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Abstract

We study the interoutput and interdeparture distributions from a loss system with one server

attending two stations. In this system, after a completion of service, the server will attend

the customer waiting for service in the other station (if any) or the �rst customer that

arrives in either station. We assume independence among arrivals and service. The arrival

at each station is a Poisson process and the service distribution is exponential. We model

this system using Markov renewal processes embedded at output and departure times. Using

these structures and �ltering techniques, we determine the interoutput distribution from one

of the stations. The total departure process, consisting of the outputs and over
ow streams

is also considered. Conditions for this to be a Poisson process are found. Numerical and

simulation results are also presented.

1 Introduction

We consider a loss system with one server shared between two stations. The server is

\smart" in the sense that if, on completion of service at one station, it sees a customer

present at the other station it will switch over to that station. If both stations are

empty the server will switch (if necessary) to serve the �rst arriving customer. The

arrival processes are Poisson and the service times at each station are exponential,
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and independent of each other. From the point of view of one station, this system

can be seen as a vacation model, where the vacation corresponds to the time the

server spends at the other station. The system we consider is also an example of

a polling system with zero switchover times. The interest in vacation models and

polling systems comes from their application to computer/communications systems

which include several interconnected stations. In these cases, the departures from one

station will be the input to a subsequent station.

In Doshi [5], a survey of vacation models is presented. Several works on vacations

are concern with queue length and waiting time distributions, for instance, Kao and

Narayanan [7], Takagi [13] and Browne and Kella [1]. In Tedijanto [15] stochastic

comparisons for the departure, queue size and waiting times processes are made for

two service policies in multiple-vacations models. Kleinrock and Levy [9] describe

random polling systems with zero switchover times. Since we have only two stations

our system is actually also a cyclic polling system as presented in Takagi [14]. Other

models of polling include di�erent policies of service and non zero switching and walk-

ing times, see for example, Ibe [6] and Srinivasan, Niu and Cooper [11]. To the best of

our knowledge there are not many studies on the departure process from this kind of

system. Magalh~aes, McNickle and Salles [10] is concerned with the departure process

in a similar model whose server switches according to a policy depending on the last

station served and the state of the system just after a departure. The interdeparture

distribution from either of the stations is computed and it is compared with the one

step projection approximation. Stanford and Fisher [12] consider a system with one

station, two types of interarrival distributions and service in order of arrival, indepen-

dent of the types. They computed the Laplace-Stieltjes transform and the coe�cient

of variation of the interdeparture distribution for one of the streams of arrivals. Look-

ing just at one type of arrival, the time that the server is busy with the other type,

can be viewed as a vacation. We expect our paper to motivate other studies in more

general models.

The model and the continuous time stationary distribution are presented in sec-

tions 2 and 3. Section 4 has the basic results of the Markov renewal process for the

output process and the inter-output distribution from station 1. Section 5 gives some

numerical results for this process. The departure process which consists of all the

served or over
owing customers is considered in Section 6. Simulation results are

presented on section 7.

2 The Model

We suppose that we have two stations, 1 and 2, and one server. Customers arrive to

station 1 or 2 in di�erent 
ows. At any time, there can be no more than one customer

at each station. Customers that are denied entry to the system, over
ow and are lost.

When the server completes a service time at any station, it will switch to serve the
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next available customer. This may be a customer already present at the other station,

or if the system is empty the server will wait for, and switch to, the �rst arrival.

We assume that the arrival processes at each station are independent Poisson

processes, with rates �i; i = 1; 2. The service time at station i; i = 1; 2, has an

exponential distribution with rate �i, independent of the arrival process.

3 The Steady State Distribution

In order to determine the throughput we �rst determine the steady state continuous-

time distribution. The possible states of the system are (1; 0; 0), (1; 1; 0), (1; 1; 1),

(2; 0; 0), (2; 0; 1), and (2; 1; 1). Here (i; j; k) means that the server is at station i,

and the number of customers present is given by the vector (j; k). Note that the

states (1; 0; 1) and (2; 1; 0) have zero probability as if when they occur the server

instantaneously switches to (2; 0; 1) and (1; 1; 0) respectively. The balance equations

are:

