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Abstract

This paper considers the Pure Integer Capacitated Plant Location Problem (PI-CPLP). It is

an NP-hard integer programming problem closely related to the Mixed Integer Capacitated

Plant Location Problem (MI-CPLP). The di�erence between the two lays in the integrality

constraints on the assignment variables. As opposed to MI-CPLP, in PI-CPLP, for a given

set of open plants, the assignment subproblem remains NP-hard (speci�cally a Generalized

Assignment Problem).

Several heuristics are proposed, based on the following approaches: Evolutive Algorithms

(EA), Greedy Randomized Adaptive Search Procedure (GRASP), Simulated Annealing (SA)

and Tabu Search (TS). All the algorithms proposed share three characteristics. First, they

make direct use of the problem structure. The main problem is divided in two subproblems,

one for the selection of plants and another one for the assignment of clients to plants. Second,

they search for feasible solutions to the PI-CPLP using the relaxation based on the aggregation

of the capacity constraints. Third, they basically explore the same neighborhood structures.

These structures and the strategies used to explore them are also presented.

All the proposed algorithms have been tested computationally. Their performance is reported

and their results are compared.
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1 Introduction

The Capacitated Plant Location Problems (CPLP's) constitute a classical area of

research in optimization. They consider the case where a decision maker has to

choose the location of new plants from a given set of alternatives in order to satisfy

the demand of a set of clients at minimum cost. To do so, the minimization of a two

member objective function subject to a set of constraints is used. The �rst member

regroups �xed costs for the opening of individual plants. The second member regroups

assignment costs of clients to plants. Constraints then insure that plants capacities

are respected, and clients are correctly assigned. When the clients have to be assigned

to only one plant (cannot be splitted between two or more), the problem becomes the

Pure Integer Capacitated Plant Location Problem (PI-CPLP) that is studied in this

paper. It can be modeled as:

(P) min z =
X
j2J

fjyj +
X
i2I

X
j2J

cijxij

s.t. X
j2J

xij = 1 8i 2 I (1)

X
i2I

dixij � bjyj 8j 2 J (2)

xij ; yj 2 f0; 1g 8i 2 I; j 2 J (3)

where: I is the set of clients, J is the set of plants, fj is the �xed cost of opening

plant j, cij is the cost of assigning client i to plant j, di is the demand of client i, and

bj is the capacity of plant j. The problem variables are yj with value 1 if plant j is

opened, 0 otherwise; and xij with value 1 if client i is assigned to plant j, 0 otherwise.

The objective function adds the �xed costs of the open plants to the assignment costs

of the clients. Constraints (1), together with constraints (3), insure that each client

is assigned to one and only one plant, constraints (2) insure that the capacity of each

plant is respected and that clients are assigned to open plants, and �nally constraints

(3) are the integer requirements on the variables.

The objective function of the previous model can be expressed in a di�erent way

by the introduction of the following notation: cmini = min fcij ; j 2 Jg, and �ij =

cij�cmini. This notation leads to an equivalent formulation for the objective function:

X
i2I

cmini + min (
X
j2J

fjyj +
X
i2I

X
j2J

�ijxij)

The interest of this reformulation rests on the interpretation of the �ij 's. They

give the relative cost of the assignment of client i to plant j with respect to its mini-

mum assignment cost. Some of the heuristic algorithms presented here use this added

information.

The PI-CPLP is a NP-hard integer programming problem related to other well-

known discrete location problems. For instance, the Uncapacitated Plant Location
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Problem (UPLP) is a NP-hard pure integer problem that can be seen as a particular

case of the PI-CPLP where the capacities of the plants are greater that the sum of the

clients' demands. Hence, the model for the UPLP needs not to consider constraints

(2). The UPLP is a classical problem that has been widely studied both from a poly-

hedral and an algorithmic point of view (see, for instance [10] and [21]). Also the

Mixed Integer Capacitated Plant Location Problem (MI-CPLP) is closely related to

the PI-CPLP. The di�erence between the two problems lays in the de�nition of the xij
variables. In the MI-CPLP those variables are continuous, allowing individual clients

to be assigned to multiple plants. It also means that for a given set of open plants, the

assignment sub-problem corresponds to a transportation problem. In the PI-CPLP

those variables are required to be integers, thus each client has to be assigned to only

one plant. A direct consequence is that, for a given set of open plants, the assignment

sub-problem remains a Generalized Assignment Problem (GAP) which is a NP-hard

integer problem, and for which even the feasibility question is NP-complete. Based

on the previous remarks, a two stage decision is thus necessary to solve the PI-CPLP.

The optimal set of locations has to be selected �rst. Then, the optimal allocation of

clients within that set of plants has to be found, such that each client is allocated to

only one plant.

A large literature exists on the MI-CPLP and a recent review can be found in

[22]. Heuristic approaches are presented in [16], and an algorithm for large instances

is given in [4]. Much less attention has been devoted to the PI-CPLP. To the best of

our knowledge, no specialized exact method for solving the PI-CPLP can be found in

the literature. Several Lagrangean Relaxation based approaches have been proposed

(see [1], [2], [3], [4], [12], and [19]). In most of the cases, the iterative method used to

solve the Lagrangean Dual is combined with some simple heuristic to obtain feasible

solutions. However, no heuristic methods focused on obtaining good quality solutions

in reduced computational times have been proposed for the PI-CPLP. In particular,

no metaheuristic based method can be found in the literature. Yet, such approaches

are fully justi�ed in this case where feasibility is di�cult to attain. Specially, taking

into account that metaheuristic based methods have proven to be very e�ective for

other classes of combinatorial optimization problems where feasibility is also di�cult

to achieve as (e.g. Routing Problems).

