characterized by a decomposition of the states into groups, with strong

interactions between states in the same groups, and weak interactions between states

in di�erent groups.

The strong-weak interaction structure was �rst introduced by Simon and Ando

[24]. Courtois [10] developed the �rst analytical techniques for this class, and applied

it to many problems in queueing networks and computer systems.

The fundamental problem to be analyzed for this class of M.Cs is the computation

of the stationary distribution .This problem su�ers from high dimensionality and ill

conditioning. Courtois gave an aggregation procedure for the computation of an 0(�)-

approximation of the stationary distribution of P (�). But it can be easily checked that

Courtois's procedure will fail in many cases where the nearly decomposable structure

is no longer present. This points to the need to develop an analogous theory for the

more general perturbed M.Cs.

Based on the theory of Kato [16] for the perturbation of linear operators, Dele-

becque [11] derived a more general formula for the approximation of the stationary

distribution matrix.

In this section we introduce the formulation and some results of the underlying

control problem for the singularly perturbed MDP; the so called \limit Markov con-

trol problem"(Limit MCP).In particular, we prove that an optimal solution to the

perturbed MDP can be approximated by an optimal solution of the limit MCP for

su�ciently small perturbation.

We shall now consider the situation where the transition probabilities of � are

perturbed slightly.

Towards this goal we shall de�ne the disturbance law as the set:

D = fd(s0=s; a)=(s; a; s0) 2 S � A(s)� Sg where the elements of D satisfy:

X
s02S

d(s0=s; a) = 0 ( for all (s; a) 2 S � A(s)) � 1 � d(s=s; a) � 0; d(s0=s; a) �

0; s 6= s0; (s; a; s0) 2 S �A(s)� S:

Now, with every ��Fs we can associate a perturbation generator matrix D(�) =

[dss0 (�)]s;s02S where; dss0(�) =
X

a2A(s)

d(s0=s; a)�(s; a) and we shall also require that

there exists �0 > 0 such that for every � 2 Fs:

c
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G�(�) = G(�) + �D(�) is a generator of a Markov chain for any 0 � � � �0.

We shall consider a family of perturbed processes �� for 0 � � � �0 that di�er

from the original MDP � only in the transition law, namely in �� for every s; s
0
2 S,

and a 2 A(s) we have that: p�(s
0=s; a) = p(s0=s; a) + �d(s0=s; a).

We have that every � 2 Fs induces in the perturbed process �� the Markov chain

with the probability transition matrix P�(�) = G�(�) + IN .

(SPA) Singular perturbation assumption:

For every � 2 FS and � 2 (0; �0], P�(�) is an irreducible matrix.

Under (SPA), the MDP ��, � 2 (0; �0], de�ned as:

�� =< S; [A(s); s 2 S]; [r(s; a); s 2 S; a 2 A(s)]; [p�(s
0=s; a); s; s0 2 S; a 2 A(s)] >

is called the singular perturbed MDP.

As in Delebecque and Quadrat [12], we shall also perturb the discounted factor in

the following manner:

� = �� ; � > 0 and � > 0

Now, in the perturbed discounted problem ��, for every stationary strategy �, we

have that:

V�(�) = V��(�) = ��(1 + ��)�1
+1X
m=0

(1 + ��)�mP m

�
(�)r(�):

Set V�(�) = V��(�), then:

V�(�) = ��(1 + ��)�1
+1X
m=0

(1 + ��)�mP m

�
(�)r(�):

Let V �

�
(s) = max

�2FS

V�(s; �); s 2 S:

The optimality equation in proposition (1.1) becomes:

���V �

�
(s) + max

�2FS

f[G�(�):V
�

�
](s) + ��r(s; �)g = 0 for all s 2 S [2:3]

In Phillips and Kokotovic [19], the authors came up with equation [2.3]. They

proposed an algorithm for solving equation [2.3].

In [19], the authors considered the continuous M.C model:
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dp=d� = p(G+ �D) (1)

where I +G+ �D is a nearly decomposable M.C, and p is the N -dimensional row

vector whose entries are the probabilities pi of being in state i at time � .

In order to analyse the in
uence of weak interactions �D, the authors considered

the change time scale to t := �� . Therefore, in the t-scale the model (1) becomes:

dp=dt = p(G=�+D) (2)

In the discrete time, the model (2) has the analog:

p(k + 1) = p(k)(G=�+ I +D) (3)

It is well known (eg.see [22]) that the optimality equation with respect to the

discounted reward criterion for the model decribed above is:

J �

�
= max

�2FD

f�(G(�)=�+D(�) + I)J �

�
+ r(�)g: (4)

Note that (4) is similar to [2.3]. Also, Delebecque and Quadrat [12] came up with

equation [2.3] and they proposed another algorithm.