(�1 + �2)p100 = �1p110
(�2 + �1)p110 = �1p100 + �1p200 + �2p211

�1p111 = �2p110
(�1 + �2)p200 = �2p201

(�1 + �2)p201 = �2p200 + �2p100 + �1p111
�2p211 = �1p201

These equations do not have a particularly neat form for the solution. With the

assistance of the symbolic algebra package, MAPLE [2], a typical term is:

p100 = (�21�2�1(�2 + �1 + �2))=((�1 + �2)(�2�
2
2�1 + �2�

2
2�1 + �22�1�1+

�21�1�2 + �21�1�2 + �22�1�2 + �2�
2
1�2 + �2�

2
1�2 + �22�2�1+

2�2�2�1�1 + �2�
2
1�1 + �22�1�1 + �22�

2
1 + �2�

2
1�1))

Since the arrival process at station 1 is Poisson, the PASTA result is valid and

the probability that an arriving customer is permitted to enter the service facility is

p100 + p200 + p201. Thus the throughput at station 1 is:

�1(p100 + p200 + p201) (1)

4 The Markov Renewal Process Embedded at Output Times

We consider the system just after an output (service completion) from station 1 or

station 2 and represent these instants by T . We also assume that the server has

completed any switching between stations. It is straightforward to verify that the

process (X;N1;N2; T ), where X gives the location of the server, and N1; N2 is the

number of customers left behind by the leaving customer, is a Markov renewal process
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with states f(100), (201), (200), (110)g. We take the states to be in that order, so the

�rst two states constitute departures from station 1, and the last two are departures

from station 2. The kernel QO(t) of the Markov renewal process is given by:

QO(t) =

2
664
J(t; �1; �1; �2) K(t; �1; �1; �2) J(t; �2; �2; �1) K(t; �2; �2; �1)

0 0 G(t; �2; �1) H(t; �2; �1)

J(t; �1; �1; �2) K(t; �1; �1; �2) J(t; �2; �2; �1) K(t; �2; �2; �1)

G(t; �1; �2) H(t; �1; �2) 0 0

3
775

Here

G(t; �; a) =

Z t

s=0

�e��se�asds; H(t; �; a) =

Z t

s=0

�e��s(1� e�as)ds;

J(t; �; b; a) =

Z t

s=0

be�(a+b)sG(t� s; �; a)ds;

K(t; �; b; a) =

Z t

s=0

be�(a+b)sH(t� s; �; a)ds

The Laplace-Stieltjes transform of the semi-Markov kernel is

QS(s) =

2
66664

�1�1
(s+�2+�1)(s+�2+�1)

�1�2�1
(s+�1)(s+�2+�1)(s+�2+�1)

�2�2
(s+�1+�2)(s+�2+�1)

�1�2�2
(s+�2)(s+�2+�2)(s+�2+�1)

0 0
�2

s+�1+�2

�2�1
(s+�1+�2)(s+�2)

�1�1
(s+�2+�1)(s+�2+�1)

�1�2�1
(s+�1)(s+�2+�1)(s+�2+�1)

�2�2
(s+�1+�2)(s+�2+�1)

�1�2�2
(s+�2)(s+�2+�2)(s+�2+�1)

�1
s+�2+�1

�1�2
(s+�2+�1)(s+�1)

0 0

3
77775

The one-step transition matrix of the underlying Markov chain fX;N1; N2g is

QS(0), which gives the following steady-state distribution:

� =

�
�1�1(�1 + �2 + �2)

S
;
�1�2(�1 + �2 + �2)

S
;
�2�2(�1 + �2 + �1)

S
;
�1�2(�1 + �2 + �1)

S

�

Here S is the sum of all the numerator terms. Note that this is not the same as

the steady-state distribution as we are dealing with di�erent processes. Since the �rst

two states of the Markov renewal process correspond to outputs from station 1 we

partition the QS(s) matrix into four 2� 2 matrices of the form:

QS(s) =

�
B11(s) B12(s)

B21(s) B22(s)

�
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By the usual �ltering techniques (C� inlar, [3]), the Laplace-Stieltjes transform of

the time between returns to states corresponding to outputs from station 1 is:

Q1(s) = B11(s) +B12(s)(I �B22(s))
�1B21(s):

A sample path argument shows that the stationary distribution for Q1(0) (the

embedded Markov chain) is just a re-normalization of the equilibrium distribution by

the total probability of visiting station 1. Representing it by � = (�00; �01), we have:

�00 = �100=(�100 + �201)

�01 = �201=(�100 + �201);

where � = (�100; �201; �200; �110) is the equilibrium distribution of the embedded

Markov chain QO(1). The interoutput distribution from station 1, q1(t) can now

be computed from inverting the product �Q1(s)e , where e is a column vector of 1's.

