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Abstract

An undirected graph G = (V;E) is said to be geodetic, if between any pair of vertices x; y 2 V

there is a unique shortest path. Generalizations of geodetic graphs are introduced in this paper.

K-geodetic graphs are de�ned as graphs in which every pair of vertices has at most k paths of

minimum length between them. Some properties and characterizations of k{geodetic graphs

are studied.

Keywords: Graph Theory, Connected Graphs, Geodetic Graphs.

1 Introduction

The study of connectivity properties in graphs and digraphs is of special interest in

the design of reliable interconnection networks. In particular for the network designer

is useful to have some knowledge of those graphs that have high vertex connectivity.

Thus, di�erent types of graphs have attracted much interest in recent years, which

are characterized by conditions determined in their con�gurations. A special class of

such graphs is that formed by geodetic graphs, in which every pair of non-adjacent

vertices has an unique shortest path between them (Ore (1962)).

The concept of geodetic graph is a natural generalization of a tree. A tree is a

connected graph whose number of edges is n � 1. In a tree there is a unique path
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between any two vertices; in a geodetic graph, there is a unique shortest path between

any two vertices.

This class of graphs has been studied by several authors. They have obtained

some interesting properties of them, together with a number of results that connect

with other types of graphs (see e.g.,[2], [3], [5] [6] [7], [9] and [11]).

Srinivasan, Opatrny and Alagar [10] in 1988 introduced a new type of graphs,

called bigeodetic graphs, which are a generalization of geodetic graphs. Bigeodetic

graphs are de�ned as graphs in which each pair of vertices has at most two paths of

minimum length between them.

The class of bigeodetic graphs contains both geodetic graphs and interval-regular

graphs of diameter two in which every pair of non-adjacent vertices has exactly two

paths of length two between them ([1]). Also there are other bigeodetic graphs, i.e.,

in the form of a wheel with n spokes, n � 6, or even cycles of length l � 6, which are

neither geodetic nor interval-regular graphs.

In this paper we present generalizations of geodetic graphs, which allow at most

three, four, �ve or k paths of minimum length between any two non-adjacent vertices.

These graphs are named trigeodetic, quartergeodetic,.. or, in general, k{geodetic.

The remainder of this section is devoted to introducing some basic concepts and

simple results used throughout this paper. Let G = (V;E) be an undirected simple

graph, that is without loops or multiple edges, where V is the set of vertices and E

the set of edges. The cardinalities n = jV j and m = jEj are, respectively, the order

and size of G. Only simple connected graphs with at least two vertices are considered.

Two vertices x; y are adjacent if the edge (x; y) exists. A path is a sequence of

adjacent vertices. A vertex x is a predecessor of y if there is a path from x to y. The

distance between any pair of vertices x; y of the graph is the minimum length between

both vertices and it is denoted d(x; y). A path of minimum length between vertices

x; y will be called a (x � y) distance path. The diameter d of G is the maximum

of distances d(x; y) between any vertices x; y of the graph. The eccentricity of the

vertex v, denoted by ecc(v), is the distance from v to the farthest vertex. So, ecc(v)

= maxfd(v; x)=x 2 V g, and the diameter d is the maximum eccentricity of all the

vertices.

Let Ni(v) = fx 2 V=d(v; x) = ig be the set of vertices at distance i from vertex v.

P (v) = [
ecc(v)
i=1 Ni(v) denotes the set of all the predecessors of v.

A vertex v of a graph G is a cutvertex if, for any pair of edges in G incident to v,

there is no circuit in G containing both edges. A non-separable graph is a connected

graph which has not cutvertices. A block of a graph is a maximal non-separable sub-

graph. If G is non-separable, then G itself is often called a block.
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In the following section we present some properties about geodetic and bigeodetic

graphs obtained for several authors. Section 3 is devoted to study the new class

of graphs: k{geodetic graphs. In this section we generalize some properties cited in

section 2 for geodetic and bigeodetic graphs to k{geodetic graphs. In section 4 a

characterization of k-geodetic graphs is given.

