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Abstract

The aim of this contribution is to help the improvement of the knowledge about the Steiner

ratio function by showing some recent results related to the uniqueness of a point distribution

which have been obtained about this problem. The exposition is almost pedagogical and the

choice of a right circular helix input pattern is motivated by its usefulness for working with

the geometrical modelling as an approach to the problem of protein folding.

Resumo

O objetivo desta contribui�c~ao �e melhorar o conhecimento sobre a fun�c~ao raz~ao de Steiner,

mostrando alguns resultados recentes relacionados �a unicidade de uma distribui�c~ao de pon-

tos que foram obtidos estudando o problema. A exposi�c~ao �e quase pedag�ogica e a escolha de

pontos dados como pertencentes a uma h�elice constru��da sobre um cilindro circular �e moti-

vada pela utilidade no trabalho de modelagem geom�etrica como um enfoque do problema de

estrutura das mol�eculas de prote��na.

Keywords: Combinatorial Optimization; Applications to Natural Sciences; Protein Folding.

1 Introduction

It is now becoming usual to study the structure of organic molecules with simple

methods of elementary di�erential geometry [1]. As elementary methods are con-

cerned, it is enough to realize that a sequence of regular tetrahedra joined together at
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common faces forming a necklace are a pattern for input points necessary to model,

say, an � helix-structure [2, 3].

The same can be done related to a sequence of regular octahedra and we easily see

that their square equators are a good candidate for modelling a �-sheet structure [2, 3].

We plan to give here a summary of our work with the helix pattern and we start from

the preliminaries. Working on this approach, we try to motivate our reader to join in

this scienti�c adventure which has very nice promises of putting together the methods

of topology and di�erential geometry for understanding macromolecular structure. In

the next section we study the possibility of regular polygons to be inscribed in a helix.

In section 3 we presented a numerical approach for the geometrical position of Steiner

points associated with a special helix point con�guration. A geometrical model to

study protein folding is discussed in section 4.

2 Special Helix Point Con�guration

Our starting point is to consider the input points as given on a right circular helix of

unit radius whose cartesian coordinates are given by

x
(1) = cos! ; x

(2) = sin! ; x
(3) = �! ; 0 � ! � 2� (1)

where ! is the angular parameter of evenly input points along the helix and � is the

pitch of it (actually, the pitch is usually denoted by 2��).

The coordinates of the j-th input points can then be written

x
(1)
j = cos j! ; x

(2)
j = sin j! ; x

(3)
j = �j! ; 0 � j � p� 1 (2)

for p input points.

We turn now to the enunciation of our problem:

By following the helix pattern, eq. (1), we would like to pile up regular polyhedra

such that all of their vertices are points of the helix like that given by eq. (2). The

solution will depend on the possibility of inscribing regular polygons in the helix.

Let a be the side length of the polygons, p their side number, we shall have for the

equations which describe that possibility, see [6],

�
2
!
2 = 2Fp(!) (3)

a
2 = 2

�
1� cos

2�

p

��1
(1� cos!)2 (4)

cos(p� 1)! = p(p� 2)Fp(!) + cos! (5)
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cos(p� 2)! = p(p� 4)Fp(!) + cos 2! (6)

where

Fp(!) =

�
1� cos

2�

p

��1
(1� cos!)2

�
cos

2�

p
� cos!

�
; p 6= 1 (7)

The non-trivial solutions (� 6= 0) should be bound by

2(p� 1)�

p
> ! >

2�

p
(8)

Equations (5) and (6) give some additional information in the sense that they help

to understand the solutions in a systematic way. It should be observed that the values

! = 2�=p and ! = 2(p � 1)�=p are solutions for every p � 2 . They correspond to

inscribe the polygons of p � 2 sides in a circle according to (3), or � = 0. It should

also be noted that the value p = 2 is a triviality, since it leads to � = 0, and ! = �,

a = 2 from (3) and (4) and we have two points separated by a diameter of circle of

unit radius. For !-values which satisfy (8) and p = 3, all equations (3)-(6) above

become identities and we get the unique solution that only equilateral triangles can

be inscribed in a helix de�ned by (1). The angular coordinates of the second vertex

these triangles are in the region

4�

3
> ! >

2�

3
(9)

and we go back to eqs. (3), (4) to determine the pitch of the helix and the side lengths

of these triangles.

To construct a tetrahedron, we consider a fourth point

x
(1)
3 = cos 3! ; x

(2)
3 = sin 3! ; x

(3)
3 = 3�! ; (10)

by connecting it to the point (1; 0; 0).