In this paper, our main objective is to solve equation [2.3] for small �, by using the

methods developed in [5], [8]. Using similar techniques, Abbad and Kissai [4] found

an algorithm for solving [2.3] which is based on linear programming.

For each � 2 FS let us de�ne the n� n matrix B(�) by:

B(�) =M(�)D(�)E and P (�) = B(�) + In

Note that B(�) is a generator of an aggregated M.C on state space S = f1; 2; :::; ng

with the transition probability matrix P (�).

De�nition 2.1

For every � 2 Fs we de�ne:

V (i; �) = �(1 + �)�1f[I � (1 + �)�1P (�)]�1r(�)gi; i 2 S ;

r(�) =M(�)r(�)

V̂ (s; �) = E V (i; �) for all s 2 Si

Proposition 2.1

c
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For all strategy � 2 Fs, we have: V�(�) = V̂ (�) + 0(�)

Proof: (see [12]).

Remark 2.2

Lim
�!0

V�(s; �) = V̂ (s; �) = V (i; �); for all s 2 Si; and � 2 Fs

4 Limit Markov Control Problem

De�nition 3.1

The optimization problem: V �(s) = max
�2FS

V̂ (s; �); s 2 S [L] is called the limit

Markov control problem.

The problem:

V
�

(i) = max
�2FS

V (i; �) i 2 f1; 2; :::; ng [AL]

is called the aggregated limit Markov problem.

Remark 3.1

We have that V̂ (s; �) = V (i; �) for all s 2 Si; i = 1; 2; :::; n and � 2 Fs;

thus V̂ �(s) = V
�

(i); s 2 Si i = 1; 2; :::; n.

It follows that any optimal strategy for [AL] is also an optimal strategy for [L]

and vice- versa.

Proposition 3.1

V �

�
= V̂ � + 0(�)

Proof: (see [6]).

Remark 3.2

By proposition 3.1 we have that:

Lim
�!0

V �

�
(s) = V̂ �(s); for all s 2 S:

c
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Proposition 3.2

There exists a deterministic strategy f 2 FD such that:

V̂ (s; �) � V̂ (s; f); for all s 2 S; and � 2 Fs:

Proof :

Let (�n)
+1
n=1 be any sequence in (0; �0] which converges to 0. From Markov decision

theory we have that for any n there exists f�n 2 FD such that:

V �n(s; �) � V �n(s; f�n) for each s 2 S; � 2 Fs:

Since f�n 2 FD, and FD is �nite, there must exist a deterministic strategy f 2 FD
and subsequence (�nk)

1

k=1 of the sequence (�n)
1

n=1 such that:

V �nk (s; �) � V �nk(s; f) for each k 2 N� ; s 2 S; and � 2 Fs:

From proposition 2.1, it follows that for all s 2 S; � 2 Fs:

V̂ (s; �) = Lim
�!0

V�(s; �)

= Lim
k!+1

V �nk(s; �):

Therefore V̂ (s; �) � V̂ (s; f), for each s 2 S, � 2 Fs

In view of proposition (3.2) we conclude that the problem [L] can be restricted to

the optimization problem [L']:

max
�2FD

V̂ (�);

and any optimal strategy for [L'] is also optimal for [ L].

Theorem 3.1

There exists a deterministic strategy f� 2 FD and a number � > 0 such that for

all � 2]0; �[; f� is optimal for ��. Moreover f� is optimal for [L].

Proof:

From Markov decision theory, for any � 2]0; �0[, there exists an optimal determin-

istic strategy f� 2 FD for the problem (��).

Since the class FD is �nite there exists a deterministic strategy f� and a sequence

(�n)
1

n=1 in ]0; �0[ which converges to 0 such that f� is an optimal strategy in [��n]

c
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for all n 2 N�.

For a �xed f in FD and s 2 S, we have that:

V �n(s; f
�) � V �n(s; f);n 2 N�:

From the fact that V�(s; f
�) and V�(s; f) are rational functions of �; there exists

�(s; f) in ]0; �0[ such:

For all � in ]0; �(s; f)[; V�(s; f
�) � V �(s; f).

De�ne � := minf�(s; f); s 2 S; f 2 FDg 2 ]0; �0[. Now we have that V�(s; f
�) �

V�(s; f) for any � 2 ]0; �[; s 2 S and f 2 FD.

This proves the �rst part of the theorem.

For the second part let �! 0, then Remark 2.2 implies that:

V̂ (f�) � V̂ (f) for all f in FD :

Corollary 3.1 (limit control principle)

Let �� 2 FD be any optimal strategy in [L], then for all B > 0 there exists �B such

that for all � 2 ]0; �B[ : jV
�

�
(s)� V �(s; ��)j < B for all s 2 S.