In this context, the motivation for this work is a) to propose heuristic approaches

based on di�erent metaheuristic methodologies for the PI-CPLP, b) to evaluate them

by comparing the results obtained with the various approaches, and c) to draw con-

clusions about the adequacy of each of the selected methodologies for solving the

PI-CPLP.

The proposed heuristics are of the following types: Evolutive Algorithm (EA),

Greedy Randomized Adaptive Search Procedure (GRASP), Simulated Annealing (SA),

and Tabu Search (TS). All the presented methods share the following characteristics:

a) Due to the nested decisions that have to be taken for solving the PI-CPLP,

and given the di�culty of the subproblems to be solved at both levels, exploiting
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the hierarchical con�guration of the problem plays a central role. Within each of the

selected methodologies, the speci�c heuristic that is proposed has been designed to

respect this structure, and, thus, contains a �st level focused on the plants' selection

subproblem as well as an embedded second level focused on the allocation subproblem

for a given set of open plants.

At the exception of the EA, each approach uses variations of the same constructive

method for the plants' selection problem and of a speci�c methodology for the alloca-

tion subproblem. On the contrary, the EA uses that methodology at both levels. This

is the approach that proved to be a better alternative to the constructive method for

smaller problems. Unfortunately, this tendency was not con�rmed for larger instances.

b) They explore the infeasible solutions' space. When feasibility is di�cult to

achieve, con�ning the search to the feasible space in heuristic methods often makes

the search terminate after a reduced number of iterations. Thus, the quality of the

obtained local optimum is usually not very good. For this reason, allowing the heuris-

tic to operate in the infeasible solutions' space provides a higher level of 
exibility to

the search and allows reaching solutions that otherwise could not be found. Violation

of feasibility can be taken into account by means of a penalty term in the objective

function. All the methods presented in this paper operate on the same relaxation of

the original problem and, hence, explore the same solutions' space.

c) They try to improve solutions by searching in the same neighborhood structures

in the assignment subproblem. These are the classical shift and swap neighborhoods.

The only special case being the GRASP whose speed allows to explore additional

neighborhood structures during the second phase of the algorithm.

The above three characteristics can be seen as a template to which all the proposed

methods have been adjusted. The use of such a template guarantees to a great extent

that the comparisons to be made between the di�erent approaches are objective.

The proposed heuristics have been tested over the set of test problems used in

[3]. To evaluate the quality of the obtained solutions, the results have been compared

to the best known values reported in the above reference and to the solutions gener-

ated by CPLEX in a time-limit of two hours of CPU. The obtained results con�rm

the interest of the proposed approaches. In particular, all the methods improve the

previous best known solutions for all the test problems (with the exception of one

single problem for one of the heuristics). Moreover, the deviation of the best solution

generated with the proposed approaches from the optimal (or best-known) solution

generated by CPLEX within the given time bounds never exceeds 0:63%, although

on the average this deviation takes a value of 0:10%. Also, with the exception of EA,

the proposed methods have proven to be robust since the average deviation from the

optimal (or best-known) solution never exceeds 1:6% in the worst case. The behavior

of EA is very good for smaller problems but it decreases as the size of the problems

grows. Finally, excepting the Evolutive Algorithm all the other approaches are also

e�cient in terms of the required computational time.
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The paper is organized in the following way: in Section 2, basic de�nitions and

notation are introduced; in Section 3, the heuristics tested on the problem are pre-

sented: an Evolution type heuristics, a GRASP, a Simulated Annealing, and a Tabu

Search algorithm; in Section 4, the results of computational experiences are given;

�nally, Section 5 concludes the work and identi�es further research directions.

2 De�nitions and Notation

Capacity constraints (2) are usually di�cult to ful�ll and reduce considerably the

solutions' space. By considering constraints (1), constraints (2) can be aggregated in

the surrogate constraint:

X
j2J

bjyj � D =
X
i2I

di (30)

Constraint (3') insures that the total capacity of the open plants is enough to sat-

isfy the clients' demands. In the case of the PI-CPLP this constraint is a necessary,

but not su�cient, condition for the existence of feasible solutions. The substitution

of (2) by (3') in (P) leads to the following relaxed formulation:

(RP) min z
0

=
X
j2J

fjyj +
X
i2I

X
j2J

�ijxij

s.t. X
j2J

xij = 1 8i 2 I (1
0

)

xij � yj 8i 2 I; j 2 J (2
0

)X
j2J

bjyj � D (3
0

)

xij ; yj 2 f0; 1g 8i 2 I; j 2 J (4
0

)

where constraints (2') are now needed to limit the assignment of clients to open plants.

All the proposed approaches operate on (RP). This provides the search processes with

a higher level of 
exibility, since some feasible solutions to (P) that otherwise could

not have been reached, can now be obtained via paths of feasible solutions to (RP).

Each solution � to (P) or (RP) is associated to a pair (O;A) where O � J

represents the set of open plants and A the set of assignments for the clients, i.e.:

O = fj : yj = 1g � J

A = fpigi2I where pi 2 O;8i 2 I and pi = j () xij = 1

Note that the �rst element of the pair, set O, is redundant for the description of a

solution since it can be directly obtained from set A. It has been introduced to ease
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the presentation of the proposed methods.

