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Abstract

It is known that if x ∈ [0, 1] is polynomial time random (i.e. no
polynomial time computable martingale succeeds on the binary frac-
tional expansion of x) then x is normal in any integer base greater
than one. We show that if x is polynomial time random and β > 1
is Pisot, then x is “normal in base β”, in the sense that the sequence
(xβn)n∈N is uniformly distributed modulo one. We work with the no-
tion of P -martingale, a generalization of martingales to non-uniform
distributions, and show that a sequence over a finite alphabet is dis-
tributed according to an irreducible, invariant Markov measure P if
an only if no P -martingale whose betting factors are computed by a
deterministic finite automaton succeeds on it. This is a generalization
of Schnorr and Stimm’s characterization of normal sequences in integer
bases. Our results use tools and techniques from symbolic dynamics,
together with automata theory and algorithmic randomness.

1 Introduction

A weak notion of randomness for sequences over a finite alphabet Σ =
{0, . . . , b− 1} (b ∈ N) is normality, introduced by Borel in 1909. Normality
may be regarded as a “law of large numbers” for blocks of events, in the
sense that the average occurrences of a block σ ∈ Σ∗ of length n converges
to |Σ|−n. A real number x is called normal in base b (b ∈ N) if its expansion
in base b is normal. While almost all numbers are normal to all bases it is
not too difficult to see that this notion is not base invariant. In fact for any
multiplicatively independent bases b and b′ the set of numbers normal to b
but not normal to b′ has full Hausdorff dimension [14]. We say a number x
is absolutely normal if it is normal in all integer bases greater than one. It
is not difficult to see that x is normal in base b if and only if the sequence
(xbn)n∈N is u.d. modulo one, and then x is absolutely normal if and only if
(xbn)n∈N is uniformly distributed (u.d.) modulo one for all integer b > 1.

Polynomial time randomness is another weak notion of randomness. We
say that x is polynomial time random in base b if no martingale (a formaliza-
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tion of betting strategy) on the alphabet {0, . . . , b− 1} which is computable
in polynomial time succeeds on the expansion of x in base b. A result of
Schnorr [16] states that if x is polynomial time random in base b then x is
normal in base b.

It was recently shown [6] that polynomial time randomness is base in-
variant, so that being polynomial time random in a single base implies being
normal for all bases, i.e. being absolutely normal. The converse is not true,
since there are absolutely normal numbers which are computable in poly-
nomial time [1, 6, 10], and these cannot be polynomial time random. The
following question was left open in [6]:

Question 1.1. Suppose that x is polynomial time random. Is the sequence
(xβn)n∈N u.d. modulo one for all rational β > 1?

The distribution of (xβn)n∈N modulo one for rational β seems, however,
fairly intractable. It is unknown, for instance, if ((3/2)n)n∈N is u.d. modulo
one. Our first main result is that there is a class of algebraic reals for which
the question may be readily handled:

Theorem 1.2. If x is polynomial time random then the sequence (xβn)n∈N
is u.d. modulo one for all Pisot β > 1.

Observe that any non-integer Pisot β is irrational, and as a consequence
of a result of Brown, Moran and Pearce [4, Theorem 2], there are uncount-
ably many reals which are absolutely normal but (xβn)n∈N is not u.d. modulo
one.

The formulation of normality to integer bases β in terms of modulo
one uniform distribution allows us to understand normality as equivalent to
what ergodic theory calls genericity, an equivalence which boils down to two
facts: 1) the map Tβ(x) = (βx) mod 1 on [0, 1) is equivalent to a “shift”
rightwards in the space of sequences {0, . . . , β − 1}N when x is mapped to
its base β expansion; 2) (xβn) mod 1 = Tnβ (x).

When a non-integer base β is considered, 2) is immediately false, while
1) has no clear reformulation, since there is no obvious candidate for a space
of sequences that “represent” numbers in base β. It is here that the theory
of β-shifts and β-representations, developed, among others, by Parry [12]
and Bertrand [2], helps fill in the missing pieces.

Once the space of sequences that represent numbers in the base β (using
symbols from Σ = {0, . . . , dβe− 1}) is defined, it is equipped with a natural
shift transformation and a measure Pβ called the Parry measure, which
plays the same role that the uniform or Lebesgue measure played in integer
representation. Indeed, a result by Bertrand says that, when β is Pisot, if
a real number x has a β-expansion that is distributed according to Pβ (this
is the analogue notion to being “normal in base β”), then (xβn)n∈N is u.d.
modulo one.
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To see how this is useful for the proof of Theorem 1.2, let us say we
have a number z such that (zβn)n∈N is not u.d. modulo one. Then, by
Bertrand’s theorem, its β-representation would have some block σ whose
average occurrences do not converge to Pβ(σ). We would then want to
construct a polynomial time martingale that succeeds by betting on that
block, as is done in the integer base case.

However, this cannot be done in a straightforward manner, since the
martingale condition as used in the algorithmic randomness literature, as-
sumes outcomes should be distributed according to the uniform measure.

We work with a generalized definition of martingales which captures
the idea of a “fair” betting strategy when expansions are supposed to obey
some non-uniform distribution P . Indeed, this definition of a P-martingale
will capture the broader sense of martingale as it is used in probability
theory. In this setting, not only may the probability of the next symbol be
different from |Σ|−1, it may also show all forms of conditional dependence
on the preceding symbols. It should be noted that randomness notions
under measures different from Lebesgue have already been considered in,
for example, [15].

Schnorr and Stimm [17] show that a sequence is normal in base b if
and only if no martingale on the alphabet of b digits whose betting factors
are computed by a deterministic finite automaton (DFA) succeeds on the
expansion of x in base b. Our second main result is a generalization of this
last statement in terms of P -martingales:

Theorem 1.3. A sequence is distributed according to an irreducible, invari-
ant Markov measure P if an only if no P -martingale whose betting factors
are computed by a DFA succeeds on it.

The importance of Markov measures is that they exhibit enough mem-
orylessness to make them compatible with the memoryless structure of a
DFA.

As regards β-representations, a second result by Bertrand establishes
that for β Pisot Pβ, the natural measure on β-expansions, is “hidden”
Markov. By extending Theorem 1.3 to hidden Markov measures we are
able to construct a Pβ-martingale generated by a DFA that succeeds on
the β-expansion of z. We use the polynomial time computability of the β-
expansion and of the measure Pβ to show that an integer base (i.e. classical)
martingale which succeeds on z can be constructed from our Pβ-martingale,
following the same ideas used in [6].

1.1 Outline

The paper is organized as follows. In §2 we introduce some basics from
symbolic dynamics, mainly the definition of Markov and sofic subshifts,
and the notion of sequences distributed according to invariant measures P
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over the shift. In §3 we introduce the notion of P -(super)martigales and
show the characterization given by Theorem 1.3. In §4 we introduce some
definitions and results regarded to representation of reals in non-integer
bases, in particular, Pisot bases. Finally, in §5 we put all pieces together to
get Theorem 1.2.

2 Subshifts and measures

Throughout this work Σ will denote an alphabet of finitely many symbols,
which will be denoted by a, b, c, etc. The set of all words over the alphabet Σ
will be denoted by Σ∗, and the set of all words of length k over the alphabet
Σ will be denoted Σk (so Σ∗ =

⋃
k Σk). Greek letters σ, τ and so on will be

used for finite words in Σ∗ Letters s, s′ will be used for infinite sequences in
ΣN. The i-th symbol of the sequence s will be denoted si. Concatenation
will bear no special symbol, so we may write σ = ab, s = as′, ρ = στ , etc.
For a word σ and k ∈ N we denote with σk the string of length k|σ| which
consists of the k-times repetition of σ, and with σ∞ to the infinite sequence
which consist of the repetition of σ infinitely may times. For any sequence
s ∈ ΣN we will denote by s�N the word that consists of the first N symbols
of s, and by 〈s : k〉 the same sequence s when regarded as a sequence in Σk.
For a word σ and a non-negative integer k, let σ �k denote the subword of σ
consisting of its last k symbols (in case l < k then σ �k is just σ). By σ � τ
we will denote that σ is a prefix of τ , and by σ ≺ τ we will denote that σ
is a strict prefix of τ . We will use the same notation (σ ≺ s and σ � s) for
sequences s. By [σ] we will denote the cylinder set consisting of all infinite
sequences extending σ, i.e. [σ] = {s ∈ ΣN : σ ≺ s}.

Definition 2.1. Given a finite alphabet Σ, a subshift is a tuple (X,T ) where

1. X is some closed (hence, compact) subset of ΣN with the product
topology

2. X is invariant under T (that is, T (X) ⊆ X); and

3. T is the continuous mapping defined by (T (s))n = sn+1.

If X = ΣN we say that (X,T ) is the full |Σ|-shift. The language associated to
(X,T ), denoted L(X) ⊆ Σ∗, consists of all words appearing in the sequences
of X.

Notice that L(X) is a factorial and prolongable language, that is, it
contains all subwords of its words and, if σ ∈ L(X), then there exists a non-
empty word τ in Σ∗ such that στ ∈ L(X). Conversely, given any language,
there is a corresponding closed subset of sequences. For a language L ⊆ Σ∗

we define
XL = {s ∈ ΣN : ∀N, s�N ∈ L}.
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Observe that XL is closed and that if L is factorial then XL is shift invariant,
hence, it is a subshift of ΣN. Moreover, if L is factorial and prolongable,
then L(XL) = L

Definition 2.2. A k-step Markov shift (also known as a subshift of finite
type, or SFT) is a subshift (X,T ) of ΣN such that there exists a set G (called
a grammar) of admissible words of length k satisfying

X = {s ∈ ΣA : (∀i ∈ A) sisi+1 . . . si+k−1 ∈ G}.

These are called Markov shifts by analogy with the Markov processes
of probability theory. For these, looking back at the last k values of the
process (say, the last k flipped coins) is enough to know the probabilities of
the next value (looking further backwards does not change these conditional
probabilities). In the case of Markov shifts, looking at the last k−1 symbols
is enough to know if the next symbol is admissible.

Definition 2.3. A probability measure P on ΣN is called k-step Markov for
some fixed k ∈ N if for all σ, τ ∈ Σ∗, |σ| ≥ k, P ([στ ] | [σ]) = P ([ρτ ] | [ρ])
where ρ = σ �k.

The above condition is actually called k-step homogenous Markov. A
strict Markovian condition would read P ([στ ] | [σ]) = P (T−(l−k)([ρτ ]) |
T−(l−k)([ρ])). Since we will never consider non-homogenous Markov pro-
cesses, we can spare the reader this extra terminology.

From now on we will simplify notation and write P (σ) instead of P ([σ])
for any word σ ∈ Σ∗. Given a 1-step Markov probability measure P on ΣN

we define its transition matrix (pa,b)a,b∈Σ to be

pa,b = P (ab | a).

An invariant measure on a subshift (X,T ) is a probability measure P
on X (with its Borel σ-algebra B) such that P ◦ T−1 = P . Notice that, by
definition of T , P ◦T−1(σ) =

∑
a∈Σ P (aσ) for words σ, and invariance need

only be checked for such word cylinders.
Let P be a 1-step Markov measure on ΣN with transition matrix M =

(pa,b)a,b∈Σ. Define the vector v ∈ RΣ, va = P (a). Then P is invariant if and
only if v is a left eigenvector of M . Let P be a k-step Markov on ΣN. Let
Θk = {τ ∈ Σk : P (τ) > 0}. Then P induces a 1-step Markov measure P k on
ΘN
k with transition matrix (pkσ,τ )σ,τ∈Θk = P (στ | σ).

A probability measure P on ΣN is called irreducible if for any words σ, τ
such that P (σ) > 0, P (τ) > 0 there is some word ρ such that P (σρτ) > 0. A
nonnegative n×n matrix A is irreducible when the associated directed graph
GA, which has n nodes and in which there is an edge from node i to node
j if and only if Aij > 0, is strongly connected. A 1-step Markov measure is
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irreducible if its transition matrix is irreducible, a k-step invariant Markov
measure is irreducible if the matrix (pkσ,τ )σ,τ∈Θk is irreducible.

The following is the Perron-Frobenius Theorem for Markov chains in
the finite state case (see [7, Theorem 1.3.5] and [11, Theorems 1.7.5-7 and
Exercise 1.7.5]):

Theorem 2.4. Let P and P ′ be two invariant, irreducible 1-step Markov
measures on ΣN such that their transition matrices are the same. Then
P = P ′.

Given two subshifts (X,T ) and (X ′, T ) with X ⊆ ΣA, X ′ ⊆ Σ′A, a factor
map is an onto map ψ : X → X ′ which commutes with the shift operator,
that is, ψ ◦ T = T ◦ ψ. Markov shifts are not closed under factor maps, but
the following class of subshifts is.

Definition 2.5. A sofic subshift is the image of a Markov shift under a
factor map.

Example 2.6. Let us consider X to be the 2-step Markov shift on {0, 1}N
with grammar G = {00, 10, 01}. For each s in X, let ψ(s) be such that
(ψ(s))i = 0 if si = si+1 = 0 and (ψ(s))i = 1 otherwise. The image of ψ
is the set of infinite sequences such that all blocks of consecutive 1’s are of
even length (blocks of 0’s are of arbitrary length). This corresponds to the
regular expression ((11)∗0∗)∗. Notice that this is not a Markov shift, since
no matter how big k is, looking back at the last k values is not enough to
determine whether a 0 is admissible next.

Definition 2.7. Given a subshift (X,T ), s ∈ X and an invariant measure µ
on X, we will say s is µ-distributed if for all continuous f : X → R we have

lim
N→∞

∑N−1
n=0 f(Tns)

N
=

∫
fdµ.

Notice that the above condition need only be checked on the charac-
teristic functions of word cylinders (this is because characteristic functions
of cylinders are dense in C(ΣN), since they form an algebra that separates
points). Then it is immediate that if X = Xk, the full k-shift for some inte-
ger k > 1, and µ is the uniform or Lebesgue measure on X with µ(i) = k−1

for i ∈ Σ, then s is µ-distributed if and only if the real number
∑

j>0 sjk
−j

is normal in base k.
There is a notion of entropy for dynamical systems called metric entropy

or Kolmogorov-Sinai entropy, which is a natural extension of the Shannon
entropy, and which assigns an entropy value hµ(X) to any invariant measure
µ∗ on a system X. A measure µ∗ has maximal entropy if hµ∗(X) ≥ hµ(X)
for all invariant measures µ on X. An important result concerning invariant
measures for Markov shifts is the following, due to Parry [13]:1

1An earlier and independent proof, in a somewhat different language, was already
formulated in [18].
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Theorem 2.8. Given an irreducible Markov shift (X,T ) with a grammar
of wordlength k − 1, there is a unique invariant probability measure P̃ on
X of maximal metric entropy. Moreover, this measure is k-step Markov.

