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Abstract

In this paper we analyze the application of Newton's method to the solution of systems of

nonlinear equations arising from equivalent forms of the �rst{order Karush{Kuhn{Tucker

necessary conditions for constrained optimization. The analysis is carried out by using an

abstract model for the original system of nonlinear equations and for an equivalent form

of this system obtained by a reformulation that appears often when dealing with �rst{order

Karush{Kuhn{Tucker necessary conditions. The model is used to determine the quanti-

ties that bound the di�erence between the Newton steps corresponding to the two equivalent

systems of equations. The model is su�ciently abstract to include the cases of equality{

constrained optimization, minimization with simple bounds, and also a class of discretized

optimal control problems.

Keywords: Nonlinear programming, Newton's method, �rst{order Karush{Kuhn{Tucker

necessary conditions.

1 Introduction

A popular technique to solve constrained optimization problems is to apply Newton's
method to the system of nonlinear equations arising from the �rst{order necessary
conditions. For instance, the system

rx`(x; y) = rf(x) +rg(x)y = 0 and

g(x) = 0 ;
(1)
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corresponds to the �rst{order necessary conditions of the equality{constrained opti-
mization problem:

minimize f(x)

subject to g(x) =

0
B@

g1(x)
...

gm(x)

1
CA = 0 :

(We assume that x 2 IRn with n > m and f and g are twice continuously di�er-
entiable functions with Lipschitz second derivatives. The Lagrangian function `(x; y)
is de�ned as `(x; y) = f(x) + y>g(x).) The Newton step associated with the system
(1) is given by: 

r2

xx
`(x; y) rg(x)

rg(x)> 0

!  
�x

�y

!
= �

 
rx`(x; y)

g(x)

!
; (2)

where rg(x)> represents the transpose of the Jacobian matrix dg

dx
(x) of g(x), and

rx`(x; y) and r
2

xx
`(x; y) are the gradient and the Hessian of the Lagrangian with

respect to x, respectively.

There are cases in constrained optimization where the system of �rst{order nec-
essary conditions is reformulated by eliminating variables and/or equations. For the
example given above, we know that (1) is equivalent (with x = �x) to:

Z(�x)>rf(�x) = 0 and

g(�x) = 0 ;
(3)

where the columns of the orthogonal matrix Z(�x) form a basis for the null space of
rg(�x)>. The matrix Z(�x) should be computed as described in [7] so that it can be
extended smoothly in a neighborhood of �x (see [7, Lemma 2.1]). The Newton step
associated with (3) is de�ned by: 

Z(�x)>r2

xx
`(�x; y(�x))

rg(�x)>

!
�x = �

 
Z(�x)>rf(�x)

g(�x)

!
; (4)

where y(�x) is the vector of least squares multipliers obtained by solving

minimize krg(�x)y +rf(�x)k2
2
;

with respect to y. See [7].

Two equivalent forms of the necessary conditions gave rise to two di�erent New-
ton methods (computational issues related to these methods are described, e.g., in
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the books [6] and [8]). It is natural to ask how do these two methods compare, in
other words how close �x and �x are from each other. The goal of this work is not to
provide the answer only for this particular reformulation. We propose a model where
the answer can be given for the equality{constrained case but also for other cases.

One case in which we are also interested is minimization with simple bounds:

minimize f(x)

subject to x � 0 :

The �rst{order necessary conditions are:

rf(x)� y = 0 ; (5)

x>y = 0 ; and (6)

x; y � 0 : (7)

Since this problem involves inequality constraints, we will rather call conditions
(5){(7), �rst{order Karush{Kuhn{Tucker (KKT) necessary conditions. A step of
Newton's method applied to (5){(6) is the solution of 

r2f(x) �I

Y X

!  
�x

�y

!
= �

 
rf(x)� y

XY e

!
; (8)

where X = diag(x) and Y = diag(y). (Given a vector u in IRn, diag(u) represents
the diagonal matrix of order n whose i{th diagonal element is ui. Also, e represents
a vector of ones. We omit the dimension of e since that will be determined from the
context.) The application of Newton's method is made by using an interior{point
approach, where x and y are positive and �x and �y are scaled by �x and �y so
that x + �x�x and y + �y�y are also positive. The equivalent form of (5){(7) that
we would like to consider (with x = �x) is given by