The following de�nition of slack variables sj for the plants is also used:

sj = bj �
X

i=pi=j

di

Each of these slack variables gives the remaining capacity for the corresponding

plant in a solution at hand. They provide a useful infeasibility measure when dealing

with solutions to (RP) that are not feasible solutions to (P). This measure is used by

the di�erent heuristics for guiding the search towards feasibility. This is achieved by

incorporating a penalty term to the objective function to evaluate the overall infeasi-

bility with respect to (P) of a given solution to (RP)

The neighborhood structures explored by the algorithms presented are the follow-

ing:

Let � = (O;A) be a solution (to (RP) or (P)), then �
0 is a neighbor of � if and

only if �0 is also a solution and �
0 belongs to any of the two following sets

Nshift(�): Client reassignment neighborhood. This neighborhood can be obtained by

maintaining the same set of open plants and reassigning one single client within

this set.

Nshift(�) = f�0 = (O0
; A

0) : O0 = O; A
0 = fp0igi2I ;

9!i� 2 I s:t: p
0
i� 6= pi� ; p

0
i� 2 O

0g

Nswap(�): Client interchange neighborhood. This neighborhood can be obtained by

maintaining the same set of open plants and interchanging the assignments of

two clients.

Nswap(�) = f�0 = (O0
; A

0) : O
0 = O; A

0 = fp0igi2I ;

9i1; i2 2 I s:t: p
0
i1
= pi2 ; p

0
i2
= pi1 ; p

0
i = pi 8i 6= i1; i2g

3 Heuristics

In this section, the implementations of the heuristics designed to solve the PI-CPLP

are described in detail. The sub-sections present the following implementations: in 3.1

an Embedded Evolutive Algorithm, in 3.2 a GRASP, in 3.3 a Simulated Annealing,

and �nally in 3.4 a Tabu Search.
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3.1 Embedded Evolutive Algorithm

The concept of evolutive algorithm was proposed in [20], these algorithms di�er from

the classical binary encoded genetic algorithms (see [15]) as they allow any data

structure to be processed by a set of operators implementing a survival of the �ttest

philosophy. The general structure of a classical genetic algorithm is:

Algorithm 1:

Construct a fixed size initial population P (0).

While (stopping criterion not satisfied) do

Select intermediate population P
0 from P (n� 1)

Apply crossover and mutation to P
0 to obtain P (n)

Evaluate P (n)

Evolution type heuristics follow the same major steps. Encoded strings corre-

spond to potential solution representatives. A given number of those strings form

a population. Operators (crossover, mutation, evaluation, selection, and shu�e) are

applied to this population in order to emulate the natural evolution process. Going

through each step once is called a generation.

An important �rst step when using evolutive algorithms, is the de�nition of an

adequate representation of the potential solutions into coded strings. In the algorithm

presented in this section each potential solution � = (O;A) is represented by a set of

two vectors:

� a binary vector of size jJ j.

� an integer vector of size jI j.

The �rst vector determines the set O of open plants and the second one, the assign-

ment A of clients to the plants. Figure 1 gives the vector representation for a case with

O=f1,3,5,6,8g. In this example, client 1 is assigned to plant 3, client 2 to plant 5, etc.

Open plants Client assignment

1 0 1 0 1 1 0 1 3 5 6 3 8 6 1 3 8 1 6 1

Fig. 1: Vector representation of a solution.

The approach proposed in this section, called embedded approach (EEA), has been

devised considering a decomposition of the solution set into smaller subsets (see for

example: [7], [8]).

It can be seen as a hierarchical construction where at the �rst level the values of

some of the problem variables are �xed by a heuristic. These values de�ne a second

level of search where another heuristic looks for the best possible solutions in the
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current subset.

In the case of the PI-CPLP, the �rst level is naturally de�ned as the opening plants

problem. For each combination of open plants that satis�es the aggregated demand

constraint, a subset of potential solutions is created (the second level of search). In

this subset, the assignment of the clients to the open plants is considered. More pre-

cisely, the process applies a �rst evolutive algorithm to a population of candidate sets

of open plants, and then a second or embedded evolutive algorithm is used to �nd

the assignment of clients for each of these sets of open plants.

The overview of the method is given in Figure 2. The description of operators

valid for both levels is now done.

POPULATION INITIALIZATION

CROSS-OVER

MUTATION

POPULATION INITIALIZATION

CROSS-OVER

MUTATION

SHUFFLE

SHUFFLE
END

no

yes

Evolution loop

Evolution loop

no

END

SELECTION

EVALUATION

EVALUATION

SELECTION

SELECTION

EVALUATION

SELECTION

EVALUATION

FIRST LEVEL

SECOND LEVEL

yes

Fig. 2: The embedded approach using evolution type heuristics.

The selection operator is purely elitist with respect to the �tness function and the

feasible domain. It selects the best string at each step of the process. This implemen-

tation is a purely feasible one since once the feasible domain is entered, the strings

are not allowed to go out of it. When a string is selected for reproduction (crossover),

sub-strings of equal length are taken on both halves of it and shifted (see Figure 3).
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This crossover is a mono-parental operator. Each level of the search is now being

addressed through a description of the characteristics of the operators that compose

it.

Parent string

Offspring

1 1 1 1 1 10 0 0 0 0 0

1 1 10 0 0 0 1 10 0 1

Fig. 3: Example of mono-parental crossover.

First level:

Initial population: All strings are randomly generated.