3 P -martingales and P -distributed sequences

In the algorithmic randomness literature, given a martingale f on Σ∗, one
often constructs a (semi)measure µf (σ) = f(σ)|Σ|−|σ|, which may be alter-
natively written as

µf (σ) = f(σ)λ([σ]), (1)

where λ is the Lebesgue or uniform measure on ΣN, which is taken to be
the natural or “fair” measure on sequences of digits.

As was hinted in the introduction and by the mention of Theorem 2.8,
we will be interested in measures different from Lebesgue, i.e. we would like
to substitute some arbitrary P for λ in the right hand side of (1). This
forces us to change the definition of a martingale f , if we still want to make
µf an additive measure. Given an alphabet Σ and a language L ⊆ Σ∗, a
probability measure P on ΣN is called L-supported if P (σ) = 0 ⇔ σ ∈ Σ∗\L.
Equivalently, P has full support on XL.

Definition 3.1. Given an alphabet Σ, a language L ⊆ Σ∗ and some L-
supported probability measure P on ΣN, a P -supermartingale on L is a
function f : L→ R satisfying

f(σ) ≥
∑
a∈Σ
σa∈L

P (σa | σ)f(σa) (2)

for all σ in L. The function f is called a P -martingale if the above inequality
can be replaced by an equality for all σ ∈ L. We say that f succeeds on
s ∈ ΣN if lim supN f(s �N ) = ∞. The ratios f(σa)/f(σ) are called betting
factors of f .

Notice that the conditional probabilities in (2) are always well-defined
since P is L-supported and σ ∈ L. Of course, when P is λ as in Defini-
tion 3.1, the classical definition of a martingale is recovered, since λ(σa |
σ) = λ(a) = |Σ|−1. This generalized definition is somewhat more intuitive
in the sense that it makes explicit the real-life fact that the odds offered
by a bookie at some gamble are the inverse of some implied probability
(conditional on the available information) on the outcomes of the gamble.
Classical martingales then just capture the case when these probabilities are
uniform and independent of previous outcomes.

We define now the notion of P -martingale generated by a deterministic
finite automaton (DFA). This is a generalization of the notion of a classical
betting strategy generated by a DFA, introduced in [17]. We will write
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automata in the usual form M = 〈Q,Σ, δ, q0, Qf 〉, where Q is a finite set
of states, Σ is the input alphabet, δ is the transition function, q0 is the
initial state and Qf ⊆ Q is the set of accepting states. Also, we will use
the notation δ∗ for the natural extension of the transition function δ from
symbols to words in Σ.

Definition 3.2. A P -martingale f on a language L is generated by a DFA
if there is a DFA M accepting L, and a function b : Q× Σ→ R such that

f(σa) = b(δ∗(σ, q0), a)f(σ)

for any word σ and symbol a such that σa ∈ L.

The main result of this section is that any sequence is distributed ac-
cording to an irreducible, invariant Markov measure P if an only if no P -
martingale generated by a DFA succeeds on it. The rest of the section is
devoted to show it. In §3.1 we show the ‘if’ implication and in §3.2 we show
the ‘only if’ implication. For the case of P being a measure on a sofic shift,
we extend the ‘if’ direction in §3.1.1. This generalization will be needed for
§5.

3.1 P -martingales on a DFA can beat sequences that are not
P -distributed

Theorem 3.3. Let Σ be an alphabet, (X,T ) a subshift of ΣN, and let P
be a L(X)-supported k-step Markov invariant measure on ΣN such that
(pkσ,τ )σ,τ∈Θk , the Markov transition matrix induced on ΘN

k , is irreducible.
Suppose s ∈ X is not P -distributed. Then there is a P -martingale generated
by a DFA which succeeds on s. Moreover, the only betting factors of this
martingale are 1, (1 + δ) and (1 − δp∗/(1 − p∗)), where δ is rational and
p∗ = P (τρ | τ) or p∗ = 1− P (τρ | τ) for some τ, ρ ∈ Σ∗.

Before proceeding to the proof of the theorem we present some useful
notation and auxiliary lemmas. For words σ, τ ∈ Σ∗, we let occ(τ, σ) be the
number of occurrences of τ in σ, that is

occ(τ, σ) = |{i : 0 ≤ i ≤ |σ| − |τ |, τ = σi . . . σi+|τ |−1}|.

For k an integer, P a measure on ΣN, σ ∈ Σ∗ and A ⊆ Σ∗ we write

Preck(σ) = {τ ∈ Σk : P (τσ) > 0}, and Preck(A) =
⋃
σ∈A

Preck(σ).

We will also make use of the following functions Ms and ms defined on Σ∗

Ms(σ) = lim sup
N→∞

occ(σ, s�N )

N
, and ms(σ) = lim inf

N→∞

occ(σ, s�N )

N
,
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for some fixed s ∈ ΣN. The subscript s will often be omitted from Ms and
ms when it is understood from context.

For the sake of simplicity, since the step k is fixed, we will write pσ,τ =
pkσ,τ . To prove Theorem 3.3 we will first need some auxiliary lemmas. For
the rest of this section, the measure P is assumed to satisfy the conditions
of Theorem 3.3.

Lemma 3.4. Suppose s ∈ X is not P -distributed and that ms(τ
∗) 6= 0 for

some τ∗ ∈ Θk. Then there is some σ∗ ∈ L(X) with |σ∗| ≥ k and b ∈ Σ such
that

occ(σ∗b, s�N )

occ(σ∗, s�N )
6→ P (σ∗b | σ∗) (3)

when N →∞. Moreover, σ∗ can be chosen so that ms(σ
∗) > 0.

Proof. Let s ∈ X not be P -distributed, and let M = Ms and m = ms. Let
us define

rσ,τ = lim
N→∞

occ(στ, s�N )

occ(σ, s�N )

for any words σ, τ ∈ Σ∗, whenever the limit exists.
The proof follows by contradiction, so let us assume that for all words

σ with |σ| ≥ k and P (σ) > 0, and any b ∈ Σ we have rσ,b = P (σb | σ). The
core of our proof consists in showing that these assumptions imply that M
is actually a Markov measure with the same transition matrix as P . This
will be carried out through the following Propositions 3.5, 3.6 and 3.7.

Proposition 3.5. For all words σ with |σ| ≥ k, P (σ) > 0, and any word
τ = b1 . . . bm ∈ Σ∗ we have rσ,τ = P (στ | σ).

Proof. Given τ , we first take the largest j such that P (σb1 . . . bj−1) > 0.
Then, by an iterated use of rσ,b = P (σb | σ) we get

rσ,b1...bj =

j−1∏
i=1

rσb1...bi,bi+1

=

j−1∏
i=1

P (σb1 . . . bi+1 | σb1 . . . bi) = P (σb1 . . . bj | σ).

If j = m we are done. Otherwise, we have

0 = P (σb1 . . . bj+1) = P (σb1 . . . bj+1 | σb1 . . . bj) = rσb1...bj ,bj+1
.

Notice that

0 = rσb1...bj ,bj+1
= lim

N→∞

occ(σb1 . . . bj+1, s�N )

occ(σb1 . . . bj , s�N )
≥ lim sup

N→∞

occ(σb1 . . . bm, s�N )

occ(σ, s�N )
,
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and hence = rσ,b1...bm exists and is equal to 0. Then

rσ,b1...bm = 0 = P (σb1 . . . bj+1) ≥ P (σb1 . . . bm) ≥ 0

implies P (στ | σ) = 0, which finishes our proof of Proposition 3.5.

Proposition 3.6. For any τ ∈ Θk we have

M(τ) = lim
N→∞

occ(τ, s�N )

N
. (4)

Proof. Fix some τ∗ ∈ Θk such that m(τ∗) 6= 0 and let τ1 . . . τ` be an enu-
meration of all the other words in Θk. It should be noted that if we define
ΘM
k = {τ ∈ Σk | M(τ) > 0}, then from Proposition 3.5 and the fact that

P is L(X)-supported and s ∈ X it is easy to deduce that ΘM
k ⊆ Θk. This

fact will be implicit in the following calculations. Then, for any i ≤ `,

lim sup
N→∞

occ(τi, s�N )

occ(τ∗, s�N )
= lim sup

N→∞

∑
τ∈Θk

occ(ττi, s�N )

occ(τ∗, s�N )

= pτ∗,τi + lim sup
N→∞

∑̀
j=1

occ(τjτi, s�N )

occ(τj , s�N )

occ(τj , s�N )

occ(τ∗, s�N )

≤ pτ∗,τi +
∑̀
j=1

pτj ,τi lim sup
N→∞

occ(τj , s�N )

occ(τ∗, s�N )
. (5)

Notice that

lim sup
N→∞

occ(τi, s�N )

occ(τ∗, s�N )
≤ lim sup

N→∞

occ(τi, s�N )

N

(
lim inf
N→∞

occ(τ∗, s�N )

N

)−1

=
M(τi)

m(τ∗)
<∞.

Hence can write

xi = lim sup
N→∞

occ(τi, s�N )

occ(τ∗, s�N )

and x = (x1, . . . , x`), and reformulate (5) in matrix form as follows

(id−R∗)x ≤ p∗, (6)

where ≤ is the product order on R`, R∗ is the transpose of the Markov
transition matrix pσ,τ restricted to Θk \ {τ∗} and p∗ = (pτ∗,τ1 , . . . , pτ∗,τ`).

Similarly, if

yi = lim inf
N→∞

occ(τi, s�N )

occ(τ∗, s�N )

and y = (y1, . . . , y`), then the same reasoning used in (5) shows

(id−R∗)y ≥ p∗. (7)
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Let us write A = (id − R∗) and show that Ax = Ay. Equations (6)
and (7) imply Ax ≤ Ay, so it suffices to show that a contradiction follows
from assuming Ax < Ay. Indeed, Ax < Ay means that, for all i,

∑
j Aijxj ≤∑

j Aijyj , where the inequality is strict for some i. This, in turn, implies

∑
j

(∑
i

Aij

)
xj =

∑
i

∑
j

Aijxj <
∑
i

∑
j

Aijyj =
∑
j

(∑
i

Aij

)
yj ,

which is impossible since xj ≥ yj for all j and
∑

iAij = 1 −
∑

i pτj ,τi ≥ 0.
Thus, Ax = Ay.

Now, if A were invertible then it would follow that x = y, which means
limN→∞ occ(τi, s �N )/occ(τ∗, s �N ) exists for all i, and this in turn implies
that (4) is true for τ∗, that is, occ(τ∗, s �N )/N converges (to M(τ∗), its
lim sup), since∑

i

lim
N→∞

occ(τi, s�N )

occ(τ∗, s�N )
+ 1 = lim

N→∞

N

occ(τ∗, s�N )

and from this convergence for τ∗ we derive that of τi for all i using

lim
N→∞

occ(τi, s�N )

occ(τ∗, s�N )
lim
N→∞

occ(τ∗, s�N ) = lim
N→∞

occ(τi, s�N )

N
.

So it remains to show that A is indeed invertible. If it were not, then R∗

would have 1 as an eigenvalue, and the Perron-Frobenius theorem, together
with the fact that the column sums of R∗ are smaller than 1, imply 1 has a
unique nonnegative eigenvector z = (z1, . . . , z`). That is,

∑̀
i=1

ziR
∗
ji =

∑̀
i=1

zipτi,τj = zj . (8)

Now, τ∗ ∈ Θk is excluded from the enumeration (τi)1≤i≤` and the ir-
reducibility of the matrix pσ,τ implies that Preck(τ

∗) ∩ (Θk \ {τ∗}) is not
empty. Hence, there is some τi ∈ Preck(τ

∗) and for each such i we have∑`
j=1 pτi,τj < 1, so that if zi 6= 0 then (8) implies

∑̀
j=1

zj =
∑̀
i,j=1

zipτi,τj =
∑̀
i=1

zi
∑̀
j=1

pτi,τj <
∑̀
i=1

zi,

which is a contradiction.
Thus, zi = 0 for all i such that τi ∈ Preck(τ

∗). This in turn implies
pτj ,τi = 0 for all j such that zj 6= 0, since 0 = zi =

∑
j zjpτj ,τi . Equivalently,

zj = 0 for all j such that τj ∈ Preck(τ
i).

We then repeat this reasoning to show zk = 0 for all k such that
τk ∈ Preck(τ

j) and keep repeating the same reasoning until all entries in
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z have been shown to be 0 (this is guaranteed by irreducibility). Hence,
z = 0, which contradicts the assumption that z is an eigenvector of eigen-
value 1. It follows that A must be invertible. This concludes the proof of
Proposition 3.6.

Proposition 3.7. M is equal to P restricted to Θk.

Proof. Now, M is a probability measure on Θk, since∑
τ∈Θk

M(τ) =
∑
τ∈Θk

lim
N→∞

occ(τ, s�N )

N
= lim

N→∞

∑
τ∈Θk

occ(τ, s�N )

N
= 1.

Together with the Markov transition matrix pσ,τ , M defines a probability
measure ν on ΘN

k in a natural way. First, ν is defined inductively on word
cylinders

ν([τ ]) = M(τ)

ν([τ1 . . . τj ]) = ν([τ1 . . . τj−1])pτj−1,τj

then extended naturally to all cylinders and finally to the Borel σ-algebra
B of ΘN

k via Caratheodory’s extension theorem.
As with P , we will drop the brackets for word cylinders. To show that ν

is invariant, it is enough to show it for word cylinders, that is, it is enough
to show

ν(T−1(τ1 . . . τj)) =
∑
σ∈Θk

ν(στ1 . . . τj) = ν(τ1 . . . τj).