D(�x)2rf(�x) = 0 and (9)

�x � 0 ;

where D(�x) is the diagonal matrix of order n with i{th diagonal element given by:

�
D(�x)

�
ii

=

8<
:

(�xi)
1
2 if (rf(�x))

i
� 0 ;

1 if (rf(�x))
i
< 0 :

This simple fact is proved in [1]. The diagonal element
�
D(�x)2

�
ii

might not be

di�erentiable, or even continuous, but if
�
D(�x)2

�
ii

is di�erentiable for all i, then

d

dx

�
D(�x)2rf(�x)

�
= D(�x)2r2f(�x) +

�
d

dx
(D(�x)2e)

�
rf(�x) :
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The diagonal element
�
D(�x)2

�
ii

is not di�erentiable if (rf(�x))i = 0, in which

case the i{th component of the (diagonal) Jacobian matrix d

dx
(D(�x)2e) is arti�cially

set to zero. So, it makes sense to de�ne E(�x) as the diagonal matrix of order n whose
i{th component is given by

�
E(�x)

�
ii

=

8<
:

(rf(�x))
i

if (rf(�x))
i
> 0 ;

0 otherwise ;

and to de�ne the Newton step corresponding to the equation (9) as�
D(�x)2r2f(�x) +E(�x)

�
�x = �D(�x)2rf(�x) : (10)

See [1] and [2] for more details.

For these and other examples, we are interested in comparing the two alternative
Newton approaches by looking at the distance between the two alternative Newton
steps �x and �x. In the next section, we derive an abstract model to provide a
general answer that can be particularized for the di�erent examples. The analysis
will consider a relating condition U(x; �x; y) = 0, and will establish that the norm of
the di�erence of the steps is bounded by a constant times kU(x; �x; y)k. We will observe
in the equality-constrained example (Section 3) that kU(x; �x; y)k converges to zero if
both Newton sequences are converging to a point satisfying the �rst-order necessary
conditions. As a consequence of our analysis, the alternative Newton steps tend to
be the same. However, this is not true in the second type of examples (Sections 4
and 5) because kU(x; �x; y)k does not necessarily converge to zero even if both Newton
sequences are converging to the same stationary point.

2 The Abstract Reformulation

The original system of nonlinear equations is de�ned in the variables x and y:

F (x; y) = 0 : (11)

The equivalent form of this system that we consider is based on the equation

G(�x)H(�x) = 0 ; (12)

where G satis�es at a solution (x�; y�) a de�ning condition of the form

G(x�)F (x�; y�) = G(x�)H(x�) : (13)

The equivalence relates the variables x, �x, and y through the relating condition

U(x; �x; y) = 0 ;

c
 Investigaci�on Operativa 1999



Investigacion Operativa � Volume 7, Number 3, 1999 21

so that

F (x; y) = 0 is equivalent to G(x)H(x) = 0 and U(x; x; y) = 0 :

The entrances in F , G, and H are assumed to have Lipschitz �rst derivatives.
Their meaning is clear for the examples we have given before but we postpone this
for a while to analyze Newton's method when applied to (11) and (12).

A step of Newton's method when applied to (11) is the solution of

@F

@x
(x; y)�x +

@F

@y
(x; y)�y = �F (x; y) ; (14)

whereas a Newton's step for system (12) is given by:�
d

dx
(G(�x)H(�x))

�
�x = �G(�x)H(�x) : (15)

Our goal is to bound k�x��xk in terms of kU(x; �x; y)k. First, we multiply (14)
by G(x):

G(x)
@F

@x
(x; y)�x+G(x)

@F

@y
(x; y)�y = �G(x)F (x; y) : (16)

By subtracting (15) to (16), we obtain

�

h
d

dx
(G(�x)H(�x))

i
�x = �G(x)

@F

@x
(x; y)�x�G(x)