Mutation: When a member (plant) of a string is selected for mutation, the plant

is closed if it was opened and vice-versa.

Evaluation: This is the most important operator since it does the link with the

second level of search. Two cases must be taken into account: binary strings that

are feasible or infeasible to (RP). In the �rst case (the aggregated demand constraint

is veri�ed), the second level of search is called, and the �tness (solution quality) of

the string is de�ned by the result of the second level search. In the second case (the

capacity of the open plants is not su�cient to satisfy constraint 30), a �tness function

that simply looks for strings that satisfy (3') is used. The reason being that any

combination of open plants regardless of their �xed costs can be a part of the best

possible solution for the problem. The function used is the distance to feasibility:

f1(O) = D �
X
j2O

bj

being D the minimum capacity needed by the clients, and the summation being done

on the string's open plants. f1(O) thus gives an indication of the capacity missing in

the set of open plants to satisfy the overall demand of the clients.

Shu�e: The shu�e operator (see [6]) controls the life cycles of the process. The

operator consists of two separate mechanisms. The �rst controls the total number of

generations allowed during the search; as soon as this number is reached the shu�e

stops the current search. The second controls the life span of a given population: if

the current best solution is not improved during a certain number of generations, the
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population is eliminated and the search continues with a brand new one.

Second level:

At this level, a string of open plants with su�cient global capacity is received. The

decision to be assessed is the assignment of the clients to the plants.

Initial population: Required assignment strings are randomly generated from the

list of open plants.

Mutation: When a client i is selected for mutation, the operator does the distinc-

tion between two possible states of the string: non-feasible, and feasible to (P).

In the �rst case, mutation is oriented to reduce infeasibility and again two subcases

are considered. The �rst subcase occurs when the plant pi to which client i is as-

signed has a negative slack (violated capacity) and is focused to reduce the capacity

violation of this plant. Then two lists are sequentially explored. The �rst one con-

tains all reassignments of i in Nshift to plants with enough available capacity. The

second one is associated to interchanges in Nswap. Note that after selecting the client

i to be interchanged, two factors condition the infeasibility reduction for the solutions

generated in Nswap. The �rst is the demand di2 of the client i2 to be interchanged

with i, and the second is the slack value of the plant j2 to which i2 is currently

assigned. The list then contains all interchanges in Nswap with clients that have a

smaller demand than di and associated to plants that have a better slack value than pi.

The second subcase happens when the plant pi to which i is assigned has a posi-

tive slack. Now mutation is oriented to reduce the capacity violation of some violated

plant. To do so, a list containing the interchanges in Nswap with clients that have a

greater demand than di, which are assigned to plants with a negative slack value, and

that do not violate the capacity of plant pi are considered.

When the string is feasible, two lists containing all feasible movements in Nshift

and Nswap respectively are considered.

When an allowed move is encountered in one of the lists, it is performed and

evaluated. In the special case when all lists are empty, a random 3-way exchange

(exchange between 3 randomly selected clients) is performed. This operator together

with the selection process insures that the search moves towards the feasible space,

and once there stays in it.

Evaluation: At this level, a two state evaluation function is also used. When the

string is infeasible to (P), its score is considered to be the distance to feasibility:

f2(�) =
X

j2O:sj<0

jsj j

On the other hand, when the string is feasible, its �tness is directly given by the

objective function:
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f2(�) =
X
j2J

fjyj +
X
i2I

X
j2J

�ijxij

Shu�e: It works the same way as at the �rst level with the following added

functionality: before eliminating the population, a �nal search in Nswap is done on

the best string.

3.2 GRASP

The GRASP metaheuristic was originally proposed in [9]. It is an iterative method,

each iteration containing two phases: the �rst phase builds a solution that is improved

by a local search in the second phase. The general outline of a GRASP algorithm is:

Algorithm 2:

While (stopping criterion not satisfied) do

Construct a Greedy Randomized Solution

Apply local Search

The construction phase of each iteration seeks a compromise between quality and

variety of the solutions which is achieved by partially randomizing a greedy procedure.

Each solution is iteratively constructed one element at a time. The choice of the next

element to be added is decided by random selection from a Restricted Candidate List

(RCL) containing the best candidates with respect to the greedy function (as opposed

to standard greedy procedures in which the choice of the next element is determined

by the top candidate).

An implementation for the PI-CPLP is now described.

Each of the two phases that take place at each iteration of the GRASP is basically

devoted to one of the decision problems of the PI-CPLP. The constructive phase is

focused on generating a set of plants; it also provides an initial assignment of clients

within the obtained set of plants. The local search is mainly devoted to the assign-

ment subproblem, however the initial set of plants may change during that phase.

Constructive phase:

At each step, a plant is opened and clients are assigned to it in such a way that its

capacity constraint is not violated. Once a client is assigned to a plant it is never

reassigned during the construction phase. It is further assumed that within each plant

the clients are ordered by increasing values of the �ij 's (ties are broken by decreasing

values of the demands).

For a given partial solution, each closed plant j is evaluated by the greedy function:

�j =
fj +

P
i2Clientsj

�ij

jClientsj j

where Clientsj is the set of unassigned clients that �t into plant j, according to the
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above mentioned ordering. The numerator is the cost derived from opening plant j

and assigning to it all the clients indexed in Clientsj . Therefore �j corresponds to

the overall cost per client assigned to plant j, if this plant were to be opened.