By our construction of ν,

∑
σ∈Θk

ν(στ1 . . . τj) =
∑
σ∈Θk

ν(σ)ν(τ1 | σ)

j−1∏
i=1

ν(τi+1 | τi)

=
∑
σ∈Θk

M(σ)pσ,τ1

j−1∏
i=1

pτi,τi+1 =

(
j−1∏
i=1

pτi,τi+1

) ∑
σ∈Θk

M(σ)rσ,τ1

=

(
j−1∏
i=1

pτi,τi+1

) ∑
σ∈Θk

lim
N→∞

occ(σ, s�N )

N
lim
N→∞

occ(στ1, s�N )

occ(σ, s�N )

=

(
j−1∏
i=1

pτi,τi+1

) ∑
σ∈Θk

lim
N→∞

occ(στ1, s�N )

N

=

(
j−1∏
i=1

pτi,τi+1

)
lim
N→∞

occ(τ1, s�N )

N

=

(
j−1∏
i=1

pτi,τi+1

)
M(τ1) = ν(τ1 . . . τj). (9)

12



Thus, ν is invariant, 1-step Markov and has the irreducible Markov transition
matrix pσ,τ . Theorem 2.4 implies that P = ν and M is equal to P restricted
to Θk, and this concludes the proof of Proposition 3.7.

Finally, we will now show that s is P -distributed, leading to a contra-
diction. In (9) we show that

ν(στ) = M(σ)pσ,τ = P (σ)rσ,τ = lim
N→∞

occ(στ, s�N )

N

for τ ∈ Θk. This extends trivially to τ ∈ Σk, for M(τ) = 0 if and only if
P (τ) = 0 and P = ν. Moreover, the same is valid if we substitute any word
ρ for τ in the above equations, since all we need is that rσ,ρ exist and be
equal to P (σρ | σ). Since σ must be of length k, this means that

lim
N→∞

occ(ρ, s�N )

N
= ν(ρ) = P (ρ) (10)

for all words ρ of length at least k. But then (10) must also be true for
words ρ of length smaller than k, since

P (ρ) =
∑
τ∈Θk
ρ≺τ

P (τ) =
∑
τ∈Θk
ρ≺τ

lim
N→∞

occ(τ, s�N )

N

= lim
N→∞

∑
τ∈Θk
ρ≺τ

occ(τ, s�N )

N
= lim

N→∞

occ(ρ, s�N )

N
.

P -distribution need only be checked on word cylinders, so this completes
the proof that some σ∗ satisfies (3).

It only remains to show that such a σ∗ can be chosen so that ms(σ
∗) > 0.

Again, we prove this by contradiction. That is, let us suppose that for all
σ ∈ L(X) (|σ| ≥ k) such that m(σ) > 0, we have that rσ,b exists for any
symbol b and is equal to P (σb | σ). As before, this implies rσ,τ exists for all
words τ and is equal to P (στ | σ).

Take some σ∗ that satisfies (3). Then m(σ∗) = 0. Take some τ such
that P (τσ∗) > 0 (irreducibility implies this can be done by finding some
(τi)1≤i≤l ⊆ Θk such that σ∗ ≺ τ1 . . . τl ∈ L(X) and then finding some
τ ∈ Preck(τi)). If m(τ) > 0 then rτ,σ∗ exists and is equal to P (τσ∗ | τ) > 0.
But this contradicts the fact that m(τσ∗) ≤ m(σ∗) = 0. So m(τ) = 0 for all
τ ∈ Preck(σ

∗).
Similarly, for all σ ∈ Preck(Preck(σ

∗)) we have m(σ) = 0 and the same
reasoning can be repeated until m(σ) = 0 has been shown for all σ ∈ Θ (irre-
ducibility guarantees this), which contradicts the condition that m(τ∗) > 0
for some τ∗ ∈ Θk. This concludes the proof of Lemma 3.4.
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Lemma 3.8. Given s ∈ X, if there is some σ∗ ∈ Θk that satisfies m(σ∗) = 0,
then there are some d > 0, ρ ∈ Θk, σ ∈ Preck(ρ) and a strictly increasing
sequence (Nj)j∈N of natural numbers such that limj→∞ occ(ρ, s�Nj )/Nj = 0
and lim supj→∞

∑
τ∈Θk\{ρ} occ(στ, s�Nj )/Nj ≥ d.

Proof. Let σ∗ ∈ Θk satisfy m(σ∗) = 0 and let (Nj)j∈N be a strictly increasing
sequence of natural numbers such that limj→∞ occ(σ∗, s �Nj )/Nj = 0. If for
some σ ∈ Preck(σ

∗) and some d > 0 we have lim supj→∞
∑

τ∈Θk\{σ∗} occ(στ, s�Nj
)/Nj ≥ d, then we set ρ = σ∗ and we are done.

Otherwise, we have, for ε > 0, a j0 such that for all j ≥ j0,∑
σ∈Preck(σ∗)
τ∈Θk\{σ∗}

occ(στ, s�Nj )

Nj
<

ε

|Θk|
,

and since limj→∞ occ(σσ∗, s �Nj )/Nj ≤ limj→∞ occ(σ∗, s �Nj )/Nj = 0, we
conclude, for all j greater than some j0,∑

σ∈Preck(σ∗) occ(σ, s�Nj ) + occ(σ∗, s�Nj )

Nj
< 2ε.

Hence, if we write B0 = {σ∗}, Bt+1 = Bt ∪ Preck(Bt) and, for any finite
A ⊆ Σ∗

occ(A) = lim sup
j→∞

∑
σ∈A occ(σ, s�Nj )

Nj
,

then we have just shown that occ(B1) = occ(Preck(σ
∗)) = 0.

Similarly, given t such that occ(Bt) = 0 we can use the same reasoning
to show that either lim supj→∞

∑
τ∈Θk\{ρ} occ(στ, s �Nj )/Nj ≥ d for some

d > 0, ρ ∈ Bt and some σ ∈ Preck(ρ) ⊆ Bt+1, in which case we are done, or
else occ(Bt+1) = 0.

But irreducibility implies that, for some p, Bp = Θk and we cannot
have 0 = occ(Bp) = occ(Θk) = 1. Hence, there is some t and some
d > 0, ρ ∈ Bt and σ ∈ Preck(ρ) such that limj→∞ occ(ρ, s �Nj )/Nj ≤
limj→∞

∑
σ∈Bt occ(σ, s�Nj )/Nj and

lim sup
j→∞

∑
τ∈Θk\{ρ}

occ(στ, s�Nj )/Nj ≥ d.

This concludes the proof of Lemma 3.8.

Proof of Theorem 3.3. We will split our proof in two cases.
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Case I. There is some τ∗ ∈ Θk such that m(τ∗) > 0.
From Lemma 3.4 we may assume that for some σ ∈ L(X) satisfying

|σ| ≥ k and m(σ) > 0, some b ∈ Σ and some rational δ > 0

lim sup
N→∞

occ(σb, s�N )

occ(σ, s�N )
> (1 + δ)P (σb | σ), (11)

since (3) implies either (11) or

lim inf
N→∞

occ(σb, s�N )

occ(σ, s�N )
< (1− δ)P (σb | σ),

but in the latter case it is easy to find some b′ such that (11) is true for σb′.
We define our P -martingale L by:

L(∅) = 1

L(ρc) =


(1 + δ)L(ρ) if ρ�|σ|= σ and c = b;(

1− δp∗

1−p∗
)
L(ρ) if ρ�|σ|= σ and c 6= b;

L(ρ) otherwise.

for any c ∈ Σ, ρc ∈ L(X), where p∗ = P (σb|σ) and we further impose that
δ < (1− p∗)/p∗. Notice that for all ρ such that ρ�|σ|= σ the k-step Markov
property and |σ| ≥ k impliy that p∗ = P (ρb|ρ). From this it is easy to see
that L is a P -martingale, and it is also clearly generated by a DFA, since
at each step the betting factor depends solely on the next symbol and the
previous |σ| symbols of ρ and since there are finitely many words of length
σ, it suffices to consider the finite set of states Q = |Σ||σ|.

To see that L succeeds on s, we observe first that

L(ρ) = (1 + δ)occ(σb,ρ)
∏
c 6=b

(
1− δp∗

1− p∗

)occ(σc,ρ)

and that ∑
c6=b

occ(σc, s�N ) ≤ occ(σ, s�N )− occ(σb, s�N ). (12)
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Let r = 1 + δ and q = 1− δp∗

1−p∗ . Equation (12) then implies

lim sup
N→∞

logL(s�N )

N

≥ lim sup
N→∞

occ(σb, s�N )

N
(log r − log q) +

occ(σ, s�N )

N
log q

= lim sup
N→∞

occ(σ, s�N )

N

[
occ(σb, s�N )

occ(σ, s�N )
(log r − log q) + log q

]
≥ lim inf

N→∞

occ(σ, s�N )

N
lim sup
N→∞

[
r
occ(σb, s�N )

occ(σ, s�N )
(log r − log q) + log q

]
≥ m(σ) [rP (σb | σ)(log r − log q) + log q]

= p∗m(σ)

[
(1 + δ) log(1 + σ) +

(
p∗−1 − (1 + σ)

)
log

(
1− δp∗

1− p∗

)]
.

(13)

Observe that p∗ > 0, for otherwise σb /∈ L(X), occ(σb, s �N ) = 0 for all N
and the inequality in (11) would not be obtained. Hence, the multiplying
factor on the left is strictly positive. Now if in (13) we make the substitution
x = p∗−1−1 we may notice that the function f(δ) = (1+δ) log(1+δ)+(x−
δ) log(1−δ/x) satisfies f(0) = 0 and f ′(δ) = log(1+δ)− log(1−δ/x) > 0 for
0 < δ < x. Then there is a c > 0 such that lim supN→∞ logL(s �N )/N ≥ c.
and there will be infinitely many N ’s such that L(s�N ) ≥ 2cN , which implies
lim supN→∞ L(s�N ) =∞.

Case II. For all τ ∈ Θk we have m(τ) = 0.
Lemma 3.8 implies that there are some d > 0, ρ ∈ Θk, σ ∈ Preck(ρ) and

a strictly increasing sequence of natural numbers (Nj)j∈N such that

lim
j→∞

occ(ρ, s�Nj )

Nj
= 0 and lim sup

j→∞

∑
τ∈Θk\{ρ} occ(στ, s�Nj )

Nj
≥ d.

(14)
Notice that 〈s : k〉 is actually a sequence in Θk (and not just Σk) since s ∈

X and all words of length k in s must belong to L(X). Also, as mentioned
in §2, P induces an irreducible Markov measure P k on ΘN

k , so we will first
construct a P k-martingale on Θ∗k. Let p∗ = 1 − P (σρ|σ) < 1 (since σ ∈
Preck(ρ)), (1 − p∗) > p∗δ, c be a symbol of Θk and δ > 0. We define M as
follows:

M(∅) = 1;

M(τ1 . . . τl+1) =


(1 + δ)M(τ1 . . . τl) if τl = σ and τl+1 6= ρ;(

1− δp∗

1−p∗
)
M(τ1 . . . τl) if τl = σ and τl+1 = ρ;

M(τ1 . . . τl) otherwise.
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It is easy to check that M is a P k-martingale generated by a DFA.
Observe that

M(τ1 . . . τl) =

(
1− δp∗

1− p∗

)occ(σρ,τ1...τl) ∏
c∈Θk
c 6=ρ

(1 + δ)occ(σc,τ1...τl) .

Write q = 1− δp∗/(1− p∗) and r = 1 + δ and fix ε > 0 such that ε < d log r.
Then (14) implies there are infinitely many N ’s such that

log r
∑
τ∈Θk
τ 6=ρ

occ(στ, 〈s : k〉�N )

N
+ log q

occ(σρ, 〈s : k〉�N )

N
≥ d log r − ε.

Thus, for K = d log r − ε > 0 we have logM(〈s : k〉 �N )/N ≥ K > 0 for
infinitely many N ’s. This implies the martingale succeeds on 〈s : k〉.

From this martingale M on Θ∗k one uses the definition of a P -martingale

to extend M to a P -martingale M̂ on Σ∗ (it is a routine exercise to check M̂
is well defined as a P -martingale and that it is also generated by a DFA),

and the fact that M succeeds on 〈s : k〉 implies that M̂ succeeds on s.

3.1.1 An extension to sofic shifts

We now extend Theorem 3.3 to a more general class of measures on sofic
subshifts. In order to do so, we need some of the standard results and
definitions regarding sofic subshifts.

A labelled directed graph on alphabet Σ is a tuple (G,L) where G is a
directed graph with finite nodes N (G) and finite edges E(G) and L is a
function assigning to each edge e in E(G) a symbol L(e) ∈ Σ.

Given a labelled directed graph (G,L), a path on (G,L) through states
i0, . . . , il ∈ N (G) is a finite sequence of symbols a1 . . . al ∈ Σ∗ for which
there are edges e1, . . . , el ∈ E(G) such that, for all 1 ≤ j ≤ l, ij is the
destination node of ej , ij−1 is the origin node of ej and L(ej) = aj . The set
of paths on (G,L) is denoted PG.

Notice that any labelled directed graph is equivalent to an automaton
MG on Σ without an initial state and with a single absorbing non-accepting
state. The accepting states of MG are given by the nodes of G, and a tran-
sition δ(i, a) = j whenever there is an edge between i and j labelled a. The
following definition is then equivalent to this automaton being deterministic.

A labelled directed graph G on alphabet Σ is called right-resolving if
for any symbol a ∈ Σ, and any node i ∈ N (G) there is at most one edge
e ∈ E(G) such that e has i as its origin node and L(e) = a.

Labelled graphs may be used to represent sofic subshifts in the following
way:
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Definition 3.9. A labelled graph presentation of a sofic subshift (X,T ) on
alphabet Σ is a labelled directed graph (G,L) such that L(X) = PG.

Notice that, given a directed graph G there is a natural 1-step Markov
shift (XG, T ) consisting of the admissible sequences of edges. Furthermore,
when a labelling function L is defined on the edges of G, the one-block code
that maps e to L(e) induces a factor map L∗ from the Markov shift (XG, T )
to the sofic subshift represented by (G,L).

A labelled graph presentation (G,L) of a sofic subshift (X,T ) on alpha-
bet Σ is called minimal if there is no other presentation (G′,L′) of X with
strictly fewer nodes, and it is called irreducible if the underlying directed
graph is strongly connected. We say that a sofic subshift (X,T ) is irreducible
if for any words σ, τ ∈ L(X) there is a word ρ such that σρτ ∈ L(X).

Theorem 3.10. ([9, Theorem 3.3.2]) Any irreducible sofic subshift has
a unique (up to graph isomorphism) minimal, irreducible, right-resolving
graph presentation.