Proof:

Let � be any number in ]0; �[, in view of theorem 3.1, for all s in S we have that:

jV�(s; �
�)� V �

�
(s)j = jV�(s; �

�)� V̂ (s; ��) + V̂ (s; f�)� V �

�
(s)j

where f� is as in theorem 3.1 . Since V �

�
= V�(f

�), we shall write:

jV�(s; �
�)� V �

�
(s)j � (V�(s; �

�)� V̂ (s; ��)j+ jV̂ (s; f�)� V�(s; f
�)j

In view of Lim
�!0

V� = V̂ ; then for all B > 0 there exists �B such that:

jV�(s; �
�)� V̂ (s; ��)j < B=2 and jV̂ (s; f�)� V�(s; f

�)j < B=2 for all s in S:

The next result shows that remark 3.2 can be proved without using proposition 3.1.

Theorem 3.2

Lim
�!0

V �

�
= V̂ � :

c
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Proof:

V̂ � = max
f2FS

V̂ (f) ( by de�nition 2.3.1)

= V̂ (f�) ( by theorem 3.1)

= Lim
�!0

V�(f
�) ( by remark 2.2)

= Lim
�!0

V �

�
( by theorem 3.1):

5 Aggregated Problem and Policy Improvement Algorithm

In section 3, we proved that the limit M.C.P ( L ): max
�2Fs

V̂ (�) where V̂ (�) = Lim
�!0

V�(�)

can be converted to an equivalent aggregated problem:

max
�2FS

V (�) where V (�) = �=(1 + �)

�
In �

1

1 + �
P (�)

��1
r(�): (4:0)

the vector V (�) in (4.0) can be considered as the reward of the strategy � in some

M.C.P � that we shall de�ne as follows:

1) the state space of � is S = f1; 2; 3; :::::::; ng; (i � Si);

2) the action space of � is A(i) :=
Y
s2Si

A(s) for each i 2 S,

3) the transition law of � is : for all i; j 2 S; a 2 A(i);

q(j=i; a) =

8>>>><
>>>>:

1 +
X
s02Si

X
s2Si

(p �
i
(a))s d(s

0=s; as) i = j

X
s02Sj

X
s2Si

(p �
i
(a))s d(s

0=s; as) i 6= j

4) the rewards for �: for all i 2 S; a 2 A(i), where a = (as=s 2 Si)

c(i; a) =
X
s2Si

(p �
i
(a))sr(s; as):

Remark 4.1

For all i 2 S, action a 2 A(i) de�nes a deterministic strategy in �i, which takes

action as in state s 2 Si. If � is a deterministic strategy in � and � its corresponding

deterministic strategy in �, then V (�) =
�

1 + �
V �(�), where V �(�) is the reward for

the strategy � in the aggregated problem � with the discounted criterion (discounted

c
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factor is
1

1 + �
).

Since problems (AL) and (L ) are equivalent, we shall solve the problem

(L) : max
�

V �(�)

We know that the problem (L) admits an optimal solution (proposition 3.2 and

remark 3.1). From remark 4.1, it follows that the problem (L) can be solved by using

the policy improvement algorithm (eg.see [15]):

Algorithm 1

step 1: Select an arbitrary deterministic strategy � and compute:

V �(�) =

�
In �

1

1 + �
Q(�)

��1
C(�) ; (4:1)

where C(�) = (c(i; �(i))
i2S

:

step 2: For all i 2 f1; 2; :::::ng = S, �nd a 2 A(i) that satis�es:8<
:c(i; a) + �

nX
j=1

q(j=i; a)V �(j; �)

9=
; > V �(i; �) ;

where � =
1

1 + �
and V �(�) = (V �(i; �))i2S :

step 3: Let �1 be the deterministic strategy de�ned by: for all i 2 S,

�1(i) =

8<
:

a if a exists

�(i) if a does not exist :

step 4: If �1 = �, then � is optimal (stop).

step 5: �1(i) ! �(i); i = 1; 2; :::; n and go to step 1.

We shall now develop the fundamental steps of algorithm 1.

Step1.

We select an arbitrary deterministic strategy � 2 � and compute:

�qij(�) := q(j=i; �(i)) for i; j 2 S and Q(�) = (qij(�))i;j=1;::::::n for i; j 2

S: �Ci(�) := c(i; �(i)); i 2 S

�C(�) := (C1(�); C2(�); ::::::; Cn(�)) :

c
 Investigaci�on Operativa 1998



80 Abbad, M. and El bahja, A. � Policy Improvement Algorithm for ...

Remark 4.2

If � is a deterministic strategy in �, then the corresponding deterministic strategy

� in � is de�ned by:

�(s) = [�(i)]s; s 2 Si and i 2 S

Remark 4.3

In qij(�) and Ci(�) we must compute (p �
i
(�(i)) .

For computing (p �
i
(�(i)); i 2 S; we can apply the following algorithm [eg. see

[15]] in which P �

i
(�(i)) is irreducible for each i 2 S.