After evaluating �j for each closed plant, the RCL is built with all the elements whose

greedy function value is below some threshold value. This value depends on the best

(lowest) greedy function value for the current iteration.

Let O denote the set of open plants and C the set of assigned clients, the random-

ized greedy algorithm is the following:

Algorithm 2.1:

Construct a Greedy Randomized Solution

Initialize: O := ;, C := ;
While C 6= I and O 6= J do

8j 62 O

Define Clientsj

Evaluate �j

Evaluate value = minf�j : j 62 Og
Define RCL := fj 62 O : �j � (1 + �)� valueg
Select randomly j

� 2 RCL

Update O := O [ fj�g
Update C := C [ Clientsj

The above procedure does not guarantee obtaining a feasible solution, however

it never failed during the computational experiences. Nevertheless, a failure would

not cause trouble to the overall procedure since the local search phase is designed to

handle solutions that may violate the capacity constraints.

Local search:

The local search phase works on problem (RP), and a penalty term is added to the

assignment costs. In particular, the assignment cost of client i to plant j is �ij + �ij

where �ij measures the level of infeasibility of the current solution due to the assign-

ment of client i to plant j.

�ij =

8>><
>>:

fj

bj
� jsj j �

diP
i:pi=j di

if i is assigned to j and sj < 0

0 otherwise

di=
P

i:pi=j di is the ratio of the total demand assigned to plant j "attributed" to

client i, and (fj=bj) � jsj j is the cost for having jsj j extra units of capacity in plant

j. Then the overall term �ij is the cost charged to client i for increasing the capacity

of plant j in order to make feasible the current set of assignments to the plant.

Strategies for exploring the neighborhoods:

As mentioned in the introduction, GRASP allows the exploration of other neighbor-

hood structures apart fromNshift andNswap in its Local Search phase. The extremely

c
 Investigaci�on Operativa 1999



Investigacion Operativa � Volume 8, Numbers 1,2 and 3, July{December 1999 229

reduced requirements of computational time of the method and the need to improve

its overall performance justify the introduction of the following new neighborhoods:

Nclose(�): Closing plant neighborhood. This neighborhood is obtained by closing one

single plant and reassigning all its clients within the plants that remain open.

Nclose(�) = f�0 = (O0
; A

0) : O0 = O n fj�g; A0 = fp0igi2I ;

p
0
i = pi 8i s:t: pi 6= j

�
; p

0
i 2 O

0 8i s:t: pi = j
�g

Ninter1(�): Open plants interchange neighborhood. This neighborhood can be obtained

by maintaining the same set of open plants and reassigning all clients of a given

plant to another open plant (and vice versa).

Ninter1(�) = f�0 = (O0
; A

0) : O0 = O;A
0 = fp0igi2I ;

9j1; j2 2 J s:t: p
0
i = j2 8i s:t: pi = j1; p

0
i = j1 8i s:t: pi = j2;

p
0
i = pi 8i s:t: pi 6= j1; j2g

Ninter2(�): Open-closed plants interchange neighborhood. This neighborhood can be

obtained by interchanging one open plant (j1) with a closed one (j2). All the

clients from j1 are reassigned to j2.

Ninter2(�) = f�0 = (O0
; A

0) : A0 = fp0igi2I ; 9j1 2 O; j2 2 J nO

s:t: O
0 = O n fj1g [ fj2g p

0
i = j2 8i s:t: pi = j1

and p
0
i = pi 8i s:t: pi 6= j1g

The construction phase previously described provides good starting solutions for

the local search. The following strategies then guide the search of the neighborhoods.

Nclose(�): If an open plant has a single client assigned to it, and the remaining open

plants satisfy the aggregated demand constraint, the move is performed if it

improves the objective function value.

Nshift(�): For a given solution, clients with strictly positive assignment costs (�ij+

�ij) are ordered by decreasing values. This list is sequentially explored. The

current element is reassigned to the �rst open plant that improves the cost

function (if it exists). The plants are processed in the order they were opened

in the construction phase. When a client is reassigned, the elements in the list

are reordered and the next client selected. If the client is not reassigned it is

removed from the list. The search continues until the list is empty.

Nswap(�): The previous list is explored in a similar way. When a client is chosen, it

is interchanged with the �rst subsequent element of the list that improves the

cost function (if it exists).
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Ninter1(�): For each pair of open plants the cost of reassigning all the clients from

one plant to the other (and vice-versa) is evaluated. The best interchange,

among those improving the cost value, is performed.

Ninter2(�): For each pair of plants (j1; j2), j1 open and j2 closed, the cost of reas-

signing all clients from j1 to j2, closing j1 and opening j2, is evaluated. The best

interchange, among those improving the cost value and satisfying the aggregated

demand constraint, is performed.

Reducing infeasibility:

A �nal local search tries to reach feasibility from the solution at hand. In this stage,

client reassignments (Nshift) and client interchanges (Nswap) are performed provided

that the overall infeasibility is reduced. The objective function value is only taken

into account if several moves reduce the infeasibility.