@F

@y
(x; y)�y +

�
G(�x)H(�x)�G(x)F (x; y)

�
:

Finally, we add
�
d

dx
G(�x)H(�x)

�
�x to both sides, to get

�
d

dx
(G(�x)H(�x))

�
(�x��x) =

�
d

dx
(G(�x)H(�x))�G(x)@F

@x
(x; y)

�
�x�

G(x)@F
@y
(x; y)�y +

�
G(�x)H(�x)�G(x)F (x; y)

�
:

Using the de�nitions

R(�x) =
d

dx
(G(�x)H(�x)) and S(x; y) = G(x)

@F

@x
(x; y) ;

we derive an upper bound for k�x��xk:

k�x��xk � kR(�x)�1k
�
kR(�x)� S(x; y)k+ kG(x) @F

@y
(x; y)k

�
krF (x; y)�>k kF (x; y)k

+ kR(�x)�1k kG(�x)H(�x)�G(x)F (x; y)k:

If �GH , �F , and �F are positive constants such that

kR(�x)�1k � �GH ;

krF (x; y)�>k � �F ; and

kF (x; y)k � �F ;
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then

k�x��xk � �F �F�GH

�
kR(�x)� S(x; y)k +




G(x)@F
@y

(x; y)




�+�GHkG(�x)H(�x)�G(x)F (x; y)k :

We observe from this inequality that k�x ��xk is bounded above by three im-
portant terms.

First, k�x � �xk depends on how close the values for the functions G(�x)H(�x)
and G(x)F (x; y) are from each other. It does not matter how small the residuals
G(�x)H(�x) and F (x; y) are, but rather how close the function value G(�x)H(�x) is from
the value of F (x; y) reduced by G(x).

The dependence on R(�x) � S(x; y) is about the consistency of the derivatives
d

dx
(G(�x)H(�x)) and G(x)@F

@x
(x; y), the former being the derivative of G(�x)H(�x) and

the latter the derivative of F (x; y) with respect to x reduced by the operator G(x).

We conclude also that the norm of �x��x depends on the norm of G(x)@F
@y
(x; y)

which is a quite interesting aspect of the analysis. In the examples given later, the
term kG(x)@F

@y
(x; y)k is either zero or bounded by kU(x; �x; y)k with �x = x. One can

see that G(x)@F
@y
(x; y) is the derivative of F (x; y) with respect to y reduced by the

operator G(x), and its norm in
uences the di�erence between �x and �x.

From the inequality given above we can easily prove the following theorem.

Theorem 2.1: Consider a Newton step (14) for F (x; y) = 0, where rF (x; y) is non-
singular. Consider a Newton step (15) for G(�x)H(�x) = 0, where R(�x) is nonsingular.

If there exist positive constants 
1, 
2, and 
3 such that

kR(�x)� S(x; y)k � 
1kU(x; �x; y)k ;



G(x)@F@y (x; y)




 � 
2kU(x; �x; y)k (for some �x), and

kG(�x)H(�x)�G(x)F (x; y)k � 
3kU(x; �x; y)k ;

then 

�x��x


 � 
 kU(x; �x; y)k

for some positive constant 
.

The constant 
 in Theorem 2.1 depends on x, �x, and y since 
1, 
2, and 
3 de-
pend also on these points. We can assume that the standard Newton assumptions [4]
hold for the Newton methods de�ned by (14) and (15) at the points (x�; y�) and x�,
respectively. Then, if x and y are su�ciently closed to x� and y�, and �x is su�ciently
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close to x�, the constants 
1, 
2, 
3, and 
 do not depend on the points x, �x, and y.

We move rapidly to the examples to illustrate our analysis.

3 Equality{constrained Optimization

In this case

F (x; y) =

 
rf(x) +rg(x)y

g(x)

!

and

G(�x)H(�x) =

 
Z(�x)>rf(�x)

g(�x)

!
:

The choices for G(�x) and H(�x) are

G(�x) =

 
Z(�x)> 0

0 I

!
and H(�x) =

 
rf(�x)

g(�x)

!
:

Since

G(�x)H(�x)�G(x)F (x; y) =

 
Z(�x)>rf(�x)� Z(x)>rf(x)

g(�x)� g(x)

!
;

the de�ning condition (13) is satis�ed for any pair (x; y), even if it does not verify the
�rst-order necessary conditions.