Given a labelled directed graph (G,L) on alphabet Σ, a synchronizing
word for G is a word α = a1 . . . al ∈ Σ∗ for which the set

{il ∈ N (G) | (∃i0, . . . , il−1 ∈ N (G)) α is a path through i0, . . . , il}

has a single node. We call that node the synchronizing node of α. That is,
when regarding the graph as the equivalent automaton MG, a synchronizing
word is one that leaves the automaton in one and only one state after being
read, regardless of the state on which its reading began. Finally, we have
[9, Proposition 3.3.9 and Proposition 3.3.16]:

Theorem 3.11. A minimal, right-resolving labelled graph presentation of
a sofic subshift (X,T ) has a synchronizing word.

We are now ready to prove the extension of our previous result.

Theorem 3.12. Let X be an irreducible sofic subshift on alphabet Σ and let
(G,L) be its minimal, irreducible, right-resolving presentation. Let (XG, T )
be the Markov shift of edge sequences associated to G and let P be an
irreducible, invariant, L(XG)-supported, 1-step Markov measure on E(G)N.
Let L∗ : XG → X be the natural factor map induced by L and let ν =
P ◦L∗−1 be the pushforward measure on ΣN. Let s ∈ X be not ν-distributed.

1. If a synchronizing word appears as a factor of s then there is a ν-
martingale generated by a DFA which succeeds on s. Moreover, the
only betting factors of this martingale are 1, (1 + δ) and (1− δp∗/(1−
p∗)), where δ is rational and p∗ = P (τρ | τ) or p∗ = 1− P (τρ | τ) for
some τ, ρ ∈ Σ∗.
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2. If no synchronizing word appears as a factor of s then there is a ν-
supermartingale generated by a DFA which succeeds on s. Moreover,
the only betting factors of this martingale are 1, (1− δ∗) and (1 + δ),
where δ∗ and δ are rational.

Proof of item 1 of Theorem 3.12. Since any leftward extension in L(X) of
a synchronizing word is a synchronizing word, we may assume that some
prefix of s, say ρ = s �N ′ is a synchronizing word with synchronizing node
i0. Denote by f(i, a) the unique edge whose origin node is i and whose label
is a, whenever it exists (uniqueness is guaranteed because the presentation
is right-resolvable). We construct by induction a sequence z in E(G)N that
records the sequence of edges followed by s after it reaches the synchronizing
node:

• Define z1 = f(i0, sN ′+1) and let i1 be the destination node of z1.

• Assume zn and in are defined. Define zn+1 = f(in, sN ′+n) and let in+1

be the destination node of zn+1 (notice that f(in, sN ′+n) must exist
because s ∈ X and (G,L) is a presentation of X)

Notice that by construction L∗(z) = TN
′
(s). We will use this fact to show

by contradiction that z is not P -distributed, and then use the martingale
on a DFA that succeeds on z (guaranteed by Theorem 3.3) to build an
appropriate martingale on a DFA that succeeds on s.

For any word a1 . . . an ∈ Σ∗ let A(a1 . . . an) be the set of words e1 . . . en ∈
E(G)∗ such that L(ei) = ai for 1 ≤ i ≤ n (equivalently, A(α) = L∗−1(α)).
Clearly, we have ν(α) =

∑
σ∈A(α) P (σ) and, by construction of z,

occ(α, TN
′
(s)�N ) =

∑
σ∈A(α)

occ(σ, z �N ).

Then, if z is P -distributed, TN
′
(s) must be ν-distributed and TN

′
(s) is ν-

distributed if and only if s is so. Hence, z cannot be P -distributed. By Theo-
rem 3.3 there is a martingale L̂ generated by a DFA M̂ = 〈Q̂, E(G), δ̂, q̂0, Q̂f 〉
and a function b̂ : Q̂× E(G)→ R, and such that lim supN L̂(s�N ) =∞.

Given an edge e, we write d(e) for its destination node and o(e) for its
origin node. Let M ′ be a DFA on Σ having Q′ = (Q̂ × N (G)) ∪ {qg} (for
some unused garbage state qg) as its set of states, Q′f = Q̂f × N (G) as its
set of final states, q′0 = (q̂0, i0) as its initial state and a transition function
δ′ defined by:

δ′((q, i), a) =

{
(δ̂(q, f(i, a)), d(f(i, a))) if f(i, a) exists;

qg otherwise.

δ′(qg, a) = qg for all a.
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a1start a2 a3 . . . al q′0

automaton M ′

a1

6= a1

a2

6= a2

a3 al−1

6= al

al

Figure 1: The automaton M . ρ = a1 . . . al is a synchronizing word, and M ′

“translates” M̂ , which has inputs on the language of edges, E(G)∗ to the
language L(X) ⊆ Σ∗.

We also define b′ : Q′ × Σ→ R as

b′((q, i), a) = b̂(q, f(i, a))

b′(qg, a) = 1.

Notice that, by construction, the function f defined by f(λ) = 1 and
f(αa) = b′(δ′∗(q′0, α), a)f(α) satisfies

lim sup
N

f(TN
′
(s)�N ) =∞. (15)

since the sequence of betting factors induced by TN
′
(s) for M ′ and b′ is the

same as that induced by z for M̂ and b̂.
Finally, write ρ = a1 . . . al and define the DFA M = 〈Q,Σ, δ, a1, Q

′
f 〉,

where Q = Q′ ∪ {a1, . . . , al} and

δ(q, a) =



δ′(q, a) if q ∈ Q′;
a2 if a = q = a1;

ai+1 if a = q = ai, for 2 ≤ i ≤ l − 1;

q′0 if a = q = al;

a1 otherwise.

This automaton waits until the synchronizing word ρ is read. Once it finishes
reading it the automaton transitions to the automaton M ′ and stays there
(see Figure 1). The function b : Q× Σ→ R, computing the betting factors,
must then be

b(q, a) =

{
1 if q /∈ Q′;
b′(q, a) otherwise.

From (15) and the construction of f , M and b, it follows that the function
L defined by

L(λ) = 1

L(αa) = b(δ∗(a1, α), a)L(α) when αa ∈ L(X)
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satisfies lim supN L(s �N ) = ∞. Also, by construction, L has the same bet-
ting factors as L̂, which are 1, (1 + δ) and (1− δp∗/(1− p∗)).

It remains to show that L is a ν-martingale, i.e. that L(α) =
∑

a∈Σ ν(αa |
α)L(αa). By definition of L and b, this condition is trivially satisfied when
ρ is not a prefix of α, since in that case L(αa) = L(α) = 1. Hence, we only
need to show

1 =
∑
a∈Σ

ν(αa | α)b(δ∗(a1, α), a) (16)

when ρ is a prefix of α, say, ρ = α�N0 .
Observe that

ν(αa | α) =

∑
σ∈A(α) P (σf(d(σ|σ|), a))∑

σ∈A(α) P (σ)

and we may define e = σ|σ| and h = f(d(e), a), independently of σ, since σ
is the path of edges followed by α and α has a prefix that is a synchronizing
word, so that σn is the same for all σ ∈ A(α) when n ≥ N0. Thus, the fact
that P is 1-step Markov implies

ν(αa | α) =

∑
σ∈A(α) P (σh | σ)P (σ)∑

σ∈A(α) P (σ)

= P (eh | e)
∑

σ∈A(α) P (σ)∑
σ∈A(α) P (σ)

= P (eh | e) = P (σh | σ),

and writing η = σ �|α|−N0
(which is the same for all σ ∈ A(α) by the

preceding remark) and τ = L∗(η) we have that (16) boils down to

1 =
∑

h:o(h)=d(e)

P (σh | σ)b(δ∗(a1, α), a)

=
∑

h:o(h)=d(e)

P (ηh | η)b′(δ′∗(q′0, τ), a)

=
∑

h:o(h)=d(e)

P (ηh | η)b̂(δ̂∗(q̂0, η), f(d(e), a))

=
∑

h:o(h)=d(e)

P (ηh | η)b̂(δ̂∗(q̂0, η), h)
L̂(η)

L̂(η)

=
∑

h:o(h)=d(e)

P (ηh | η)
L̂(ηh)

L̂(η)
.

This last condition is met because L̂ is a P -martingale.

When no synchronizing word appears in s, the conditional probabilities
that appear in the martingale condition may have infinitely many possible
values, so that they will not be computed by a martingale generated by a
DFA. Yet, we can still find a supermartingale on a DFA to handle this case.
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Proof of item 2 Theorem 3.12. As before, define A(α) = L∗−1(α). By The-
orem 3.11 (G,L) has a synchronizing word α, and α ∈ X. Hence, A(α)
is not empty, and since P is L(XG)-supported we have P (σ) > 0 for any
σ ∈ A(α). Therefore, ν(α) =

∑
σ∈A(α) P (σ) > 0.

By hypothesis, α is not a factor of s, hence occ(α, s �N ) = 0 for all
N . Let Nα = max{N : α �N appears infinitely many times in s} ∪ {0} and
write ηbc = α�Nα+1, when Nα > 0 and c = α�1 when Nα = 0.

Take any rational 0 < δ∗ < 1. For any word γ we have that

ν(γηbc | γηb) =
∑

ef∈A(bc)

 ∑
σ∈A(γη)

P (σe | A(γηb))

P (ef | e) (17)

when Nα > 0, and

ν(γc | γ) =
∑

f∈A(c)

 ∑
σ∈A(γ)

P (σ | A(γ))

P (σf | σ)

when Nα = 0.
Since there are finitely many ef ∈ A(bc) we may set, in case Nα > 0,

K = min{P (ef | e) : P (ef | e) 6= 0, ef ∈ A(bc)},

and then, noticing (17) consists of nonnegative summands and choosing any
f for which P (ef | e) 6= 0

ν(γηbc | γηb) ≥ K
∑

σe∈A(γηb)

P (σe | A(γηb)) = K.

Taking any strictly positive rational δ ≤ δ∗K we get

δ ≤ δ∗K ≤ δ∗ν(ρc | ρ)

1− ν(ρc | ρ)
(18)

for any ρ = γηb.
In case Nα = 0 we set K = min{P (σf | σ) : P (σf | σ) 6= 0; f ∈ A(c)}

(which exists because P is Markovian) and (18) holds. Then, the function
defined by

L(∅) = 1;

L(ρa) =


(1 + δ)L(ρ) if ρ�Nα= α�Nα and a 6= c;

(1− δ∗)L(ρ) if ρ�Nα= α�Nα and a = c;

L(ρ) otherwise.

satisfies the supermartingale inequality, since

1 ≥ (1 + δ)(1− ν(ρc | ρ)) + ν(ρc | ρ)(1− δ∗)
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follows from (18) for all ρ = γηb (in case Nα > 0) and for all ρ in case
Nα = 0.

Observe that

L(ρ) = (1− δ∗)occ((α�Nα )c,ρ)
∏
a∈Σ
a6=c

(1 + δ)occ((α�Nα )a,ρ) .

Since the word (α �Nα)c occurs finitely many times in s, while α �Nα+1

occurs infinitely many times in s, we conclude that the above function goes
to infinity when evaluated on increasing prefixes of s.

3.2 P -martingales on a DFA cannot beat P -distributed se-
quences

Our next goal is to prove a converse to Theorem 3.3, thus providing a com-
plete characterization of sequences that are “normal” relative to some irre-
ducible Markov measure, a characterization that generalizes the main result
of Schnorr and Stimm in [17]. Our proof will mirror their ideas closely. The
main intuition is that a sequence where the average occurrences of blocks
converge to some measure on those blocks should also have the average num-
ber of visits to any state of a DFA converge to some measure on the states.
The main differences are that, in our case, some states are not final and that
the probability of symbols and states are not independent.

To ease notation, we will only consider 1-step Markov measures. The
reader may check that there is no loss in generality in this, since, as men-
tioned in §2, any k-step irreducible Markov measure on ΣN induces a 1-step
irreducible Markov measure P k on ΘN

k and any P -martingale M generated
by a DFA on alphabet Σ that succeeds on a sequence s can be regarded as
a P k-martingale M ′ generated by a DFA on alphabet Θk. This martingale
may not succeed on 〈s : k〉 but it must succeed on 〈T i(s) : k〉 for some i ≤ k.
Since P -distribution is unaffected by the removal of finitely many symbols,
this suffices.

The main result of this section is an analogue of part a) of Theorem 4.1
in [17]:

Theorem 3.13. Let L ⊆ Σ∗ be a prolongable and factorial language, let P
be an L-supported irreducible 1-step Markov measure on ΣN and let s ∈ XL

be P -distributed. Then no P -martingale generated by a DFA succeeds on s.

Take some M = 〈Q,Σ, δ, q0, Qf 〉 accepting L. We may assume all ac-
cepting states in Qf are reachable from the initial state q0.

Definition 3.14. Let M be a DFA and q ∈ Qf , then Mq is the DFA that
has the same states, accepting states, alphabet and transition function as
M but which has q as its initial state.
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Notice first that, since our language L is factorial, if a word σ is such
that there are states q, q′ ∈ Qf and δ∗(σ, q) = q′, then σ ∈ L. That is, words
that transition between accepting states must belong to the language. Also,
factoriality implies that transition to an accepting state is not possible once
a state outside Qf is reached (hence, q0 ∈ Qf ). Thus, we may assume that
the complement of Qf consists of a single state q̃. Similarly, the fact that
the language is prolongable implies that from any accepting state there is
always a transition to an accepting state.

As in [17], we will define the relation q → q′ when there is a word
σ ∈ L(X) such that δ∗(σ, q) = q′ and q ↔ q′ if both q → q′ and q′ → q.
From the remarks in the preceding paragraph it is easy to see that ↔ is
an equivalence relation and that it allocates accepting states q to classes [q]
different from [q̃]. Also, it is easy to check that the relation → induces a
relation ≥ in the equivalence classes of Q/↔, where [q] ≥ [q′] if and only
if q → q′ (we write [q] > [q′] when this holds and [q] 6= [q′]). We will call
a class [q] ergodic if [q] 6= [q̃] and if there is no q′ ∈ Qf such that [q] > [q′]
(i.e., [q] is minimal among the classes of accepting states).

In order to prove the main result of this section we must make some
considerations regarding the interaction of Markov measures that are L-
supported and a DFA that accepts L.

For any q′ ∈ Qf consider the maps φq′ : XL → QN and Φq′ : XL →
(Σ×Q)N defined by the following rules:

φq′(x)1 = q′

φq′(x)n+1 = δ(xn, φq′(x)n)

Φq′(x)n = (xn, φq′(x)n).