The complete local search phase can then be described as follows:

Algorithm 2.2:

While (end = false) do

Explore Nclose

Explore Nshift

Explore Nswap

If (solution not updated in Nclose; Nshift and Nswap) then

Explore Ninter1

If (solution not updated in Nclose; Nshift; Nswap and Ninter1) then

Explore Ninter2

If(solution not updated) end := true

Final local search stage: Search for feasible solutions

Explore Nshift and Nswap (Perform movements only if infeasibility is reduced)

3.3 Simulated Annealing

Simulated Annealing, introduced in [18] and [5] is based on a strong analogy with the

Metropolis Algorithm -a technique used for modeling the physical annealing process

of solids. The method allows (in a limited way) transitions from one solution to the

other even when the value of the cost function increases. There is thus less possibility

of being trapped in a local optimum. The general algorithm is the following:

Algorithm 3:

Choose initial solution � and temperature T

While (stopping criterion not satisfied) do:

Randomly choose a neighbor � of �

� = cost(�)� cost(�)

If � � 0, then � := �
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If � > 0, then � := � with probability exp(�
�

T
)

T := temp factor � T

The implementation details of this approach for the PI-CPLP are now described.

General algorithm:

As in the other approaches, the algorithm consists of two phases, one for each of the

subproblems of PI-CPLP. First, a set of K solutions is constructed using a variation

of the greedy randomized algorithm. Plants are opened until the aggregated demand

is satis�ed. The remaining clients (if there are any) are processed in descending order

of their demand and assigned to the plant with the greatest capacity slack. Then the

best R solutions with di�erent plant sets are selected. The second phase is focused on

the assignment problem. For each of the R initial solutions generated in the �rst phase

a simulated annealing algorithm as proposed in [17] is applied. In this phase a solu-

tion is skipped if its �xed cost is greater than or equal to the best cost obtained so far.

Strategies for exploring the neighborhoods:

For a given solution, neighborhoods Nshift and Nswap are jointly explored. The rea-

son is the following: if only Nswap is considered, all solutions generated have the

same number of clients in each location. On the other hand, if only Nshift is consid-

ered, there is a great number of movements rejected because they seem very infeasible.

Generation mechanism:

To generate a neighbor solution two plants, j1 and j2, and a client i1 assigned to

plant j1 are selected. If there is enough capacity to reassign the client i1 to plant j2
then the neighbor in Nshift is obtained by moving client i1 to plant j2. If there is

not enough capacity, then a client i2 assigned to plant j2 is selected and a neighbor

in Nswap is obtained by interchanging clients i1 and i2.

Both feasible and infeasible solutions to (P) are accepted. The procedure for selecting

neighbor solutions generates from one up to L neighbors. The �rst generated neighbor

that decreases or maintains the total exceeded capacity is returned. If none exists,

the one with the lowest increase in capacity excess is returned. Ties are broken using

the cost change evaluation.

Acceptance rule for a move:

In addition to the standard rule of move acceptance used by Simulated Annealing,

a fraction of moves that increase the total violated capacity are accepted if they im-

prove the cost of the current solution. In particular, if a move improves the cost but

increases the total exceeded capacity, it is accepted with some probability. On the

other hand, moves that increase both the cost and the total exceeded capacity are

not allowed.

The Initial Solution, and Neighbor Generation procedures follow in order to complete

the algorithm description:

Algorithm 3.1: Initial Solution

O := ;, C := ;
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While (available capacity � D) do

Apply greedy randomized algorithm to select the next

plant to open and update O and C

While (C 6= I) do

Select the client i 2 I n C with greatest di

Select the plant j 2 O with greatest sj

C := C [ fig
pi := j

Algorithm 3.2: Neighbor Generation

Given a solution � = (O;A)

Select two plants j1; j2 2 O
(1)

Select a client i1 from plant j1

if (di1 � sj2) then

�
0 := (O0

; A
0) 2 Nshift(�) where O

0 = O, pi1 = j2, p
0
i = pi 8i 6= i1

else

Select a client i2 from plant j2

�
0 := (O0

; A
0) 2 Nswap(�) where O0 = O, pi1 = j2, pi2 = j1, p0i = pi 8i 6= i1; i2

(1) When � is not feasible j1 is selected among the violated plants with a probability

according to its violated capacity and j2 is selected among the non violated plants

with a probability according to its available capacity. When � is feasible, j1 and j2

are chosen at random

3.4 Tabu Search

Tabu Search, introduced in [13] and [14], exploits a collection of principles for in-

telligent problem solving. It uses: (1) 
exible memory structures; (2) an associated

mechanism of control to be used with the memory structures to de�ne tabu restric-

tions and aspiration criteria; (3) records of historical information for di�erent time

spans which permit the use of strategies for intensi�cation and, in some cases, diver-

si�cation.

The structure of a simple Tabu Search algorithm is:

Algorithm 4:

Given an initial solution �

While (stopping criterion not satisfied) do:

Create a candidate list of moves (� f�0j�0 2 N(�)g)
Choose the best admissible candidate

(based on Tabu restrictions and aspiration criteria)

Update admissibility conditions

(Tabu restrictions and aspiration criteria)
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The implementation details of the Tabu Search for the PI-CPLP are now described:

General algorithm:

Similarly to the other approaches presented in this paper, the algorithm is divided

in two phases. In the �rst phase a set of R initial solutions are generated using Al-

gorithm 3.1, in the same way it is done with the Simulated Annealing approach. In

the second phase, the assignment problem is solved for each of the R initial solutions

using Tabu Search. An initial solution is skipped if its �xed cost is greater than or

equal to the best cost obtained so far.

Objective function:

Since infeasible solutions for (P) are allowed during the search, the objective function

to be minimized is de�ned by:

f1 = z
0 + ��

X
j2O:sj<0

jsj j

where � is a penalty parameter, that is adjusted as in [11]. It increases or decreases de-

pending on the number of infeasible or feasible solutions obtained in the last iterations.