From the theory presented in [7],

R(�x) =
d

dx
(G(�x)H(�x)) =

 
Z(�x)>r2

xx
`(�x; y(�x))

rg(�x)>

!
:

Also,

S(x; y) =

 
Z(x)>r2

xx
`(x; y)

rg(x)>

!
;

and the Lipschitz continuity of the second derivatives of `(x; y) imply

kR(�x)� S(x; y)k � 
1






�

x� �x
y � y(�x)

�



 ;
for some positive constant 
1.
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Moreover,

G(x)
@F

@y
(x; y) = 0 :

It is natural to de�ne the relating condition as

U(x; �x; y) =

�
x� �x

y � y(�x)

�
= 0 :

Theorem 2.1 assures the existence of a positive constant 
 such that

k�x��xk � 







�

x� �x
y � y(�x)

�



 ;
where �x and �x are given by (2) and (4). It is obvious that F (x; y) = 0 is equivalent
to G(x)H(x) = 0 and U(x; x; y) = 0.

Also, if (x�; y�) is a stationary point then

lim
(x; y) �! (x�; y�)

�x �! x�

kU(x; �x; y)k = 0 ; (17)

and the Newton steps �x and �x tend in this situation to be the same step.

4 Minimization with Simple Bounds

In this case, the equivalent KKT systems are:

F (x; y) =

 
rf(x) � y

XY e

!
= 0

and

G(�x)H(�x) = D(�x)2rf(�x) = 0 :

Of course, we have excluded from the KKT systems the nonnegativity of x, �x, and
y. The choices for G(�x) and H(�x) are

G(�x) =
�
D(�x)2 I

�
and H(�x) =

 
rf(�x)

0

!
:

In this case the de�ning condition (13) is not satis�ed unless we are at a point
that veri�es the �rst{order KKT necessary conditions. In fact, we have

G(�x)H(�x)�G(x)F (x; y) = D(�x)2rf(�x)�D(x)2rf(x) �
�
X �D(x)2

�
Y e :
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R(�x) and S(x; y) are given by:

R(�x) = D(�x)2r2f(�x) +E(�x) and S(x; y) = D(x)2r2f(x) + Y :

Moreover,

G(x)
@F

@y
(x; y) = �D(x)2 +X :

Thus, if the relating condition is de�ned as

U(x; �x; y) =

0
BB@

x� �x�
X �D(x)2

�
e�

�X �D(�x)2
�
e

(Y �E(x)) e

1
CCA = 0 ;

then there exist positive constants 
1, 
2, and 
3 satisfying the assumptions of The-
orem 2.1. This theorem assures the existence of a positive constant 
 such that

k�x��xk � 












0
BB@

x� �x�
X �D(x)2

�
e�

�X �D(�x)2
�
e

(Y �E(x)) e

1
CCA









;

where �x and �x are given by (8) and (10). Note that F (x; y) = 0 is equivalent to
G(x)H(x) = 0 and U(x; x; y) = 0 provided rf(x) � 0. However, in this example, if
(x�; y�) is a point that satis�es the �rst-order KKT necessary conditions, the limit
(17) might not hold because

lim
x�!x�



�X �D(x)2
�
e


 and lim

�x�!x�



� �X �D(�x)2
�
e




do not necessarily exist or equal zero.