2 Some Results for Geodetic and Bigeodetic Graphs

Geodetic graphs have been studied by several authors [2], [3], [4], [9], [11] who

analyzed various of their properties.

In particular, they obtained results on the general construction of geodetic graphs

and on some properties relating to the diameter of the graph. Thus, in [7], an upper

bound for the number of edges in a geodetic graph was obtained, using certain general

properties of geodetic graphs. The result obtained by them was as follows:

1. If G is a connected geodetic graph on n points with m edges and diameter d,

then

n� 1 � m � (d� 1) +

�
n+ 1� d

2

�

A natural extension of geodetic graphs would be to de�ne a new graph, where

each pair of vertices has two paths of minimum length betweeen them. A simple

graph with that condition is not possible. This is only possible when the graph is a

multigraph of order two and these multigraphs have to be complete.

The situation is similar if the condition is extended when there are only k{paths

of minimum length between two vertices. The only con�guration possible is that

of complete multigraphs. Therefore, the extension of geodetic graphs should be the

relaxation of the condition \unique path". So, in Srinivasan, Opatrny and Alagar

(1988) the concept of the bigeodetic graph is introduced, this being a graph in which

each pair of vertices has at most two paths of minimum length between them. Below

we present some results of bigeodetic graphs obtained by these authors, which will be

referenced when are studied k{geodetic graphs in the next section.

1. If G is a bigeodetic graph then all its blocks are bigeodetic.

2. A separable graph G with diameter d � 3 is bigeodetic if, and only if, all its

blocks are bigeodetic and satisfy the following property: All but at most one block

B1 of G are such that all vertices of each block B have unique distance paths from the

cutvertex in that block B, which connects the vertices of that block with the vertices

of B1.
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3. If G is a connected bigeodetic graph of diameter d, with n points and m edges,

then

n� 1 � m � d+

�
n+ 1� d

2

�

Note: The second result is similar to the theorem obtained by Srinivasan, Opatrny

and Alagar (1988). We have added the words \at most" in the statement of the the-

orem, since the graph on the �g. 1 is bigeodetic and does not satisfy the hypothesis

of Srinivasan et al's theorem: in that graph there is not a block B1 satisfying the

statement of the theorem.
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Fig. 1

The characterization problem for the classes of geodetic and bigeodetic graphs is

solved (see [2], [5], [10] and [12]). In particular, Parthasarathy and Srinivasan [5] in

1982 proposed the following characterization of a geodetic graph:

� A graph G is geodetic i� for every v 2 V (G) each point of Nr(v) is adjacent to

a unique point of Nr�1(v) for each r with 2 � r � d, where d is the diameter of the

graph.

Parthasarathy and Srinivasan said in their paper that they made use of this char-

acterization to check various graphs for geodeticity using an IBM 370 computer, but

they give neither the algorithm nor computational results.

Morelater, Srinivasan, Opatrny and Alagar [10] in 1988 studied two characteriza-

tions of bigeodetic graphs. One of those is cited below:
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� A graph G is bigeodetic i� there do not exist a v 2 V (G) and vi 2 Ni(v); 2 �

i � ecc(v), with either of the following properties:

1. vi has more than two predecessors in some Nj(v); 1 � j � i� 1.

2. vi has two predecessors v1i�1; v
2
i�1 in Ni�1(v) and one of v1i�1; v

2
i�1 has more

than one predecessor in some Nj(v); 1 � j � i� 2.

In [10] the authors didn't give an algorithm to check graphs for bigeodeticity.

However, following this characterization it is possible to build and algorithmic proce-

dure for it.

In the following section we introduce the k{geodetic graphs. A characterization

for the new class of k{geodetic graphs is proposed in section 4 of this paper.

3 Generalized Geodetic Graphs

We are now going to present a natural generalization of geodetic and bigeodetic

graphs. The new concept of k{geodetic graph is introduced as follows:

De�nition.

Let G be a simple graph, that is, without loops or multiple edges. We will say G

is a k{geodetic graph if each pair of vertices has at most k paths of minimum length

between them.