Again the resulting expression is too complex to be worth writing down, but easily

within the capability of MAPLE. The mean of the inter-output time from station 1

(i.e. the mean of q1(t)) is found from:

�
@(�Q1(s)e)

@s
js=0

This provided a useful veri�cation of the whole calculation, by comparing the re-

ciprocal of this with the expression for the throughput of station 1, (equation (1),

from the balance equations). They were found to be identical analytical expressions.

We also wish to calculate the serial correlation (autocorrelation) between succes-

sive output intervals from station 1. If Yn and Yn+1 are two successive interoutput

times then in steady state:

E(Yn; Yn+1) =
@2(�Q1(s1)Q1(s2)e)

@s1@s2
js1=0;s2=0

Expressions for E(Y 2
n ) and hence V ar(Y ) follow similarly.

5 Some Numerical Results for the Output Process

(a) �1 = 1, �2 = 2, and �1 = 3, �2 = 4

The interoutput distribution from station 1 is

q1(t) = 1�
1

60
e�7t �

5

3
e�t +

19

20
e�3t �

4

15
e�4t; with mean = 149=105
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Fig. 1: Interoutput distribution from station 1 �1 = 1, �2 = 2, and �1 = 3, �2 = 4

The autocorrelation of the output intervals from station 1, calculated by the

method outlined at the end of section 4, is 9=3599 = :0025.

(b) �1 = 2, �2 = 1, and �1 = 4, �2 = 3

This is the complement of the situation (a), so it corresponds to the output from

station 2 with the parameter settings of (a). The interoutput distribution from station

1 is:

q1(t) = 1 +
1

15
e�6t +

32

15
e�3t � 3e�2t �

1

5
e�4t; with mean = 149=180

Figure 1 (and Figure 2 below) look remarkably like two-phase distributions of the

kind that result from the output of a single telephone line with no storage, i.e. an

Erlang-B situation. We decided to see how close an approximation this would be.

For a single server with no storage and an arrival rate of �1 = 2, the service rate to

produce a throughput of 180=149 can be found from the Erlang-B formula. We need

to solve for � in (1 � B(1; a))�1 = 180=149, where B(1; a) = (�1=�)=(1 + (�1=�)).

The solution is � = 180=59. The resulting distribution of the times between outputs

(which we shall call the \equivalent" Erlang-B) is:

qerl(t) = 1�
90

31
e�2t +

59

31
e�

180
59

t

This is plotted in Figure 2 along with q1(t). The two graphs are almost indis-

tinguishable. Figure 3 plots the di�erence between q1(t) and qerl(t). The largest
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di�erence we have observed in any example is 0:01.

Fig. 2: q1(t) and qerl(t) for station 1 �1 = 2, �2 = 1, and �1 = 4, �2 = 3

The autocorrelation between successive interoutput intervals is 144=11729 = :013.

These small autocorrelations lead us to suggest that a renewal process, based on the

\equivalent" Erlang-B, may well be an adequate approximation for the output process

from a single station.

The switching server is surprisingly e�cient here. If we had two separate servers

with rates m1 = 3 and m2 = 4, the output rates from station 1 and from station 2

would be 0:75 and 1:33 customers per time unit respectively. The rates in our model,

of 105=149 = :705 and 180=149 = 1:208, achieved with only one switching server,

compare quite well with these.

6 The Markov Renewal Process Embedded at Departure Times

The departure times are the combination of outputs and over
ow times. Let T =

fTn : n = 0; 1; ::g represent these departure instants. For a number of systems (for

example an M=M=C=N queue) the departure process can be shown to be Poisson.

We wish to determine if this is true for our system. The state of the system just

after Tn is represented by (X;N1; N2; T ), where X is the position of the server after

the switchover (if any) and fN1; N2g are the queue lengths at stations 1 and 2. The

c
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Fig. 3: The Di�erence Between q1(t) and the Erlang-B \Equivalent"

process (X;N1; N2; T ) is now a Markov renewal process with states f(1; 0; 0), (2; 0; 0),
(1; 1; 1), (2; 0; 1), (1; 1; 1), (2; 1; 1)g. The Laplace-Stieltjes transform of the kernel,