The invariant, L-supported, irreducible 1-step Markov measure P of Theo-
rem 3.13 allows us to define some random processes, that is, random vari-

ables indexed by natural numbers n. For any n ≥ 1 let Wn, Y q
n and Zq

′
n

be measurable functions (i.e. random variables) on the probability space
(XL,B, P )

Wn(x) = xn

Y q′
n (x) = φq′(x)n

Zq
′
n (x) = Φq′(x)n = (Wn, Y

q
n ).

As is customary for random variables, we will omit the specification of the
element x of the probability space on which the random variable is being
evaluated. Also, when q′ = q0, we will drop the subscripts and superscripts
and write φ, Φ, Yn and Zn.

It is a commonplace observation in the theory of Markov processes

[11, Theorem 1.1.2] that the random process (Zq
′
n )n∈N is Markov of order 1

or, equivalently, that the measure P ◦ Φ−1
q′ on (Σ × Q)N is 1-step Markov.
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Moreover, while the overall measure depends on the choice of q′, the transi-
tion matrix does not.

For any ergodic class [q∗], write

Aq∗ = {(a, q) ∈ Σ× [q∗] : δ(a, q) /∈ [q̃]}

for the tuples of “admisible” pairs in Σ × [q∗]. And for any (a, q) ∈ Aq∗ we

define a measure P̂a,q on (Σ×Q)N by letting

P̂a,q(z1 . . . zl) = P ({x : ∀ 1 ≤ i ≤ l, ZN+i = zi} | {x : ZN = (a, q)})

for any N such that P ({x : ZN = (a, q)}) > 0 (equivalently, any N for which
there is a word σ such that |σ| = N − 1 and δ∗(σ, q0) = q). This measure is
the probability distribution of the process (ZN+i)i∈N conditioned on Zn =
(a, q) and by [11, Theorem 1.1.2] it is a Markov measure independent of N
and having the same transition matrix as P ◦Φ−1

q′ regardless of (a, q). When
restricted to a given ergodic class [q∗] we will denote this transition matrix
by

P̂ q
∗

= (P̂ q
∗

z,z′)z,z′∈Aq∗ .

Observation 3.15. For z = (a, q) and z′ = (a′, q′) we have

P̂z,z′ =

{
P (aa′ | a) if δ(a, q) = q′;

0 otherwise.

Lemma 3.16. Let [q∗] be an ergodic class and (a, q) ∈ Aq∗ . Then the

measure P̂a,q is supported on AN
q∗ and has an irreducible transition matrix

Proof. Suppose that, for some N1, P̂a,q({z ∈ (Σ×Q)N : zN1 = (a′, q′)}) > 0.
This means that there are words τ, ρ ∈ L such that δ∗(τ, q0) = q, |ρ| = N1−1,
δ∗(ρ, δ(a, q)) = q′ and P (τaρa′) > 0. But since P is L(X)-supported this
means τaρa′ ∈ L(X) and therefore q̂ = δ∗(τaρa′, q0) is an accepting state
and q̂ = δ(ρa′, q), so that [q̂] ≤ [q]. But since [q] is an ergodic class it must
be the case that [q′] = [q] = [q∗]. Hence, P̂a,q is supported on AN

q∗ .

To see that the transition matrix of P̂a,q is irreducible, take any z1 =
(a1, q1), z′ = (a′, q′) ∈ Aq∗ . We want to find some word ρ = z2 . . . zm in A∗q∗
such that

P̂a,q((a1, q1)ρ(a′, q′)) > 0. (19)

Let q2 = δ(a1, q1). Since P̂a,q is supported on AN
q∗ it follows that q2 is

also in the ergodic class [q∗], and since q′ also belongs to the same class [q∗]
by hypothesis, then there must be a word σ ∈ L(X) such that δ∗(σ, q2) = q′.
Write σ = a2 . . . am and inductively define qi+1 = δ(ai, qi) for 2 ≤ i < m.
Let us show the word z2 . . . zm for zi = (ai, qi) satisfies (19). Take any word
τ such that δ∗(τ, q0) = q. Then δ∗(τaa1σ, q0) = q′ and since (a′, q′) ∈ A∗q∗
then δ(a′, q′) /∈ [q̃], so that δ∗(τaa1σa

′, q0) ∈ Qf and therefore τaa1σa
′ ∈

L(X). Since P is L(X)-supported, this means P (τaa1σa
′) > 0, and from

[τaa1σa
′] ⊆ Φ−1

(
T−|τ |[(a, q)(a1, q1)z2 . . . zm(a′, q′)]

)
we derive (19).
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Now, P̂a,q is 1-step Markov with an irreducible transition matrix. Given
a 1-step Markov measure with irreducible transition matrix, the ergodic
theorem for Markov processes (Theorem 1.10.2 from [11]) ensures that the
Cesaro averages of cylinder characteristic functions converge almost surely
to a constant that depends only on the transition matrix. In our context,
that result has to be restated in the following form:

Theorem 3.17. Let P and L be as in Theorem 3.13 and M be a DFA
accepting L. Let [q∗] be an ergodic class and (a, q), (a′, q′) ∈ Aq∗ . Then
there is some constant ka′,q′ independent of (a, q) such that

P̂a,q

(
z :

N∑
i=1

X(a′,q′)(zi)

N
→ ka′,q′

)
= 1.

Moreover, the vector ψq∗ = (ka′,q′)(a′,q′)∈Aq∗ is a distribution on Aq∗ (that
is, it has nonnegative entries that add up to 1) and is a left eigenvector of
the transition matrix P̂ q

∗
, that is ψq∗P̂

q∗ = ψq∗ .

At this point, we would like to prove an analogue of Lemma 4.5 from [17],
which states a precise formulation of the idea that if a sequence s is P -
distributed then the joint sequence of visited states and symbols should also
be distributed according to some measure derived from P . If the sequence of
visited states were eventually concentrated in some ergodic class [q∗], then
ka,q would be the natural candidate for that derived measure. The following
simple but useful result will allow us to make that assumption regarding an
eventual ergodic class [q∗].

Lemma 3.18. Given a DFA M accepting a factorial and prolongable lan-
guage L and a class of accepting states [q] ∈ Qf/↔, there is a word σ ∈ L
such that for all s ∈ [q], the class [δ∗(σ, s)] is ergodic or is equal to [q̃].

Proof. If [q] is ergodic then any word σ ∈ L will do, so let us assume [q] is not
ergodic. Let us write [q] = {q0, . . . , qm}. The proof will show by induction
on i that there are words σi ∈ L such that, for all j ≤ i, [δ∗(σi, qj)] = [q̃] or
[δ∗(σi, qj)] is ergodic. For i = 1, since [q] is not ergodic there must be some
ergodic [q′] such that [q] > [q′]. Hence, we can choose a word σ1 ∈ L such
that δ∗(σ1, q1) ∈ [q′].

For the inductive step, if [δ∗(σi, qi+1)] = [q̃] or [δ∗(σi, qi+1)] is ergodic
then we are done. Otherwise, there must be some ergodic [q′] such that
[δ∗(σi, qi+1)] > [q′]. Hence, there is a word σ such that [δ∗(σ, δ∗(σi, qi+1))] =
[q′] is ergodic, and we choose σi+1 = σiσ, which belongs to L because L is
factorial and σi+1 transitions between accepting states qi+1 and q′ (for some
representative of [q′]).

We need some notation for the 2-tuples of letters and states visited by
words of finite and fixed length. For this purpose, let Φk

q : Σk → (Σ × Q)k
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be defined as

Φ1
q(a) = (a, q)

Φk+1
q (σa) = Φk

q (σ)(a, δ(Φk
q (σ)k.

We now get the desired generalization of Lemma 4.5 from [17].

Lemma 3.19. Let L, P and s be as in Theorem 3.13 and M be some
DFA accepting L. Then there is some ergodic class [q∗] such that, for all
(a′, q′) ∈ Aq∗ , we have

lim
N

N∑
n=1

X(a′,q′)(Zn(s))

N
= ka′,q′ . (20)

Proof. Notice that, since s ∈ X, M on input s �N , will never reach the
garbage state q̃, since s ∈ XL and L is a factorial language. Moreover,
we will show that there is some N0 such that, for all N > N0, M stays
within some ergodic class [q∗] after reading the first N symbols of s, i.e.,
[δ∗(s�N , q0)] = [q∗] for all N > N0.

Observe that if M > N , then [δ∗(s �M , q0)] = [δ∗(s �N , q0)] or [δ∗(s �M
, q0)] > [δ∗(s�N , q0)], and since there are only finitely many classes in Qf/↔
this means that there is some N0 such that, for all N > N0, M stays in the
same class, that is,

[δ∗(s�N0 , q0)] = [δ∗(s�N , q0)]. (21)

We will call this class [q∗] and claim it is ergodic.
Indeed, by Lemma 3.18 we could choose some word σ ∈ L(X) such

that, after reading it from any state in [q∗], M either reaches the garbage
state q̃ or reaches a state within an ergodic class. Since s ∈ L(X) and P
is L-supported, we have P (τ) > 0, and since L is P -distributed, σ occurs
(infinitely many times) in s. Since q̃ cannot be reached when a subword of
s is read as input, it follows that an ergodic class [q′] is reached at some
N > N0. By equation (21) it follows that [q∗] = [q′] and [q∗] is ergodic.

Fix some (a′, q′) ∈ Aq∗ . Let us now apply Theorem 3.17 to [q∗]. We have

P̂a,q

(
z : lim

N

N∑
i=1

X(a′,q′)(zi)

N
= ka′,q′

)
= 1

for all (a, q) ∈ Aq∗ , which in turn implies that for all ε, ε′ > 0 there is k0

such that for all k ≥ k0 and (a, q) ∈ Aq∗ ,

P̂a,q

(
(a1, q1) . . . (al, qk) ∈ (Σ×Q)k :

∣∣∣∣∣
k∑
i=1

X(a′,q′)((ai, qi))

N
− ka′,q′

∣∣∣∣∣ < ε

)
> 1− ε′. (22)
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Notice that (22) can be rewritten as

P

(
aσ ∈ Σk :

∣∣∣∣∣
k∑
i=1

X(a′,q′)(Φ
k
q (aσ)i)

N
− ka′,q′

∣∣∣∣∣ < ε

)
/P (a) > 1− ε′. (23)

Write

Bkq∗(ε, a)

=

{
aσ ∈ Σk : (∀q ∈ [q∗], (a, q) ∈ Aq∗)

∣∣∣∣∣
k∑

n=1

X(a′,q′)(Φ
k
q (aσ)n)

N
− ka′,q′

∣∣∣∣∣ < ε

}
Bkq∗(ε) =

⋃
a∈Σ

Bkq∗(ε, a).

These are just the words of length k for which the average occurrences of
all pairs (a, q),∈ Aq∗ are within an ε distance of their limit. Then it is a
standard exercise in probability theory to see that (23) and the finiteness of
Aq∗ and [q∗] imply that for all a (a, q) ∈ Aq∗ for some q, and for all ε, ε′ > 0
there k0 such that for all k ≥ k0 we have

P
(⋃
{[σ] : σ ∈ Bkq∗(ε, a)}

)
/P (a) > 1− ε′. (24)

Let us see that this last inequality holds for all a, that is, for all a there
is some q satisfying (a, q) ∈ Aq∗ . Indeed, the irreducibility of the transition
matrix of the L-supported measure P implies that for all a ∈ Σ and all
σ ∈ Σ∗ there is some ρ ∈ Σ∗ such that σρa ∈ L. Take any σ such that
δ∗(σ, q0) ∈ [q∗] and then take some ρ such that σρa ∈ L. This implies
δ∗(σρa, q0) /∈ [q̃] and since [q∗] is an ergodic class this also implies that
δ∗(σρ, q0) ∈ [q∗]. So (a, δ∗(σρ, q0)) ∈ Aq∗ .

Then from (24) we derive that for all ε, ε′ > 0 there is k0 such that for
all k ≥ k0 we have

P
(⋃
{[σ] : σ ∈ Bkq∗(ε)}

)
> 1− ε′. (25)

Now, remember 〈s : k〉 is the sequence s read as a sequence in (Σk)N, then
the P -distribution of s implies that for all ε′′ > 0 and k ∈ N there is M0

such that for all σ ∈ Σk and M ≥ max(M0, 2/ε
′′), we have∣∣∣∣occ(σ, 〈s : k〉�M )

M
− P (σ)

∣∣∣∣ < ε′′

2|Σ|k
. (26)

Take N1 such that δ∗(s�N0 , q0) = q∗ for q∗ some representative of [q∗]. Since
finitely many summands do not alter the convergence of Cesaro limits, we
may substitute s′ = TN1s for s and rewrite (20) as

lim
N

N∑
n=1

X(a′,q′)(Z
q∗
n (s′))

N
= ka′,q′ .
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Given ε, ε′, ε′′ > 0 such that ε + ε′ + ε′′ < η for some η > 0, take some
k satisfying (25) and take some M0 satisfying (26) for this k. For any
M ≥ max(M0, 2/ε

′′) we consider N = kM and notice that∣∣∣∣∣
N∑
n=1

X(a′,q′)(Z
q∗
n (s′))

N
− ka′,q′

∣∣∣∣∣
=

∣∣∣∣∣∣
M−1∑
j=0

M−1
k∑
i=1

X(a′,q′)(Φ
k
Yjk+1

(〈s′ : k〉j)i)
k

− ka′,q′

∣∣∣∣∣∣ ,
where all Yjk+1 are guaranteed to be in [q∗] by our substitution of s. This
implies (using first (25) and then (26)) that∣∣∣∣∣

N∑
n=1

X(a′,q′)(Z
q∗
n (s′))

N
− ka′,q′

∣∣∣∣∣
< ε

∑
σ∈Bk

q∗ (ε)

occ(σ, 〈s′ : k〉�M )

M
+ 2

∑
σ∈Σk

σ/∈Bk
q∗ (ε)

occ(σ, 〈s′ : k〉�M )

M

< ε+ 2
∣∣∣ ∑

σ∈Σk

σ/∈Bk
q∗ (ε)

P (σ)
∣∣∣+ 2

∑
σ∈Σk

σ/∈Bk
q∗ (ε)

∣∣∣∣occ(σ, 〈s′ : k〉�M )

M
− P (σ)

∣∣∣∣
< ε+ 1− P

( ⋃
σ∈Bk

q∗ (ε)

[σ]
)

+ 2|Σ|k ε′′

2|Σ|k
< ε+ ε′ + ε′′ < η.