It is obvious that if a graph is k{geodetic then it will be p{geodetic with p � k.

The inverse is not true.

Next, we present some properties on k{geodetic graphs.

Proposition 1: If G is a k{geodetic graph then all its blocks are k{geodetic.

Proof: If G is a k{geodetic graph, then each pair of vertices has at most k shortest

paths.

Let us suppose that there exists a block, B, which is not k{geodetic. Then, there

will be two vertices x and y in B, such that there will be k + l (l � 1) paths of

minimum length between them. Now, in G there are k + l (l � 1) paths of minimum

length between x and y. This contradicts the idea of G being a k{geodetic graph.

Hence the blocks of G must be k{geodetic.

The converse of the above is not true. Graph G in �g. 2 is not k{geodetic, though

the blocks of G are k{geodetic.
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Theorem 1: A separable graph of diameter two is k{geodetic if, and only if, G has

exactly one cutvertex, all its blocks are k{geodetic of diameter two at most and all

the vertices of G are adjacent to the cutvertex of G.

Proof: Let G be a separable k{geodetic graph of diameter two. Obviously it should

have exactly one cutvertex z, because otherwise the diameter of G would be at least

three (see �g 3). Since G is k{geodetic, all its blocks are k{geodetic. As the diameter

of G is two, then each block of G has diameter two at most. Let x; y 2 V (G) and let

x 2 V (B1) and y 2 V (B2), where B1 and B2 are two blocks of G. Since the diameter

of G is two, both vertices x and y must be adjacent to the cutvertex z. Thus all the

vertices of G are adjacent to the cutvertex z.

Conversely, let G be a separable graph with exactly one cutvertex z, all its k{

geodetic blocks being of diameter two at most and all its vertices adjacent to the

cutvertex z. It is obvious that the diameter of G is two. If we choose two

non-adjacent vertices x; y of G such that x; y 2 V (Bi); 1 � i � k, then as Bi is k{

geodetic of diameter two at most, there will be at most k paths of length two between

x and y in Bi and hence in G. If x 2 V (Bi); y 2 V (Bj); i 6= j, then d(x; y) = 2 since

both are adjacent to the cutvertex z, and this path is unique. Hence G is a separable

k{geodetic graph of diameter two.

In �g. 3, we can see a 4{geodetic graph of diameter two with three blocks. This

graph has a unique cutvertex and any vertex is adjacent to the cutvertex.
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Now, we will see additional properties on k{geodetic graphs. The following theo-

rems give su�cient conditions to obtain a k{geodetic graph.

Theorem 2: Let G be a separable graph where all its blocks are k{geodetic and satisfy

the following property: all the vertices of each block Bi are adjacent to any cutvertex

of Bi. Then G is k{geodetic.

Proof: If all its blocks are k{geodetic then the graph is at least k{geodetic. We

will see that the geodeticity of the graph cannot be greater than k. Let x; y be two

vertices of the graph G.

(i) If x 2 V (Bi) and y 2 V (Bj) i 6= j then there is only one path between x and

y. That path is obtained as follows: the edge (x; zi), the path linking zi with

zj and the edge (zj ; y); where zi and zj are cutvertices in Bi and Bj , respectively.

(ii) If x; y 2 V (Bi) (the same block Bi) then there are at most k shortest paths

between them because each block is k{geodetic.

Now, we are going to look for upper and lower bounds for the number of edges of

a k{geodetic graph with n points. A trivial result is obtained for the lower bound,

which is the number of edges of a tree. So, the minimum number of edges without vio-

lating the connectivity will be n�1 and, as any tree is geodetic, then the graph will be

k{geodetic. Also an upper bound is

�
n

2

�
which corresponds to the complete graph.
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That does not mean that a k{geodetic graph can have any number of edges m.

So, a k{geodetic graph with a determined number of edges is not always possible. For

example, a graph which has four vertices and �ve edges cannot be geodetic.

The following result determines that it is possible to build a k{geodetic graph with

a large number of edges if we require that G has diameter d.