QD(s), is

2
6666664

�1�1ab1 �2�2ab2 �2�1�2ab
2
2
+ �2

1
ab1 �1�2�1ab

2
1
+ �2

2
ab2 (�1 + �2)�1�2ab

2
1

(�1 + �2)�1�2ab
2
2

�1�1ab1 �2�2ab2 �2�1�2ab
2
2
+ �2

1
ab1 �1�2�1ab

2
1
+ �2

2
ab2 (�1 + �2)�1�2ab

2
1

(�1 + �2)�1�2ab
2
2

�1b1 0 �1b1 �2�1b
2
1

(�1 + �2)�2b
2
1

0

0 �2b2 �1�2b
2
2

�2b2 0 (�1 + �2)�1b
2
2

0 0 0 �1b1 (�1 + �2)b1 0

0 0 �2b2 0 0 (�1 + �2)b1

3
7777775

Here a = 1=(�1+�2+ s), and bi = 1=(�1+�2+�i+ s); i = 1; 2. Note that by the

way we have de�ned the state process, we do not distinguish between the over
ow

streams of station 1 and 2. This simpli�cation is necessary to keep the number of

states tractable.

From the transition matrix of the embedded Markov chain, QD(0), the stationary

distribution �D was computed using MAPLE. Again it has complicated terms. It is

interesting to note that although the state space is the same as that for the continuous

time process considered in Section 3, the stationary distribution is not the same, as

the queue-length process is not reversible for this system. Finally the distribution

of an arbitrary interdeparture distribution was calculated from inverting �DQD(s):e,
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where e is a column vector of ones. Again, checking that the mean of the interdepar-

ture distribution is 1=(�1 + �2) provides a useful veri�cation of the calculation. The

interdeparture distribution is given by

D(t) = 1 + �1e
�(�1+�2)t + (�2 + �3t)e

�(�1+�2+�1)t + (�4 + �5t)e
�(�1+�2+�2)t

where the coe�cients �i can be written as �i=
i, and


1 = �1�2(�
2
1�2�2 + �

2
1�1�2 + �

2
1�1�2 + �1�

2
2�2 + 2�1�1�2�2 + �1�1�

2
2 + �1�2�

2
2

+�1�2�
2
1 + �1�1�

2
2 + �1�2�

2
1 + �

2
2�

2
1 + �2�1�

2
2 + �2�2�

2
1 + �

2
2�1�2);


2 =
�1 + �2

�2

1; 
3 =

�1 + �2

�1�2

1; 
4 =

�1 + �2

�1

1; 
5 =

�1 + �2

�1�2

1;

�1 = �(�22�
2
1 + �1�2�

2
1 + �2�2�

2
1 + �1�2�

2
2 + �1�1�

2
2)(�1�1 + �2�2 + �1�2);

�2 = �(�21 + �1�1 + �2�1 + �1�2 + �
2
2)(�1 � �2)�1�2�2;

�3 = ��1�
2
2�2(�1 + �2 + �1)(�1 � �2);

�4 = �2�1�1(�
2
2 + �1�2 + �2�2 + �

2
1 + �1�2)(�1 � �2);

�5 = �
2
1�1�2(�1 + �2 + �2)(�1 � �2)

Theorem: The departure process is a Poisson process with rate �1 + �2 if, and only

if, �1 = �2.

Proof:

1: Poisson departure process ) �1 = �2.

If the departure is a Poisson process then the interdeparture distribution is expo-

nential with parameter �1 + �2. From the expressions for D(t), this can only happen

when �1 = �2.

2: �1 = �2 ) Poisson departure process.

With �1 = �2 = �,

�D =

�
�1�

2

(�1 + �2)C

�2�
2

(�1 + �2)C

�1�

C

�2�

C

�1�2

C

�1�2

C

�
; C = �1�+�2�+2�1�2+�2

Using Maple, we have veri�ed that

�DQD(t) = (1� e�(�1+�2)t)�D
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and, from theorem 2.11.2 on page 47 of Disney & Kiessler [4], this is su�cient to

imply that the departure process is a renewal process with a negative exponential

distribution with parameter �1 + �2. This completes the proof.

When �1 6= �2 the interdeparture distribution is still quite close to a negative

exponential distribution.

Figure 4 plots the di�erence between D(t) and a negative exponential distribution

with parameter �1 + �2 = 3, for �1 = 1, �2 = 2, and �1 = 3, �2 = 4. The di�erence

is now extremely small. In Section 7 we will use simulation to estimate the autocor-

relation in the departure process. This is also found to be very small, so we suggest

that a Poisson process approximation for the departure process may well be adequate.

Fig. 4: The Di�erence Between D(t) and Negative Exponential

7 Some Results from Simulation

We have a number of hypotheses which we have as yet been unable to con�rm ana-

lytically. A simulation program for the system was written in GPSS/H to investigate

these. The program is listed in the Appendix.