Move:

Given a solution � = (O;A), moves into Nshift and Nswap are considered during the

search process. Assignments of clients to plants with �ij > 0 are considered elite since

they may have an opportunity to improve. Candidate moves are those associated to

elite clients. When exploring candidate moves, if a client i �ts in a plant j (pi 6= pj),

only the reassignment of this client to plant j is considered. On the contrary, if client

i does not �t in plant j (pi 6= pj), only the interchanges between client i and clients

assigned to plant j are considered. Clients are processed in descending order of �ij .

Candidate moves are explored until one improves the cost. If there is no such candi-

date, the one with the minimum increase is selected.

Tabu list:

The tabu list is a circular list of ordered pairs (i, j) with a �xed size (tabu size). It

is generated at the beginning of the search process and updated at each iteration.

If a client i is moved from plant j1 to plant j2 during the iteration l, any candidate

move that tries to assign the client i to the plant j1 will be forbidden during the next

(l + tabu size) iterations.

Aspiration criteria:

At any iteration of the search process, the tabu restriction for a move can be bypassed

if its objective function value is better than the best produced so far and it does not

increase infeasibility.

Diversi�cation:

During the search process some movements seem very unattractive, one consequence

being that some regions of the search space are never explored. For this reason, at
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each iteration a frequency matrix is updated. Any element frij of this matrix records

the number of times that the client i has been assigned to plant j during the search.

When the search is completed the process is restarted replacing the cost matrix c by

the frequency matrix fr for a few iterations. Thus the assignments with very low

frequency are selected. The search process then continues using matrix c. This is

used as a strategy for diversifying the tabu process.

4 Computational Experience

All heuristic approaches presented here have been tested on the set of 33 problems

used in [2]. The set is divided into four classes, C1, C2, C3 and C4, according to the

dimension of the problems, (m � n), where m is the number of clients and n is the

number of plants. C1 contains six (20 � 10) problems, C2 contains eleven (30 � 15)

problems, C3 contains eight (40� 20) problems and C4 contains eight (50� 20) prob-

lems.

The parameters used in the di�erent algorithms are the following:

EEA: The initial populations are generated randomly. The population size con-

sists of 3 members. At the �rst level, the crossover is applied to 95% of the population,

and the mutation to 10% of the strings components. At the second level, the crossover

is applied to 10% of the population, and the mutation to 95% of the strings compo-

nents. At both levels, the shu�e reinitiates the search after 10 generations without

improvement. At the �rst level, the search is stopped after 500 generations, and after

200 at the second level of search.

GRASP: The total number of iterations is 50, and the value of parameter � is 0.4.

SA: The parameter K has value 300, R has value 5, and L has a value equal to

m=2. A description of the remaining parameters can be found in [17]. They are:

freez limit = 20, size factor = 3, cuto� = 2, initial temp = 30,

temp factor = 0.97, and min percent = 0.05.

TS: The parameter K has value 300, and R has value 5. The tabu size is m=4,

which is also the number of iterations during diversi�cation. The stopping criteria

corresponds to 350 iterations without improvement.

Experiments with the di�erent heuristic approaches have been performed on a

VAX-2000 system. Results correspond to average values over 25 runs.

To evaluate the quality of the solutions generated with the proposed methods all

the test problems have also been solved using the Version 4.0 of the CPLEX software
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package, in a time-limit of two hours of CPU (7200 seconds). The experiments with

CPLEX have been performed on a Sun Sparc Station 10/30 with 4 HyperSparc at

100 Mhz using only one processor. After some experimentation to �nd an appropriate

strategy to solve the problems, only problems in the C1 class could be solved opti-

mally from scratch within the given time-limit. For the other classes of test problems,

the value of the best solution found with the proposed metaheuristic methods was

used as an incumbent value to speed up the tree search. With this additional infor-

mation, CPLEX could optimally solve all the problems in the C2 class and most of

the problems in C3 and C4. However, the optimality of the obtained solutions could

not be proved for test problems 18, 20 and 21 in C3 and 26, 30, 31 and 33 in C4.

The results obtained with CPLEX are depicted in Figure 7. The cells marked with

an asterisk correspond to values for which optimality could not be proved. Although

a rigorous comparison of times is not possible since the experiments were carried out

in di�erent computers, these results illustrate the di�culty to obtain good quality

solutions in a reasonable amount of computation time for the considered set of test

problems.

Figure 4 depicts bar graphs for each class of problems with the average of the

mean deviation from the best known value. For each class k, the average, Ak, has

been obtained with the expression:

Ak =

X
j2Ck

�j

jCkj
k = 1; :::; 4:

where �j is the mean deviation from the best known value, bestj, for problem j

obtained with CPLEX as explained above:

�j =

25X
i=1

(solutionij � bestj)

bestj
25

and solutionij is the value of the best solution obtained for problem j in run i.

For the C1 class of problems, EEA and TS provide the best results. For the other

classes, TS provides the best results, followed by SA and GRASP which behave simi-

larly. The behavior of TS is very satisfactory since its average deviation ranges from

0:37% to 0:81% for the di�erent classes of problems. Excepting EEA, approaches

have proven to be robust, since their performance does not vary signi�cantly as the

problem dimension increases. In the case of EEA, although for small dimensions

the quality of the solutions are equivalent to those of TS, its performance decreases

as dimension grows and for the classes of larger problems, the average deviation is

3:4%. We have not found a satisfactory explanation for the decrease in the algorithm

performance. In the case of GRASP the improvement with respect to the initial so-

lutions generated with the Greedy Randomized Heuristic has proven to be signi�cant.
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Fig. 4: Bar graphs for each class of problem.