Theorem 3: Given k � 2 and n � k + d + 1, it is possible to design a connected

k{geodetic graph with n vertices and diameter d, in such a way that the number of

edges is

m = d� 2 + k +

�
k

2

�
+ k(n� k � d+ 1) +

�
n� k � d+ 1

2

�

Remark. Obviously, the diameter must be greater or equal than two (d � 2). Oth-

erwise if d = 1 then d(x; y) � 1 8x; y 2 V (G), but d(x; y) � 1 because the graph G

is connected. So the graph G would be a complete graph with n vertices. Therefore

the graph would be geodetic (k = 1) and it is not necessary to �nd out the number

of edges, since m is known (m =

�
n

2

�
).

Proof: We will demonstrate the theorem by presenting a procedure to build the k{

geodetic graphs having that number of edges.

As the diameter is d there will be a path P linking two vertices x and y with d

edges. We will see how to add edges to the path P to build the graph so that there

are k shortest paths at most between any vertices. The idea consists of setting the

vertices of the path P on di�erent planes. We will next set the remaining vertices

on the planes and add the maximum number of edges so that the k{geodetic is not

violated.

So, for d = 2, the maximum number of edges on the graph is:

k +

�
k

2

�
+ k(n� k � 1) +

�
n� k � 1

2

�

This number is obtained by setting the vertices on three parallel planes (see �g.

4). On the �rst plane we place only one vertex x. On the second plane we place a

complete graph of k vertices and on the last plane a complete graph of (n - k - 1)

vertices.
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Fig. 4
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�
links

1 vertex k vertices n-k-1 vertices

Next, we place k edges between the �rst and second plane, and k(n� k� 1) edges

between the second and the last plane. Thus, we will have at most k paths of length

two between the x vertex and one vertex on the last plane.

The situation is similar to that of a ray of light projected from x on the �rst plane

to the last plane and passing through the holes of the vertices found on its way.

Consequently, there will be at most k paths of length two between the vertex x

and other vertex on the last plane. Hence it is not possible to add more edges because

the graph would not be k{geodetic. Therefore for d = 2 the theorem is true:

m = k +

�
k

2

�
+ k(n� k � 1) +

�
n� k � 1

2

�

For d = 3 we will set the vertices of the graph between four parallel planes. The

last planes maintain the above con�guration (for d = 2) and the �rst of the planes

must contain only one vertex. A possible graph is shown in �gure 5.

c Investigaci�on Operativa 1998



94 Ramos, R. M., Sicilia, J. and Ramos, M. T. � A Generalization of Geodetic ...

Fig. 5
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For d = 3 we obtain:

m = 1 + k +

�
k

2

�
+ k(n� k � 2) +

�
n� k � 2

2

�

If we repeat this procedure for d = p we will obtain sucessive planes with a vertex

on an extreme plane which is joined to any vertex on the another extreme plane (see

�g. 6).

Fig. 6

Sequence of planes

1 link k links

�
k

2

�
links

k(n� p� k + 1)

links

�
n� p� k + 1

2

�

1 vertex 1 vertex k vertices n-p-k+1 vertices
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For d = p the number of edges attained is:

m = p� 2 + k +

�
k

2

�
+ k(n� k � p+ 1) +

�
n� k � p+ 1

2

�

We cannot add any more edges to the graph, since the condition of k{geodeticity

will be violated.

Note: It is interesting to remark that the upper bound d+

�
n+ 1� d

2

�
obtained

by Srinivasan, Opatrny & Alagar (1988) for the bigeodetic graphs of diameter d is

also obtained in the theorem 6.

Proposition 2: Given k, all the connected graphs of diameter two with n � k + 2

vertices are k{geodetic graphs. Besides, this number of vertices is maximal, i.e. there

exists at least a connected graph of diameter two with n = k+3 vertices which is not

k{geodetic.

Proof: We can apply the induction principle on k.

For k = 1, all the connected graphs with n � 3 vertices are geodetic and the �rst

graph which is not geodetic requires n = 4 vertices. This graph is the circuit graph C4.