With �1 = 1, �2 = 2, �1 = 3, �2 = 4, and 50; 000 arrivals we get the following

c
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results:

The Departure Process

This is the superposition of the two output and the two over
ow processes.

Descriptive Statistics

Variable N N* Mean Median TrMean StDev SEMean

diff 49999 1 0.33489 0.23145 0.29742 0.33512 0.00150

Variable Min Max Q1 Q3

diff 0.00000 3.34326 0.09521 0.46484

So the mean and standard deviation of the departure process are almost identical.

Plotting the distribution of interdeparture intervals showed that it was statistically

indistinguishable from a negative exponential distribution with mean 1=(�1+�2).The

interdeparture intervals also are almost uncorrelated (below), hence we hypothesise

that the departure process is actually very similar to a Poisson process, even for cases

where �1 6= �2.

Autocorrelation Function

ACF of diff

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

+----+----+----+----+----+----+----+----+----+----+

1 -0.004 X

2 0.002 X

3 -0.001 X

4 -0.002 X

5 0.005 X

The Output Process from Station 1

Descriptive Statistics

Variable N N* Mean Median TrMean StDev SEMean

dif1out 11684 1 1.4331 1.1670 1.3309 1.0766 0.0100

Variable Min Max Q1 Q3

dif1out 0.0127 11.8682 0.6631 1.8984

So the output from station 1 has a mean greater than its standard deviation.

The simulation mean is not signi�cantly di�erent from that calculated in section 5

(149=105 = 1:42) and the sample autocorrelation (below) is not signi�cantly di�erent

from the theoretical value of :0025.

c
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Autocorrelation Function

ACF of dif1out

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

+----+----+----+----+----+----+----+----+----+----+

1 -0.005 X

2 0.004 X

3 0.008 X

4 0.001 X

5 -0.005 X

The Over
ow Process

This is the superposition of the over
ow processes from the two stations.

Descriptive Statistics

Variable N N* Mean Median TrMean StDev SEMean

dofover 18132 1 0.9234 0.4766 0.7745 1.1508 0.0085

Variable Min Max Q1 Q3

dofover 0.0000 12.4277 0.1494 1.2766

The over
ow has a standard deviation greater than its mean (i.e. a hyperexponen-

tial process) and appears to be weakly positively serially correlated (The acceptance

region for the null hypothesis of no autocorrelation is 1:96=
p
(18132) = :014)

Autocorrelation Function

ACF of dofover

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

+----+----+----+----+----+----+----+----+----+----+

1 0.019 X

2 -0.012 X

3 0.001 X

4 -0.005 X

5 -0.004 X

8 Conclusions

Very little appears to be known about the outputs from polling or switching systems.

In the case of a server who switches between two stations with limited storage we have

characterized the output and departure processes. Some conclusions we can draw so

far is that the output processes appear to be almost renewal, and can be e�ciently

modelled by formulating an \equivalent" Erlang-B system. We have shown that the

departure process from the system is Poisson i� �1 = �2. So far we have found

that even in other cases the departure process does not di�er greatly from a Poisson

c
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process. These results suggest that a decomposition approach to networks involving

this kind of system may be reasonable.
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APPENDIX

The GPSS/H Program

REAL &L1,&M1,&L2,&M2

INTEGER &N

PUTPIC

0Enter Arrival rate 1

GETLIST &L1

PUTPIC

Enter Arrival rate 2

GETLIST &L2

PUTPIC

0Enter service rate 1

GETLIST &M1

PUTPIC

0Enter service rate 2

GETLIST &M2

PUTPIC

0How many arrivals

GETLIST &N

SIMULATE

GENERATE RVEXPO(3,1/&L1)

ADVANCE 0

TEST E FU(SERV1),0,OVER1

SEIZE SERV1

GATE NU SERV2

ADVANCE RVEXPO(4,1/&M1)

RELEASE SERV1

BPUTPIC FILE=MARCOS,(C1)

******.***** 1

TERMINATE 1

GENERATE RVEXPO(3,1/&L2)

ADVANCE 0

TEST E FU(SERV2),0,OVER1

SEIZE SERV2

GATE NU SERV1

ADVANCE RVEXPO(4,1/&M2)

RELEASE SERV2

BPUTPIC FILE=MARCOS,(C1)

******.***** 2

TERMINATE 1

OVER1 BPUTPIC FILE=MARCOS,(C1)

*****.****** 0
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TERMINATE 1

START &N,NP

END
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