For N = kM + l (where 1 ≤ l < k) we have∣∣∣∣∣
N∑
n=1

X(a′,q′)(Z
q∗
n (s′))

N
− ka′,q′

∣∣∣∣∣
≤

∣∣∣∣∣
Mk∑
n=1

X(a′,q′)(Z
q∗
n (s′))

Mk
− ka′,q′

∣∣∣∣∣+
l

N
+ |kM/N − 1|

< η +
2

M
< η + ε′′.

This completes the proof.

Proof of Theorem 3.13. Since our martingale is generated by a DFA with
betting factors function b, states set Q and transition function δ, we know
it satisfies

f(σ) = f(∅)
∏
a∈Σ
q∈Q

b(a, q)
occ

(
(a,q),Φ

|σ|
q0

(σ)
)
. (27)
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By the same reasoning used in the first part of the proof of Lemma 3.19
we know there is some N1 such that δ∗(s �N , q0) ∈ [q∗] for all N ≥ N1

and some ergodic class [q∗], From (27) it is clear that success of f on s
is equivalent to success of f ′ on TN1(s), where f ′ is the martingale that is
generated by a DFA havingQ′ = [q∗]∩[q̃] as its set of states, q1 = δ∗(s�N1 , q0)
as its initial state (notice [q1] = [q∗]), and the restriction of δ and b to Q′ as
its transition and betting factors functions, respectively. That is, we restrict
our analysis to the case in which M starts and stays within a single ergodic
class.

Since s′ = TN1(s) ∈ XL we know s′ will only visit tuples (a, q) ∈ Aq1 ,
that is, for all N , ΦN

q1(s′ �N ) is in A∗q1 . Then from Lemma 3.19 and (27) we
have

lim
N

(f ′(s′ �N ))1/N∏
(a,q)∈Aq1

b(a, q)ka,q
= 1.

If r =
∏

(a,q)∈Aq1
b(a, q)ka,q < 1, then f ′(s′ �N ) < (r + ε′)N for r + ε′ < 1

for large enough N . Hence lim f ′(s′ �N ) = 0 and the martingale does not
succeed on s′.

Let us now show that for fixed q ∈ [q1]

Uq =
∏
a∈Σ

(a,q)∈Aq1

b(a, q)ka,q ≤ 1.

Indeed, by Observation 3.15, Theorem 3.17 and convexity of the logarithm
we get

logUq =
∑
a∈Σ

(a,q)∈Aq1

ka,q log b(a, q)

=
∑

(a′,q′)∈Aq1

ka′,q′
∑
a∈Σ

(a,q)∈Aq1

P̂ q1(a′,q′),(a,q) log b(a, q)

≤
∑

(a′,q′)∈Aq1

ka′,q′ log

 ∑
a∈Σ

(a,q)∈Aq1

P̂ q1(a′,q′),(a,q)b(a, q)


=

∑
(a′,q′)∈Aq1
δ(a′,q′)=q

ka′,q′ log

(∑
a∈Σ

P (a′a | a′)b(a, q)

)

=
∑

(a′,q′)∈Aq1
δ(a′,q′)=q

ka′,q′ log (1) = 0, (28)

where the last line follows from the fact that b(a, q) are the betting factors
of a P -martingale.
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It follows that r =
∏
q Uq ≤ 1 and equality is achieved if and only if

Uq = 1 for all q ∈ [q1]. But, by strict convexity in (28), logUq = 0 if and
only if b(a, q) is the same for all a. Then r =

∏
q Uq = 1 if and only if the

betting factors are constant at each state, implying f ′(σa) = f ′(σ) for all
words σ and all a. Clearly, a constant martingale cannot succeed on any
sequence, and the result follows.

4 β-expansions and Pisot numbers

In this section we introduce some definitions and known results on the rep-
resentation of reals in non-integer bases, and Pisot numbers. All of this
material will be needed for our result of §5.

4.1 β-expansions

Let us now introduce a way of representing real numbers in a non-integer
base β. Most of the presentation and the definitions are taken from [2]. Let
bxc and dxe be the floor and ceiling of x, respectively, and let {x} denote
the integer and fractional part.

Let β be a real number greater than 1. Any real number x has a unique
β-expansion sβ0 , s

β
1 , . . . such that

x = sβ0 +
∑
n>0

sβn
βn
, (29)

where sβn are nonnegative integers, 0 ≤ sβn < β for n > 0 and any of the
following equivalent conditions are met:

1. ∀n ≥ 0
∑

i>n(sβi /β
i) < 1/βn

2. sβn is defined inductively in the following way:

sβ0 = bxc, r0 = {x}
sβn+1 = bβrnc, rn+1 = {βrn}

This expansion coincides with the usual definition given for β an integer base.
Notice that the β-expansion of the real number β need not be eventually
periodic, in particular, it need not be finite, that is, eventually 0 (of course
it is when β is an integer). It is easy to check from the definition of a β-
expansion that if β had a finite expansion then it satisfies β = a0 + a1

β +
· · ·+ as

βs and the periodic sequence a0a1 . . . (as−1)a0a1 . . . (as−1) . . . would
also satisfy (29) (but not the following two equivalent conditions, since the
β-expansion is unique).

We will refer to such a periodic sequence as the periodic β-expansion of
β and we we will write it β̂ (notice that the periodic β-expansion may only
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apply to the base β). We will also write s(β) for the β-expansion of β in case
it is not terminated by an infinite sequence of 0’s and s(β) = β̂ otherwise.

Example 4.1. The periodic 2-expansion of 2 is 1∞, whereas its 2-expansion
is 20∞. Let φ be the golden number satisfying φ2 = φ + 1. The periodic
φ-expansion of φ is 101010 . . . , whereas its φ-expansion is 110∞.

Given a base β, let Σβ = {0 . . . dβe − 1]} and let pβ : [0, 1)→ ΣN
β be the

one-to-one mapping that sends each x ∈ [0, 1) to the fractional part of its
β-expansion

sβ1s
β
2 . . . s

β
n . . .

Notice that pβ(1) = s(β) (strictly speaking, pβ is defined on [0, 1) but it is
trivially extended to [0, 1] by continuity).

If Σ is a finite set of digits, as in the definition of the mapping pβ, then
the natural ordering of those digits induces a lexicographic order ≤lex on the
full shift.

Theorem 4.2. [2, p. 273] If β > 1 is a real base then the image pβ([0, 1))
is the set

{s ∈ ΣN
β : (∀n) Tns <lex s(β)}.

Notice that the closure of the set above, that is,

{s ∈ ΣN
β : (∀n) Tns ≤lex s(β)}.

is a subshift of ΣN
β . In fact, there is a nice converse to the above theorem.

Theorem 4.3. [2, p. 274] Suppose that for some alphabet Σ = {0, . . . , k}
we have that (X,T ) is a subshift such that

X = {s ∈ ΣN : (∀n) Tns ≤lex s
∗}

for some s∗ in ΣN which satisfies (∀n) Tns∗ ≤lex s
∗. Then X is the closure

of pβ([0, 1)) for some real base β.

This allows us to define the following:

Definition 4.4. Given some real number β > 1, the β-shift is the subshift
(Xβ, T ), where

Xβ = {s ∈ ΣN
β : (∀n ∈ N) Tns ≤lex s(β)}.

Example 4.5. The 2-shift is the full shift {0, 1}N (that is, the Cantor set
with the shift operator). The φ-shift is the set of infinite sequences on
{0, 1} such that no two 1’s occur consecutively in them. In fact, this shift is
Markov and it is the Markov shift which had the sofic shift of Example 2.6
as a factor.
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Theorem 4.6. [2, Theorem 1] Let β > 1 be a real base. Then the β-shift
is a Markov shift if and only if the β-expansion of β is finite, and it is sofic
if and only if the β-expansion of β is periodic.

A result similar to Theorem 2.8 for β-shifts was also proved by Parry
in [12]:

Theorem 4.7. Given a real base β > 1, there is a unique probability
measure P̂β on [0, 1) such that Pβ = P̂β ◦ p−1

β is an invariant measure for

the β-shift of maximal metric entropy on Xβ. Moreover, P̂β has the closed
expression

P̂β([a, b]) =

∫ b

a

∞∑
n=1

1[0,Tnβ (1))(x)
1

βn
dx, (30)

and if (Xβ, T ) is a Markov shift with a grammar of wordlength k − 1, then
Pβ, called the Parry measure, is a k-step Markov measure.

Notice that the above expression implies that there are positive k and k′

such that
k′λ(A) ≤ P̂β(A) ≤ kλ(A) (31)

for any Borel subset A of [0, 1), and λ the Lebesgue measure.

4.2 Pisot numbers

While constructive considerations make us think of rational numbers as the
closest relatives of integers, the analysis of real base expansions forces us to
consider the “dynamic” properties of real numbers, and from a dynamical
viewpoint non-integer rational numbers are quite distinct from integers. The
following definition will introduce us to the closest analog of an integer from
a dynamic point of view.

Definition 4.8. A real number β is a Pisot number if β > 1 and β is the
root of a monic polynomial in integer coefficients, such that all its conjugate
values (that is, all the other roots of its minimal polynomial) have absolute
values strictly less than 1.

This purely algebraic condition is interesting for our purposes because
of the next remarkable property. Let ‖x‖ denote the distance from x to its
closest integer

Theorem 4.9. [2, Lemma 1] A real number β > 1 is a Pisot number if and
only if

∑
n≥0 ‖βn‖ converges.

Pisot numbers are then “asymptotically integer” in a strong sense. No-
tice that all integers n > 1 are Pisot numbers, but no non-integer rational
number is Pisot, since the only rationals which are roots of monic polyno-
mials in Z are the integers. The following results relate Pisot numbers and
β-expansions.
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Theorem 4.10. [2, Theorem 5] If β is a Pisot number, s(β) is eventually
periodic and Xβ is a sofic subshift.

Theorem 4.11. [2, Corollary 9] Let β be a Pisot number, x be a real number
with β-expansion s and assume that s is Pβ-distributed. Then (xβn)n≥0 is
u.d. modulo one.

None of the above implications has a true converse.

5 Polynomial time randomness

In this section we will use the martingale constructed in §3 to show that if
x ∈ [0, 1] is a real whose binary expansion is polynomial time random (i.e.
no feasible martingale succeeds on it), then (xβn)n∈N is u.d. modulo one for
any Pisot β.

The reasoning follows by contradiction: if x is such that (xβn)n≥0 is not
u.d. modulo one for some Pisot base β, we know by Theorem 4.11 that there
is some word σ in Σ∗β whose average occurrences in the β-expansion of x do
not converge to Pβ(σ). From Theorem 3.3 we then get a Pβ-martingale on
a DFA that succeeds on the β-expansion of x. Our task in this section is to
show that such a martingale can be translated to a base 2 martingale that
is computable in polynomial time. Base 2 suffices because of the (integer)
base invariance of polynomial time randomness [6].

The rest of the section is organized as follows. In §5.1 we show a feasible
method to approximate dyadic rationals with reals in base β. In §5.2 we
introduce the savings property for P -martingales and show that any feasible
P -martingale can be translated to one with the savings property, preserving
the succeeding points. In §5.3 we derive some useful properties of the Parry
measure Pβ and introduce the measure µM over [0, 1] induced by any Pβ-
martingale M . In §5.4 we show that the cumulative distribution function of
µM is polynomial time computable when restricted to β-adic inputs. Finally,
in §5.5 we show the main result via an ‘almost Lipschitz’ property, as in [6].

5.1 Dyadic rationals to base β

We derive some feasibility properties of β-ary representation.

Proposition 5.1. If β > 1 is Pisot then the set L(Xβ) = {τ ∈ Σ∗β | τ0∞ ∈
Xβ} is decidable in linear time.

Proof. Immediate from Theorem 4.2, the fact that s(β) is eventually periodic
(Theorem 4.10) and the linear time complexity of lexicographic comparison.

Fix a finite alphabet Σ. We say that a function g : Σ∗ → R is computable
if there is a computable function ĝ : Σ∗×N→ Q such that for all σ and i we
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have |ĝ(σ, i)− g(σ)| ≤ 2−i. We call ĝ a computable approximation of g. We
say that g is t(n)-computable if there is a Turing machine which on input
σ and i computes ĝ(σ, i) in time O(t(i + |σ|)). As usual, we say that g is
polynomial time computable if it is t(n)-computable for some polynomial t.

Observation 5.2. If f, g are polynomial time computable then f + g and
fg are polynomial time computable.

For β > 1, let 〈·〉β : Σ∗β → R be the function 〈τ〉β =
∑|τ |

k=1 τ(k − 1)β−k.
Observe that in case τ is a prefix of some sequence in Xβ then 〈τ〉β is the
only real x ∈ [0, 1) such that pβ(x) = τ0∞.

Proposition 5.3. If β > 1 is Pisot, then the function 〈·〉β is polynomial
time computable.

Proof. The number of summands in 〈τ〉β is the length of τ , which is com-
putable in linear time. For each summand, τ(k) is computable in linear
time, and β is an algebraic number, which is computable in polynomial
time [8, Corollary 4.3.1]. Since numbers computable in polynomial time
form a field [8, Corollary 4.3.2], β−k is computable in polynomial time. Then
both τ(k) and β−k are polynomial-time computable and Observation 5.2 ap-
plies.

Given a real r ∈ [0, 1) and i ∈ N, a word τ ∈ L(Xβ) is said to be an
approximation of r in base β with error 2−i if |〈τ〉β − r| ≤ 2−i.

Proposition 5.4. If β > 1 is Pisot then the problem of finding an approx-
imation in base β of a dyadic rational 〈σ〉2 (σ ∈ {0, 1}∗) with error 2−i is
computable in time polynomial in |σ|+ i.

Proof. Let 〈·, ·〉β : Σ∗β × N → Q be a polynomial time computable approxi-
mation of 〈·〉β : Σ∗β → R (which exists by Proposition 5.3). Consider Algo-
rithm 1.