After using eqs. (3) - (6), we get:

(1� cos!)2(2 + 3 cos!) = 0 (11)

The non trivial roots (1 � cos! 6= 0) are given by ! = � � arccos(2=3) . We can

then consider the uniqueness of the solution found since the two resulting tetrahedra

will be mirror images. We have for the solution
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! = 2:30052398302 ; � = 0:26454000216 ; a = 1:92450089730 (12)

The coordinates of the other points of the structure are shown to be given by the

relation, see [1],

x
(s)
n =

2

3

�
x
(s)
n�1 + x

(s)
n�2 + x

(s)
n�3

�
� x

(s)
n�4 ; s = 1; 2; 3 (13)

3 The Euclidean Steiner Problem in 3-Dimensions

In [4] the Euclidean Steiner problem in 3-dimensions is well de�ned and a conjecture

for the Steiner ratio in 3-dimensions is proposed. Given n points in R
d, let l(MST )

be the length of the minimal spanning tree connecting this n points in a complete

graph Kn in which each edge is associated with the Euclidean distance between its

terminal nodes. Let l(SMT ) be the length of the Steiner minimal tree connecting this

same n points, we know that l(MST ) � l(SMT ) and the ratio we will be consider is

� =
l(SMT )

l(MST )
.

Suppose that X � R
d is a set of an enumerated number of points, MST (X) and

SMT (X) the minimal spanning tree length and Steiner minimal tree length to con-

nect the points of X .

The Steiner ratio can be de�ned as follows:

�d = in�mumX f
SMT (X)

MST (X)
g, where X was de�ned above.

Just for d = 2 we have the value of �d = �2 =
p
3
2
, when the points of X are the

vertices of an equilateral triangle, see [7]. We de�ne by Xn = fx1; x2; :::; xng the set
of the �rst n points generated by (13) for which x1; x2; x3; x4 are the vertices of a

tetrahedron as showed before. In [4] it is conjectured that

�3 = lim
n!1

SMT (Xn)

MST (Xn)
= 0:78419037337::: (14)

The Steiner minimum tree for Xn has 2n� 2 nodes (n associated with the given

points and n � 2 with the Steiner points) and it is conjectured also in [4] that this

tree have a special con�guration called in [5] a \�shbone" con�guration. We would

like to know about the geometrical position of these Steiner points.

In order to proceed with our modelling scheme, we have tried to �t the Steiner

points, using classical softwares, in a generic 2-dimensional conoid surface which is

described in parametric form by
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x
(1) = r cos! ; x

(2) = r sin! ; x
(3) = z(!) (15)

where r; ! are the radial and angular coordinates respectively. The results are shown

in Figure 1.

Fig. 1

We have a polynomial !-dependence for the function z(!) . By working with

p = 102 input points, this polynomial is given by

z(!) = �3:87432� 10�18 !9 + 4:05095� 10�15 !8 � 1:78493� 10�12 !7

+4:30955� 10�10 !6 � 6:20721� 10�8 !5 + 5:44106� 10�6 !4

�0:000283663!3+ 0:00819696!2+ 0:15176!+ 0:508884 (16)

The smallness of the coe�cients above with the exception of those which corre-

spond to the linear approximation has motivated to obtain the �t with a straight

line. In Figure 2 we have shown this best �tted straight line as well as the straight

line obtained by getting rid of some points of lower and higher z-values of coordinates.

These results show that there is a strong tendency for the Steiner points to belong

to a helicoidal surface. Actually, Figure 2b points to the conclusion that the best �t

can be considered to be a helix. We have worked with p = 102 input points. The

straight lines of Figures 2a, 2b, are given by
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Fig. 2a Fig. 2b

z(!) = 0:264343!+ 0:0229275 (17)

z(!) = 0:26454!+ 5:8647� 10�6 (18)

As a con�rmation of the conclusions written above of this elementary example

of Steiner point modelling we have also done the work of �tting the Steiner point

distribution on a surface of revolution, or

x
(1) = r(z) cos! ; x

(2) = r(z) sin! ; x
(3) = z (19)

In Figure 3 we show our best �t associated to p = 102 input points.

It is to be observed the existence of a helix structure for the calculated distri-

bution of Steiner points. The average radius of this distribution is found to be

rav = 0:217217424 for an input point con�guration on a helix of unit radius. Further

work with greater number of input points, after getting rid of the almost constant

number of lower and higher z-values points will reinforce this conclusion.

4 Characterization of Protein Structure

It was observed in [9] that the backbone structures of most proteins are Euclidean

Steiner minimal trees. The backbone or network structure of a protein is a linked

together sequence of rigid peptide groups. Examining the structure of two proteins,

Actin and Fibroin, illustrated in [9], we think to model their backbone structure, it

is enough to consider some linked 2n� 2 points as a \�shbone" tree with n points on

a right circular helix of radius c and the other n� 2 points on another right circular

helix of radius ravc as proposed in [1].
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Fig. 3

5 Conclusion

Using the results presented in [6], we have summarized the possibility of inscribing

regular polygons in the helix: only regular tetrahedra can be inscribed in a helix.

A chain of tetrahedra illustrated in [4] was constructed by another technique. The

Steiner points for tetrahedron chain vertices have a very strong tendency to belong

to another helix of smaller radius.
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