The average CPU times (in seconds) both to obtain the best solution, T1k, and

to terminate the procedure, T2k, were computed for each class of problems. These

values are shown in Figure 5. They have been obtained with the expressions:

T1k =

X
j2Ck

�1j

jCkj
; T2k =

X
j2Ck

�2j

jCk j
; k = 1; :::; 4:

where �1j and �2j are the mean times over the 25 runs for problem j, i.e.

�1j =

25X
i=1

t
i
1j

25
; �2j =

25X
i=1

t
i
2j

25
:

where ti1j and t
i
2j denote, respectively, the best solution and global times required by

the i-th execution of problem j.
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Fig. 5: Average CPU times.

Note that the vertical axis is a logarithmic scale. Hence, it is clear from this �gure

that the GRASP requires several orders of magnitude less time than the second best

approach (which is TS) both for terminating and for generating its best solution. On

the other extreme, EEA requires at least one order of magnitude more time than all

the other approaches. Figure 6 shows the average proportions of the overall time re-

quired by each of the heuristics to generate its best solution for each class of problems.

As can be seen, it is very unlikely that an increase in the overall time of any of the

heuristics could provide any improvement on the best generated solutions.

Fig. 6: Required average proportions of the overall times.
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The times consumed by the experiments with CPLEX cannot be compared to

those shown in Figure 5. On the one hand, excepting for the C1 class, the tree search

started with the incumbent value provided by the best of the heuristic approaches.

On the other hand, the required times present a tremendous variability. Thus, the

average time for each class is, to a great extent, misleading. Finally, in spite of cor-

responding to experiments in a di�erent computer, in many cases they can safely be

considered far beyond the time-limits of Figure 5 even for the logarithmic scale. How-

ever, these times are shown in Figure 7, since they permit to appreciate the e�ciency

of the proposed methods.

Figure 7 also shows the best results obtained with each of the algorithms pre-

sented. The shadowed cells correspond to the best overall value obtained with the

proposed methods and the cells in bold to the optimal values (or best known values

when optimal values are not known). The last column shows the percent deviations

between these two values. The table also shows the best known values reported in

[2]. The average improvements with respect to previous known value are depicted in

column Improvement from previous best-known.

The results in Figure 7 show that, in general, the algorithm with the best average

behavior also provided the overall best solution. Note that TS gives the best solution

in 21 out of the 33 test problems. The exception is C1 where EEA always provided

the best solution but on the average did not perform as well as TS.

As can be seen, all the algorithms have outperformed the best known value for all

the test problems (excepting EEA for problem 28). For each class of problems, the

average improvement from the best known value ranges from 2.96% to 5.26% which

in our opinion is quite signi�cant. The percent deviation from the optimal (or best

known) solutions is very low since it never exceeds 0:63% and on the average it takes a

value of 0:10%. It can be observed that the di�erent approaches generate, in general,

very high-quality solutions. In particular, EA provides the optimal solutions to all

problems in C1. With respect to the complete set of test problems, TS generates

the optimal solution (or best-known when optimal is not known) for nearly 50% of

the problems. Taking into account the required computational times, these results

are really good, specially considering the di�culties of CPLEX not only to optimally

solve the problems but also to prove optimality of the given solutions.

5 Conclusions

This paper considers di�erent heuristic approaches for the PI-CPLP: An Evolutive

Algorithm, a Greedy Randomized Adaptive Search Procedure, a Simulated Annealing

and a Tabu Search.

All the algorithms proposed share three common characteristics. First, they con-
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Fig. 7: Best results for the algorithms.

sider the structure of the problem by de�ning two phases, one for the plants' selection

problem and another one for the allocation subproblem. Second, they search for fea-

sible solutions to the original problem using the relaxation obtained by aggregation

of the capacity constraints. Third, they explore the same neighborhood structures.

These three characteristics can be seen as a template to which the proposed meth-
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ods have been adjusted. The di�erent components of all the algorithms are presented.

Also the neighborhood structures and the strategies used to explore them are de-

scribed.

Computational experiments have been performed on a set of test problems from

the literature and the behavior of the di�erent algorithms has been compared both

to the previous best known values and to the best solutions obtained with CPLEX in

two hours of CPU time. The obtained results prove that the template used for the

proposed algorithms is successful for solving the PI-CPLP.

With respect to the methodologies that have been used, all have proven to be

e�ective, since for all the test problems the previous best known value has been im-

proved with all of them (with the exception of EEA for one single problem). Also

the deviations from the best solutions generated by CPLEX prove the quality of the

proposed approaches.

EEA has provided the optimal solutions for all the small-sized problems. However,

its performance decreased considerably for larger instances. We have not found an

adequate explanation for the decrease on its performance for larger problems. This

invites to further investigate on that point.

SA and GRASP have proven to be good alternatives, in terms of the quality of

the generated solutions and of the average deviation from the best know values. Ad-

ditionally, GRASP behaved remarkably well in terms of the required computational

time.

However, TS has proven to be a really e�ective method both in terms of the qual-

ity of the generated solutions and in terms of its deviation from the best known value

for problems of all sizes.

The results obtained suggest that a hybrid approach combining the speed of

GRASP for �nding good initial solutions with other more sophisticated search tech-

niques such as TS is extremely promising.
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