Algorithm 2 (for computing p �
i
(�(i)); i 2 S).

1- Solve the (steady-state equations)

x i

s
=
X
s02Si

x i

s0
ps0s; s 2 S : ps0s = p(s0=s; [�(i)]s)

X
s2Si

x i

s
= 1

2- Vector p �
i
(�(i)) is given by [p �

i
(�(i))]s = x i

s
; s 2 Si.

Then compute [In �
1

1 + �
Q(�)]�1C(�).

Step 2

Now, we shall show that for each i = 1; 2; :::; n the problem in step2 can be con-

verted to one iteration of the policy improvement algorithm for some MDP de�ned

by �i, except for the rewards which will be de�ned appropriately.

For every i 2 S and a 2 A(i) we have that:

fc(i; a) + �

nX
j=1

q(j=i; a)V �(j; �)g =
X
s2Si

(p �
i
(a))sr(s; as)

+�f

nX
j=1

i 6=j

[
X
s02Sj

X
s2Si

(p �
i
(a))sd(s

0=s; as)V �(j; �))]

+(1 +
X
s02Si

X
s2Si

(p �
i
(a))sd(s

0=s; as))V �(i; �)g
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= �V �(i; �) +
X
s2Si

(p �
i
(a))sr(s; as)

+�f

nX
j=1

[
X
s02Sj

X
s2Si

(p �
i
(a))sd(s

0=s; as)]gV �(j; �)

= �V �(i; �) +
X
s2Si

(p �
i
(a))fr(s; as) + �

nX
j=1

X
s02Sj

d(s0=s; as)V �(j; �)g :

We can consider that:

r(s; as) + �

nX
j=1

X
s02Sj

d(s0=s; as)V �(j; �) is some reward in �i , which results from

the choice of action as if the process is in state s.

If we set : ci(s; as) = r(s; as) + �

nX
j=1

X
s02Sj

d(s0=s; as)V �(j; �); it follows that:

c(i; a) + �

nX
j=1

q(j=i; a)V �(j; �) = �V �(i; �) + (p �
i
(a))C i(a)

T ; (4:2)

where C i(a) = (ci(s; as))s2Si :

Note that: (p �
i
(a))C i(a)

T is the value of the strategy a : (s! as; s 2 Si),

in the irreducible MDP �i in which the rewards are de�ned by ; ci(s; as).

From (4.1) and (4.2), it follows that the problem de�ned in step2 of Algorithm1

is similar to:

�V �(i; �) + (p �
i
(a))C i(a)

T > �V �(i; �) + p �
i
(�(i))C i(�(i))

T :

Hence, the problem is to �nd an action a such that:

p �
i
(a)C i(a)

T > p �
i
(�(i))C i(�(i))

T : (4:3)

It can be seen that the problem in (4.3) can be solved by one iteration of policy

improvement algorithm (the initial strategy is �(i)) to irreducible MDP �i where the

rewards are de�ned by ci.

We can now state the following algorithm for searching an action a 2 A(i); i 2 S,

of step2 in Algorithm 1.

Algorithm 3

a) Fix i 2 S and �(i).
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b) Compute �; y 2 Rni , solution of the linear system:

�eT + y = Ci(�(i) + Pi(�(i)y with yni = 0 where y = (y1; y2; :::; yni)
T
2 Rni and

(1; 1; :::; 1) 2 Rni and Pi(�(i) = [pss0(�(i)]s;s02Si .

c) Find for each s in Si, an action as in A(s) such that: 
ci(s; as) +

X
s02Si

p(s0=s; as)ys0

!
> (�+ ys) :

d) If as does not exist, for every s de Si, then (stop), otherwise go to e)

e) Choose �1(i) deterministic such that:

�1(i)(s) = as if as exists and �1(i)(s) = �(i)(s) if as does not exist; (s 2 S)

h) Let a := (�1(i))(s)

From the previous results, our aggregation-disaggregation algorithm for solving

the limit M.C problem (L) is stated as follows:

Step1 Select an arbitrary deterministic strategy � 2 �, the corresponding strategy

� 2 � is de�ned by:

�(i) = (�(s))s2Si ; i 2 S

Step2 Apply Algorithm2 to compute [p �
i
(�(i))]; i 2 S.

Step3 Compute

C(�) = (c(i; �(i))
i2S

and Q(�) = (q(j=i; �(i)))
i;j2S

:

Step4 Compute: V �(�) = [In �
1

1+�
Q(�)]�1C(�) .

Step5 For each i 2 S and for �(i), apply Algorithm3 for searching an action a 2 A(i).

Step 6 De�ne the strategy : for all i 2 S; �1(i) =

8<
:

a if a exists

�(i) if a does not exist :

Step7 If �1 = � , then � is optimal (stop), otherwise set � := �1, and go to step 2.
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