For k = 2, all the connected graphs with n � 4 vertices are bigeodetic and it is

possible to obtain a graph with n = 5 vertices, which is not bigeodetic (see �g. 7).
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Fig. 7 Three paths of minimum length exist between x and y.

For k = 3, all the connected graphs with n � 5 vertices are trigeodetic and the

graph on �g. 8 with n = 6 vertices is not trigeodetic.
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Fig. 8 Four paths of minimum length exist between x and y.

In general, we suppose all the connected graphs with n � (k � 1) + 2 vertices are

(k�1)-geodetic. If we add a new vertex and all necesary edges to join that vertex with

the remaining vertices, we will have a new graph with n = k+2 vertices. This graph

has at most k paths of minimum length between each pair of vertices. Therefore, this

graph will be k{geodetic. Besides for n = k + 3 it is always possible to build a new

graph which is not k{geodetic.

4 Characterizing K{geodetic Graphs

Some results and properties on k{geodetic graphs are discussed in this section.

We propose a characterization which follows closely to the one proposed in [10].

This characterization generalizes for k{geodetic graphs the results obtained by them.

Lemma 1: Let G be an undirected graph and v 2 V (G). If there exists a vi 2 Ni(v);

2 � i � ecc(v) with more than k predecessors in Nj(v); 1 � j � (i� 1), then G is

not k{geodetic.
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Proof: For any v 2 V (G) and vi 2 Ni(v) let w1; w2; w3; : : : ; wk ; wk+1 be the pre-

decessors of vi in Nj(v); 1 � j � i � 1. There will be k + 1 shortest paths from v

to vi, each one, respectively, through the vertices w1; w2; : : : ; wk+1, hence G is not

k{geodetic.

Lemma 2: Let G an undirected graph and v 2 V (G). If vi 2 Ni(v), 3 � i �

ecc(v), has k predecessors v
1
i�1; v

2
i�1; :::; v

k
i�1 2 Ni�1(v) and if at least one of

v
1
i�1; v

2
i�1; :::; v

k
i�1 has more than one predecessor in some Nj(v); 1 � j � (i � 2),

then G is not k{geodetic.

Proof: Let v 2 V (G) and let vi 2 Ni(v), 3 � i � ecc(v). Each vi has v
1
i�1; v

2
i�1; :::,

v
k
i�1 2 Ni�1(v) as predecessors. Besides, v

1
i�1 has two predecessors v

1
j ; v

2
j 2

Nj(v), 1 � j � (i � 2). Now there are k + 1 shortest paths between v and vi,

one throughs v1j ; v
1
i�1, another throughs v2j ; v

1
i�1 and the remaining one through

v
2
i�1; v

3
i�1; : : : ; v

k
i�1. Thus G is not k{geodetic.

Lemma 3: Let G be an undirected graph and v 2 V (G). If vi 2 Ni(v); 3 � i � ecc(v)

has l predecessors v1i�1; v
2
i�1; :::; v

l
i�1 2 Ni�1(v); 1 � l � k � 1, and if r (1 � r � l)

of them have s1; s2; :::; sr predecessors, respectively, in some Nj(v); 1 � j � i � 2,

so that

s1 + s2 + :::+ sr > k � l + r

then G is not k{geodetic.

Proof: If a vertex vi exists so that vi 2 Ni(v); 3 � i � ecc(v), where vi has l pre-

decessors v
1
i�1; v

2
i�1; : : : ; v

l
i�1 2 Ni�1(v); 1 � l � k � 1, and if r of them have

s1; s2; : : : ; sr predecessors, respectively, in some Nj(v); 1 � j � i� 2, so that

s1 + s2 + : : :+ sr > k � l + r

then we will show that there exist at least k + 1 shortest paths between v and vi.

Without losing generality, let v
1
i�1; v

2
i�1; ::; v

r
i�1 be the vertices of the set v1i�1; v

2
i�1;

:::; v
l
i�1 so that they have s1; s2; : : : ; sr predecessors, respectively. Then the k+1 paths

are obtained as follows:

(i) s1+s2+: : :+sr paths are obtained across v
j
i�1; 1 � j � r, and its predecessors.