Notice that when the algorithm terminates, we have |〈τ, i + 2〉β − r| ≤
2−i−1; since |〈τ, i + 2〉β − 〈τ〉β| ≤ 2−i−2 < 2−i−1, we have |〈τ〉β − r| ≤ 2−i.
Observe also that by construction, τ is always a prefix of some sequence in
Xβ. Hence the value of τ by the time the algorithm terminates satisfies the
postcondition. After each execution of the loop body, either

1. |〈τ, i+ 2〉β − r| ≤ 2−i−1 (in which case it will immediately terminate),
or

2. τ ≺ pβ(r).

Let Iτ = {x ∈ [0, 1) | τ ≺ pβ(x)}. If 1 does not hold then, by construc-
tion, r ∈ Iτ , and it is clear that in case λIτ ≤ 2−i−2 then it terminates
(since |〈τ, i + 2〉β − 〈τ〉β| ≤ 2−i−2 and |〈τ〉β − r| ≤ λIτ ≤ 2−i−2, and so
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Algorithm 1: Approximation of a dyadic rational in base β

input : σ ∈ {0, 1}∗, i ∈ N
output: τ , a prefix of some sequence in Xβ , such that |〈τ〉β − 〈σ〉2| ≤ 2−i

let r = 〈σ〉2 and τ = ∅
while |〈τ, i+ 2〉β − r| > 2−i−1 do

let S = {a ∈ Σβ | τa0∞ ∈ Xβ}
let b ∈ S be the greatest such that 〈τb, i+ 2〉β ≤ r
if b = maxS then

τ = τb
else

b′ = b+ 1
if 〈τb′, i+ 2〉β − 2−i−1 < r then

τ = τb′

else
τ = τb

|〈τ, i + 2〉β − r| ≤ 2−i−1). At each iteration the string τ is extended in one
symbol. We will later see (Corollary 5.15) that λIτ ≤ β−|τ |, if β−|τ | ≤ 2−i−2

then the algorithm terminates, and so |τ | is O(i). By Proposition 5.1 and
Proposition 5.3, the execution of a single iteration is polynomial in |σ|+i+|τ |.
Since both the number of iterations and |τ | is O(i), the execution of Algo-
rithm 1 on in input σ, i is also polynomial in |σ|+ i.

5.2 The savings property

We say that a P -martingale M on L ⊆ Σ∗ has the savings property if there
is c > 0 such that for all τ, σ ∈ L, if τ � σ then M(σ)−M(τ) ≤ c.

Proposition 5.5. Let L ⊆ Σ∗ be a nonempty, factorial and prolongable
language, let P be an L-supported probability measure on ΣN such that
there is a > 0 such that 1 − P (σb|σ) ≤ a · P (σb|σ) for all σb ∈ L, and let
M be a P -martingale on L with the savings property via c. Then M(σ) ≤
c · d · |σ|+M(∅) for all σ ∈ L.

Proof. As in [6, Proposition], proof is by induction on the length of σ. For
the inductive step, we only need notice that P (σb|σ) is well defined and
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positive. Then

M(σb) =
M(σ)−

∑
d∈Σ,d6=b P (σd|σ)M(σd)

P (σb|σ)

≤
M(σ)−

∑
d∈Σ,d6=b P (σd|σ)(M(σ)− c)

P (σb|σ)
(M has the savings property)

= M(σ) + c · 1− P (σb|σ)

P (σb|σ)
≤M(σ) + c · a

≤ c · a · |σ|+M(∅) + c · a = c · a · |σb|+M(∅).
(inductive hypothesis)

This concludes the proof.

Lemma 5.6 (Polynomial time bounded savings property). For each poly-
nomial time computable P -martingale N there is a polynomial time com-
putable P -martingale M which has the savings property and succeeds on all
the sequences that N succeeds on.

Proof. The proof of [6, Lemma 6] basically works in this case. The only
difference is that here N is real-valued instead of rational-valued. This fact
is irrelevant for the polynomial time bound. One can verify that the same
definition of M as in [6, Lemma 6] yields a polynomial time P -martingale.

5.3 The measure induced by Pβ-martingales

Recall that pβ is the one-to-one mapping that sends each real in [0, 1) to its

unique β-expansion, and that P̂β is the Parry measure induced on the unit

interval, i.e. P̂β = Pβ ◦ pβ. Let Tβ : [0, 1]→ [0, 1) be the map Tβ(x) = {βx}.
We derive some useful properties of the Parry measure.

Theorem 5.7. [12] Let β > 1 be a real base, then the Parry measure Pβ is
L(Xβ)-supported.

We will use
ξ = λ ◦ p−1

β

for the push-forward of the Lebesgue measure on the β-shift. Of course,
inequality (31) translates to

k′ · ξ(σ) ≤ Pβ(σ) ≤ k · ξ(σ) (32)

for any σ ∈ L(Xβ). Let us say that x ∈ [0, 1] is β-adic if x has a finite β-
expansion. Clearly, β-adic numbers correspond bijectively to words in L(Xβ)
not ending in 0. For instance, if β is 2.5 we have that both 2/5 and 24/25
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are β-adic numbers, since their fractional β-expansions are pβ(2/5) = 10∞

and pβ(24/25) = 210∞.
We will write Iσ for the interval of real numbers in (0, 1) whose fractional

β-expansion begins with σ. Observe that if σ /∈ L(Xβ) then Iσ = ∅.
Since we will be working with the Parry measure and with β-expansions,

and since the Parry measure has a closed expression in terms of Lebesgue
measure, it will be helpful to know what kind of values λ(Iσ) can take, given
that in the non-integer case it is no longer true that λ(Iσ) = β−|σ|.

For this purpose we introduce some new notation. For σ ∈ L(Xβ), write

Suc1(σ) = {b ∈ Σβ | σb ∈ L(Xβ)},
σ+ = maxSuc1(σ),

next(σ) = min
≤lex

{τ ∈ L(Xβ) : σ <lex τ},

L = {σb ∈ L(Xβ) : b 6= σ+}.

Notice that, because of Theorem 4.2, Suc1(σ) has the form {1, . . . , r} for
some r = σ+ ≤ dβe − 1. Also, given any b ∈ Σ we have that σb ∈ L if and
only if some suffix of σ is a prefix of s(β).

Let us make a remark concerning s�i for some β-expansion s. When β
is an integer and x ∈ (0, 1), if Inβ (x) = [a, b) denotes the β-adic half-open

interval of measure β−n that x lies in, then the sequence (Inβ (x))n∈N cannot
eventually consist of the rightmost β-adic subinterval of the previous β-
adic interval. In terms of its β-expansion, it cannot eventually consist of an
infinite sequence of β−1, since the rules for the construction of β-expansions
mandate that . . . a(β − 1)∞ (a < β − 1) be written . . . (a+ 1)0∞. The same
observation is true for non-integer bases β, when the symbol identifying the
rightmost β-adic subinterval of a β-adic interval is not necessarily bβc − 1.
In this case, σ+ is used to identify the rightmost β-adic subinterval of Iσ,
i.e. Iσσ+ , and our observation takes the following form.

Lemma 5.8. Let s be the fractional β-expansion of some real x ∈ [0, 1)
(that is, s ∈ pβ([0, 1))). Then for any natural number n, there is i > n such

that si+1 6= s�i
+

.

Observation 5.9. ξ(σ) = 〈next(σ)〉β − 〈σ〉β.

Lemma 5.10. Let σ = σ′b ∈ L. Then ξ(σ) = β−|σ|.

Proof. Since b 6= σ′+ we have that σ′(b + 1) ∈ L(Xβ), so that next(σ) =
σ′(b + 1) and by Observation 5.9, λ(Iσ) = ξ(σ) = 〈σ′(b + 1)〉β − 〈σ′b〉β =
β−(|σ′|+1)

Observation 5.11. Let τc ∈ L and α be some prefix of s(β). Then
next(τcα) = τ(c+ 1)
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Define Nσ = min{n : σn+1 . . . σ|σ| = s(β)1 . . . s(β)|σ|−n} ∪ {|σ|}.

Observation 5.12. Let σ ∈ L(Xβ), Nσ > 1 and τc = σ �Nσ , then c 6= τ+.

The following lemma extends Lemma 5.10 when β is Pisot, in the sense
that it completes the characterization of the values that ξ(σ) may take.

Lemma 5.13. Let β be a Pisot real, let σ ∈ L(Xβ) \ L, and suppose
s(β) = r1 . . . rm(a1 . . . an)∞ and φj = 〈a1 . . . aj〉β for j ≤ n. Let τc = σ �Nσ .
Then, ξ(σ) = ξ(τc)ξ(r1 . . . rl) in case σ = τcr1 . . . rl, l ≤ m), or ξ(σ) =
ξ(τc)ξ(r1 . . . rma1 . . . ak)β

−ln in case σ = τcr1 . . . rl(a1 . . . an)la1 . . . ak, k ≤
n, 0 ≤ l.

Proof. Since σ /∈ L some suffix of σ is a prefix of s(β), which means either
σ = τcr1 . . . rl, for some l ≤ m, or σ = τcr1 . . . rm(a1 . . . an)la1 . . . ak, for
some l ≥ 0 and k ≤ n. Write ψi = 〈r1 . . . ri〉β. One then has

1 = 〈s(β)〉β = ψm +
1

βm
φn

1

1− β−n
. (33)

In case σ = τcr1 . . . rl, we have 〈σ〉β = 〈τc〉β + β−(|τ |+1)ψl, and by Observa-
tions 5.9 and 5.11 we have ξ(σ) = 〈τ(c+ 1)〉β − 〈σ〉β, so that

ξ(σ)

ξ(r1 . . . rl)
=
〈τ(c+ 1)〉β − 〈τc〉β − β−(|τ |+1)ψl

1− ψl
=
ξ(τc)− ξ(τc)ψl

1− ψl
= ξ(τc),

where we have used that ξ(τc) = β−(|τ |+1) (which follows from Observa-
tion 5.12).

For the case when σ = τcr1 . . . rm(a1 . . . an)la1 . . . ak, we have

〈σ〉β = 〈τc〉β + β−(|τ |+1)[ψm + β−m(φn(1 + β−1 + · · ·+ β−(l−1)n) + β−lnφk)]

= 〈τc〉β + β−(|τ |+1)

[
ψm + β−m

(
φn

(β−ln − 1)

β−n − 1
+ β−lnφk

)]
,

and from (33) and Observations 5.9 and 5.11

ξ(r1 . . . rma1 . . . ak) = 1− (ψm + β−mφk) = β−m
[

φn
1− β−n

− φk
]

so that (using Observations 5.9 and 5.11 again)

ξ(σ) = 〈τ(c+ 1)〉β − 〈σ〉β

= ξ(τc)− β−(|τ |+1)

[
ψm + β−m

(
φn

(β−ln − 1)

β−n − 1
+ β−lnφk

)]
= ξ(τc)

[
1− (ψm + β−mφk)− β−m(β−ln − 1)

(
φk −

φn
1− β−n

)]
= ξ(τc)ξ(r1 . . . rma1 . . . ak)β

−ln.

This concludes the proof.
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Corollary 5.14. There exist positive constants d and d′ such that d ≤
ξ(σb | σ) ≤ d′ for any σb such that ξ(σb) > 0.

Proof. It suffices to see that ξ(σb | σ) takes only finitely many values. First
of all, in the case when σb, σ ∈ L then ξ(σb | σ) = β−1, by Lemma 5.10.
When σ ∈ L but σb /∈ L then ξ(σb | σ) = ξ(b), by Lemma 5.13. When σb ∈ L
but σ /∈ L, write τc = σ �Nσ . As remarked above, either σ = τcr1 . . . rl or
σ = τcr1 . . . rl(a1 . . . an)la1 . . . ak. Then, by Lemma 5.13 either

ξ(σb | σ) =
β−(|τc|+l+1)

ξ(τc)ξ(r1 . . . rl)
=

β−(l+1)

ξ(r1 . . . rl)

(which can take only finitely many values, since l ≤ m and m is fixed) or

ξ(σb | σ) =
β−(|τc|+m+ln+k+1)

ξ(τc)ξ(r1 . . . rma1 . . . ak)β−ln
=

β−(k+1)

ξ(r1 . . . rma1 . . . ak)

(which can take only finitely many values, since k ≤ n, and n is fixed).
When neither σb nor σ are in L, Lemma 5.13 means the conditional

probability ξ(σb | σ) may take the following values.

• ξ(r1 . . . rl+1)/ξ(r1 . . . rl), if σ = (σ �Nσ)r1 . . . rl for some l ≤ m− 1

• ξ(r1 . . . rma1)/ξ(r1 . . . rm), if σ = (σ �Nσ)r1 . . . rm

• ξ(r1 . . . rma1 . . . ak+1)/ξ(r1 . . . rma1 . . . ak), if

σ = (σ �Nσ)r1 . . . rm(a1 . . . an)la1 . . . ak

for 0 ≤ l, k ≤ n− 1

• ξ(r1 . . . rma1)β−1/ξ(r1 . . . rma1 . . . an), if

σ = (σ �Nσ)r1 . . . rm(a1 . . . an)la1 . . . an

for 0 ≤ l

Since these expressions may only take finitely many values (for fixed r1, . . . , rm
and fixed a1, . . . , an), the proof is finished.

Corollary 5.15. If β is Pisot, then ξ(σ) ≤ β−|σ|.

Proof. It is enough to note that ξ(s(β) �k) ≤ β−k (this is true for any β,
Pisot or not) and then use Lemma 5.13.

The following is a straightforward consequence of Proposition 5.5 and
Corollary 5.14:

40



Corollary 5.16. If β > 1 is Pisot and M is a Pβ-martingale on L(Xβ) with
the savings property, then there is c such that M(σ) ≤ c · |σ|+M(∅) for all
σ ∈ L(Xβ).

Let β > 1 be Pisot. Each Pβ-martingale M on L(Xβ) induces a measure
µM on the algebra of word cylinders defined by µM ([σ]) = M(σ) · Pβ(σ),
for σ ∈ L(Xβ). Via Carathéodory’s extension theorem this measure can be
extended to a Borel measure on ΣN, and if µM is atomless (i.e. no point has
positive measure), we can also think of it as a Borel measure on [0, 1], which
is given by µM (Iσ) = M(σ) · Pβ(σ),

We say that a martingale M is atomless if µM is atomless.

Observation 5.17. If M is a Pβ-martingale with the savings property then
it is atomless.