5 Discretized Optimal Control Problems with Bounds on the

Control Variables

In this section, we consider the class of nonlinear programming problems analyzed in
[3]. See also [5]. A nonlinear programming problem of this class is formulated as

minimize f(x1; x2)

subject to g(x1; x2) = 0

x2 � 0 ;

where x1 is in IRm and x2 is in IRn�m. In this class of problems, rg(x) is partitioned
as

rg(x) =

 
rx1

g(x)

rx2
g(x)

!
;
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where rx1
g(x) is nonsingular. The �rst{order KKT necessary conditions are:

rf(x) +rg(x)y1 �

 
0

y2

!
= 0 ;

g(x) = 0 ;

x>
2
y2 = 0 ; and

x2; y2 � 0 :

A basis for the null space of rg(�x)> is given by the columns of

W (�x) =

 
�rx1

g(�x)�>rx2
g(�x)>

I

!
:

The equivalent KKT system that we consider is:

D(�x)2W (�x)>rf(�x) = 0 ; (18)

g(�x) = 0 ; and (19)

�x2 � 0 ;

where D(�x) is the diagonal matrix of order n�m with i{th diagonal element given
by: �

D(�x)
�
ii

=

8<
:

(�x2)i
1
2 if

�
W (�x)>rf(�x)

�
i
� 0 ;

1 if
�
W (�x)>rf(�x)

�
i
< 0 :

The Newton step associated with (18){(19) is the solution of�
D(�x)2W (�x)>r2

xx
`(�x; y1(�x)) +E(�x)

�
�x = �D(�x)2W (�x)>rf(�x) ;

where y1(�x) = �rx1
g(�x)�1rx1

f(�x) and E(�x) is a diagonal matrix of order n � m

with i{th diagonal element given by:

�
E(�x)

�
ii

=

8<
:
�
W (�x)>rf(�x)

�
i

if
�
W (�x)>rf(�x)

�
i
> 0 ;

0 otherwise :

See [3] for more details.

In this case, the KKT systems are represented by:

F (x; y) =

0
BBB@
rf(x) +rg(x)y1 �

 
0

y2

!

g(x)

X2Y2e

1
CCCA

c
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and

G(�x)H(�x) =

 
D(�x)2W (�x)>rf(�x)

g(�x)

!
:

(We have excluded the nonnegativity of x2, �x2, and y2.) The choices for G(�x) and
H(�x) are

G(�x) =

�
D(�x)2W (�x)> 0 I

0 I 0

�
and H(�x) =

0
B@
rf(�x)

g(�x)

0

1
CA :

The de�ning condition (13) is not satis�ed unless we are at a point that veri�es
the �rst{order KKT necessary conditions:

G(�x)H(�x)�G(x)F (x; y) =

�
D(�x)2W (�x)>rf(�x)�D(x)2W (x)>rf(x)�

�
X2 �D(x)2

�
Y2e

g(�x)� g(x)

�
:

Also, R(�x) and S(x; y) are given by:

R(�x) =

�
D(�x)2W (�x)>r2

xx
`(�x; y1(�x)) +E(�x)

rg(�x)>

�
(see [3]) and

S(x; y) =

�
D(x)2W (x)>r2

xx
`(x; y1) + Y2

rg(x)>

�
:

Moreover,

G(x)
@F

@y
(x; y) =

�
0 �D(x)2 +X2

0 0

�
:

So, the relating condition is de�ned as

U(x; �x; y) =

0
BBBB@

x� �x
y1 � y1(�x)�

X2 �D(x)2
�
e�

�X2 �D(�x)2
�
e

(Y2 � E(x)) e

1
CCCCA = 0 ;

assuring the existence of the positive constants 
1, 
2, and 
3 in Theorem 2.1, which
in turn guarantees the existence of a positive constant 
 such that

k�x��xk � 














0
BBBB@

x� �x
y1 � y1(�x)�

X2 �D(x)2
�
e�

�X2 �D(�x)2
�
e

(Y2 �E(x)) e

1
CCCCA












:

Note that F (x; y) = 0 is equivalent to G(x)H(x) = 0 and U(x; x; y) = 0 provided
W (x)>rf(x) � 0. In this example, as in the previous one, even if (x�; y�) satis�es
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the �rst-order KKT conditions, there is no guarantee that the limit (17) is true.

A similar analysis for the nonlinear programming problem is also of interest.
For instance, we could consider the primal{dual, the a�ne{scaling, and the reduced
primal{dual algorithms described in [9].
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