(ii) The remaining paths, (l�r paths) are obtained across v
j
i�1, r+1 � j � l.

So, we have s1 + s2 + : : : ; sr + l � r paths between v and vi. But, in accordance

with the hypothesis this number is greater than k. Therefore there exist at least k+1

paths, and so the graph is not k{geodetic.
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Fig. 9

Theorem 4: An undirected graph G is k{geodetic if, and only if, given a vertex

v 2 V (G) do not exist a vertex vi 2 Ni(v); 2 � i � ecc(v), satisfying some of

following properties:

1. vi has more than k predecessors in some Nj(v); 1 � j � (i� 1).

2. vi has k predecessors v
1
i�1; v

2
i�1; :::; v

k
i�1 in Ni�1(v) and at least one of v

1
i�1; v

2
i�1;

:::; v
k
i�1 has more than one predecessor in some Nj(v); 1 � j � i� 2.
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3. vi has l predecessors v
1
i�1; v

2
i�1; :::; v

l
i�1 in some Ni�1(v); 1 � l � k � 1, and r

of these vertices v1i�1; v
2
i�1; :::; v

l
i�1 has s1; s2; :::; sr predecessors, respectively, in

some Nj(v); 1 � j � i� 2, so that

s1 + s2 + :::+ sr > k � l + r

Proof: If there exists a v 2 V (G) and vi 2 Ni(v); 2 � i � ecc(v) satisfying any of

the above conditions, then G is not a k{geodetic graph by lemmas 1, 2 and 3.

Conversely, let G be a non k{geodetic graph. Then there exists a pair (u; v)

of vertices having at least k + 1 paths of minimum length between them. Suppose

d(u; v) = i, then vi = u 2 Ni(v). Now, some of the following cases are possible:

1. vi has more than k predecessors in some Nj(v); 1 � j � i� 1.

2. vi has k predecessors v1i�1; v
2
i�1; :::; v

k
i�1 in Ni�1(v):

3. vi has l predecessors v1i�1; v
2
i�1; :::; v

l
i�1 in Ni�1(v) with 1 � l � (k � 1):

Case 1 is the Lemma 1 above. If case 2 occurs and there are k+1 paths of minimum

length between v and u, then it must be that at least one of v1i�1; v
2
i�1; :::; v

k
i�1 has

more than one predecessor in some Nj(v); 1 � j � i � 2, because if that were not

the case the graph would be k{geodetic. Also, the graph requires r (1 � r � l)

vertices of v1i�1; v
2
i�1; :::; v

l
i�1 with s1; s2; : : : ; sr predecessors, respectively, in some

Nj(v); 1 � j � i�2, so that s1+s2+ : : : :+sr > k� l+r. If that condition is not true

then any r vertices of v1i�1; v
2
i�1; :::; v

l
i�1 with s1; s2; : : : ; sr predecessors respectively,

in some Nj(v); 1 � j � i� 2, satisfy

s1 + s2 + : : :+ sr � k � l + r

So, the number of paths of minimum length between v and vi could be

l � r + s1 + s2 + : : :+ sr

As that number is bound by k, the graph G would be k- geodetic. Therefore,

graph G must satisfy some of the above properties.

The characterization of k{geodetic graphs proposed leads to a polynomial algo-

rithm for k{geodetic graphs, since it is based on the problem to determine the number

of predecessors of a vertex. It is possible to compute this number using the adjacency

matrix and the distance matrix of the graph which can be calculated by any algorithm

for obtaining the shortest paths between any pair of vertices, i.e. Dijkstra or Floyd's

algorithm.
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5 Conclusion

In this paper k{geodetic graphs are de�ned as a natural extension of geodetic graphs.

Certain properties of these graphs considering blocks and cutvertices have been stud-

ied. Also, a characterization of k{geodetic graphs has been proposed. Future direc-

tions of this paper might be the generalization of other properties of geodetic graphs

to k{geodetic graphs, i.e. the construction of k{geodetic blocks with given girth and

diameter.
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