Proof. Indeed, by (32) and Corollary 5.15, there is a constant k such that
for any σ ∈ L(Xβ), Pβ(σ) ≤ k · β−|σ|. By Corollary 5.16, there is a constant
c such that for any σ ∈ L(Xβ) of length n we have µM (Iσ) ≤ k ·β−n · (d ·n+
M(∅)), and this goes to 0 as n goes to infinity. Hence µM is atomless.

The cumulative distribution function associated with µM will be written
cdfM (x) for x ∈ [0, 1]. We now want to prove an analogue of the left-to-right
implication of Theorem 3.6 from [3] (which is used as Theorem 3 in [6]).

Theorem 5.18. Let M be a Pβ-martingale with the savings property that
succeeds on the β-expansion of z ∈ (0, 1), a non-β-adic real. Then

lim inf
h→0

cdfM (z + h)− cdfM (z)

h
=∞.

Proof. The proof is essentially the same as in [3]. Let g = cdfM and let
r > 0. We will show that there is some ε > 0 such that if |h| < ε then
|g(z+h)−g(z)| > rk′|h|, where k′ is the constant such that k′λ(A) ≤ P̂β(A)
from (31).

Let (zβi )i≥1 be the fractional β-expansion of z. Since M succeeds on
(zβ,i)i≥1 and has the savings property, there is some i such that, if ρ = zβ �i,
then M(ρτ) > r for any τ such that ρτ ∈ L(Xβ). Since z is not β-adic there

is some j > i such that zβj 6= 0, and by Lemma 5.8 there is some k > j such

that zβk+1 6= zβ �k
+

. Let ε = β−k−1. If 0 < |h| < ε then the β-expansion of

z+h extends ρ. If h > 0 this is because z+h < z+β−k−1 and βk+1 has the
same β-expansion as z, except that zβk+1 is replaced with 1 + zβk+1, which at

worst is zβ �k
+

. Similarly, if h < 0, then z + h > z − β−k−1 > z − β−j and
z−β−j has the same β-expansion as z, except that zβj is replaced with zβj −1,
which at worst is 0. This means that, if W ⊆ L(Xβ) is a prefix-free set of
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strings such that
⋃
σ∈W Iσ = (z, z+h) in case h > 0, or

⋃
σ∈W Iσ = (z+h, z)

in case h < 0, then all strings in W extend ρ. Hence,

|g(z+h)−g(z)| =
∑
σ∈W

M(σ)Pβ(σ) > rk′
∑
σ∈W

ξ(σ) = rk′
∑
σ∈W

λ(Iσ) = rk′|h|.

In [3] it is shown that if f is a nondecreasing function with domain
containing [0, 1] ∩Q then martf : {0, 1}∗ → R defined by

martf (τ) =
f(〈τ〉2 + 2−|τ |)− f(〈τ〉2)

2−|τ |

is a classical martingale. It is also observed in [3, Fact 3.5] that if f(0) = 0
then cdfmartf = f . In the next lemma we use these facts for f = cdfM , the
cumulative distribution function of our Pβ-martingale.

Lemma 5.19. Let β > 1 be Pisot. Suppose M is a Pβ-martingale with
the savings property. Let N : {0, 1}∗ → R≥0 be the following (classical)
martingale:

N(τ) = martcdfM (τ) =
cdfM (〈τ〉2 + 2−|τ |)− cdfM (〈τ〉2)

2−|τ |
.

Suppose s ∈ Xβ and that there exists x ∈ [0, 1] neither β-adic, nor a dyadic
rational such that pβ(x) = s. If M succeeds on s then N succeeds on the
fractional binary expansion of x.

Proof. Same proof as in [6, Lemma 11], with Theorem 5.18 substituting for
[6, Theorem 10]

5.4 µM and cdfM are polynomial time computable

As in [6], we show an ‘almost Lipschitz’ condition for cdfM :

Proposition 5.20. Let β > 1 be Pisot and let M be a Pβ-martingale on
L(Xβ) with the savings property. Then there are constants k, ε > 0 such
that for every x, y ∈ [0, 1], if y − x ≤ ε then

cdfM (y)− cdfM (x) ≤ −k · (y − x) · log(y − x).

Proof. We actually show that there are constants c and d such that

cdfM (y)− cdfM (x) ≤ d · (y − x) · (c · (1− logβ(y − x)) +M(∅)) (34)

for 0 ≤ x < y ≤ 1. Let n ∈ N be the least integer such that β−n < y − x,
and let

Θ = {σ ∈ L(Xβ) | |σ| = n, Iσ ∩ [x, y] 6= ∅}.
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So we may write Θ = {σ1, . . . , σm}, with σi <lex σi+1 for all i < m. Let p be
the left end-point of Iσ1 and let q the right end-point of Iσm . Clearly both
p and q are β-adic and [x, y] ⊆

⋃
σ∈Θ Iσ = [p, q].

We have

cdfM (y)− cdfM (x) ≤ cdfM (q)− cdfM (p) = µM [p, q] =
∑
σ∈Θ

Pβ(σ) ·M(σ)

≤ (c · n+M(∅))
∑
σ∈Θ

Pβ(σ) (by Corollary 5.16)

≤
(
(c · (1− logβ(y − x))

)
+M(∅))

∑
σ∈Θ

Pβ(σ).

(β−(n−1) ≥ y − x)

Since for each σ ∈ Θ we have Pβ(σ) = P̂β(Iσ), from (31) we conclude
Pβ(σ) ≤ k · λ(Iσ), and so

∑
σ∈Θ Pβ(σ) ≤ k · λ([x, y]) + Pβ(σ1) + Pβ(σm).

From (32) and Corollary 5.15 we know that Pβ(σ1) and Pβ(σm) are at most
β−n < y − x). Hence we conclude (34) for d = k + 2.

Proposition 5.21. If β > 1 is Pisot then Pβ is polynomial time computable.

Proof. Recall from (30) the closed expression for P̂β, the measure that Pβ
induces on the unit interval. As before, since β is Pisot its periodic β-
expansion can be written s(β) = r1 . . . rm(a1 . . . an)∞.

Define
Bk = {τ ∈ Σ∗β : τ ≤lex T

k(s(β))}.

Notice that Bk is computable in linear time. Since x ≤ Tnβ (1) iff pβ(x) ≤lex

Tn(s(β)) we have, for any σ ∈ L(Xβ),

P̂β(Iσ) = Pβ(σ) =
m−1∑
j=0

ξ(Iσ)

βj
1Bj (σ) +

1

βm−1

n∑
j=1

ξ(Iσ)

βj − 1
1Bj+m−1(σ),

which is polynomial time computable because it consists of fixed-length sums
of products of polynomial time computable functions, since ξ(·), β and the
set Bk are polynomial time computable.

Proposition 5.22. Let β > 1 be Pisot, and let M be a polynomial time
computable Pβ-martingale with the savings property. Then both µM : L(Xβ)→
R and f : L(Xβ)→ R given by f(σ) = cdfM (〈σ〉β) are computable in poly-
nomial time.

Proof. We have µM (σ) = M(σ)Pβ(σ). By Proposition 5.21 Pβ is com-
putable in polynomial time and M is also computable in polynomial time
by hypothesis. So that by Observation 5.2 their product is computable in
polynomial time.

43



For f we have

f(σ) = µM ([0, 〈σ〉β]) =

|σ|−1∑
i=0

∑
b∈Suc1(σ�i)

µM ((σ �i)b).

By Proposition 5.1 membership in Suc1(σ) is checked in linear time and we
have a sum of at most |σ|·(1+bβc) many terms, each of which is computable
in polynomial time.

5.5 Polynomial time randomness implies normality to Pisot
bases

Lemma 5.23. Let β be a Pisot number and M be a Pβ-supermartingale
that is computable in polynomial time and succeeds on s ∈ Xβ. Then there

is a Pβ-martingale M̂ computable in polynomial time that succeeds on s.

Proof. Same as in [6, Lemma 4]. Define

d(σ) = M(σ)− P (σ)−1
∑
a∈Σβ

P (σa)M(σa)

for any σ ∈ L(Xβ). Notice that P (σa)M(σa) is computable in polynomial
time by the same argument used to show in Proposition 5.22 that µM is
computable in polynomial time. Then M̂(σ) = M(σ) +

∑
τ≺ρ d(σ) is a

Pβ-martingale computable in polynomial time.

Lemma 5.24. Let β > 1 be Pisot. If s ∈ Xβ is not Pβ-distributed then
there is a polynomial time computable Pβ-martingale which succeeds on s.

Proof. We know from Theorem 4.10 that Xβ is a sofic subshift. Moreover,
by Theorem 4.2 it is clearly irreducible (if σ, τ ∈ L(Xβ) then σ0τ ∈ L(Xβ)).
Let (G,L) be its minimal, irreducible, right-resolving presentation, whose
existence is guaranteed by Theorem 3.10) and let L∗ : XG → Xβ be the
natural factor map induced by L. Of course, XG is an irreducible, 1-step
Markov shift and it is shown in [9, Example 8.1.6] that L∗ is finite-to-one2,
that is, for any s ∈ Xβ, L∗−1(s) is a finite set. It is also shown in [9, Corollary
8.1.20] that finite-to-one factor maps between irreducible sofic shifts preserve
topological entropy, where the topological entropy h(X) of a subshift (X,T )
is defined as3

h(X) = sup
T -invariant µ

hµ(X).

2I thank Mike Boyle and Brian Marcus for pointing out this argument to me.
3The topological entropy of a dynamical system has a different, intrinsic definition

not depending on measures, and our “definition” is actually a theorem known as the
variational principle.
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Thus, h(XG) = h(Xβ). But from Theorem 2.8 we know that there is a
unique invariant P such that h(XG) = hP (XG) where P is an irreducible,
1-step Markov measure on XG. Furthermore, from Theorem 4.7 we know
that h(Xβ) = hPβ (Xβ). Now, it is shown in [5, Theorem 1.1] that for any
factor map between subshifts π : X → Y and any invariant measure ν on
Y , there is an invariant measure µ on X such that ν = µ ◦ π−1. Hence,
there is some invariant µ on XG such that Pβ = µ ◦ L∗−1 and since factor
maps cannot increase metric entropy ([19, Theorem 4.11]) we have that
hµ(XG) ≥ hPβ (Xβ) = h(Xβ) = h(XG) = hP (XG). But since P is the
unique invariant measure of maximal metric entropy on XG, it follows that
P = µ, and therefore Pβ is the push-forward of P . Thus, we are under
the conditions of Theorem 3.12 and we have, according to item 1, a Pβ-
martingale generated by a DFA which succeeds on s, and, according to
item 2, a Pβ-supermartingale generated by a DFA which succeeds on s. In
any case, we have a Pβ-supermartingale generated by a DFA which succeeds
on s and whose two betting factors other than 1 are either rational or have
the form (1 − δp∗/(1 − p∗)), where p∗ is the conditional Pβ probability on
some fixed words. Since Pβ is polynomial time computable, then all betting
factors are polynomial time computable.

Thus, our Pβ-supermartingale is of the form L(σ) = pm1(σ)rm2(σ), where
r is polynomial time computable, p is some fixed rational and m1(σ) and
m2(σ) are non negative integers smaller than |σ| and computable in time
linear in |σ|, since a DFA reads its entry in linear time.

For rational p it is clear that pm1(σ) is polynomial time computable. Now,
when r is not rational, r is strictly smaller than 1, and is also computable in
polynomial time. So, given n, we can compute a rational rn in time O(q(n))
(q some polynomial) such that |rn−r| < 2−n. Then, if εn = r−rn, we have,
for m = m2(σ),

|rm − rmn | ≤ |rm|+ |(r + εn)m| ≤ 2
m∑
i=1

(
m

i

)
|εn|irm−i ≤ 2m|εn| = 2m−n.

Thus, given |σ| and k, we can compute a rational rn in time O(q(n)) for
n = m2(σ)+k+1 ≤ |σ|+k+1, and we can compute m2(σ) in time O(q′(|σ|)
for some polynomial q′. Therefore, since exponentiation by squaring has

(strictly less than) polynomial time complexity the number r(σ, k) = r
m2(σ)
n

can be computed in O(q′′(|σ|+k)) time for some polynomial q′′, and satisfies
|rm2 − r(σ, k)| < 2−k. Hence, rm2(σ) is computable in polynomial time and
so is the Pβ-supermartingale L. By Lemma 5.23 there is a polynomially
time computable Pβ-martingale that succeeds on s.

Theorem 5.25. Let β > 1 be Pisot and x ∈ [0, 1] be a number such that a
Pβ-martingale computable in polynomial time succeeds on the β-expansion
of x. Then there is a polynomial time binary martingale that succeeds on
the binary expansion of x.
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The proof is the same as that of [6, Theorem 14] with [6, Lemma 15]
replaced with the following:

Lemma 5.26. Let β > 1 be Pisot. For any polynomial time computable
Pβ-martingale M : L(Xβ)→ R≥0 with the savings property there is a classic
martingale N : {0, 1}∗ → R≥0 such that N is polynomial time computable,
and whenever M succeeds on s ∈ Xβ, and x ∈ [0, 1] is such that pβ(x) = s
then N succeeds on the fractional binary expansion of x.

Proof. By Proposition 5.22, there is a polynomial time computable function

ĉdfM : Σ∗β × N→ Q such that |ĉdfM (τ, i)− cdfM (〈τ〉β)| ≤ 2−i.
Define the classical martingale N : {0, 1}∗ → R≥0 as N(τ) = (cdfM (p2)−

cdfM (p1))/2−|τ |, where p1 = 〈τ〉2 and p2 = 〈τ〉2 + 2−|τ |. N has a polynomial
time computable approximation N̂ : {0, 1}∗ × N→ Q, defined by

N̂(τ, i) =
ĉdfM (τ2, i+ 2)− ĉdfM (τ1, i+ 2)

2|τ |
,

where for j = 1, 2 the string τj ∈ Σ∗β is an approximation of pj with error

2−2v−1, for v = i + 2 + k. By Proposition 5.4 and the definition of N , we
conclude that N is polynomial time computable. The proof that |N(τ) −
N̂(τ, i)| ≤ 2−i is the same as that of [6, Fact 16 in the proof of Lemma
15], using Proposition 5.20 instead of [6, Proposition 12] for the Lipschitz
condition.

We finally arrive to the main theorem of his section:

Theorem 5.27. Let β > 1 be Pisot. If the fractional binary expansion of
x ∈ [0, 1] is polynomial time random then it is normal to base β.

Proof. We proceed by contradiction. Suppose that Y ∈ {0, 1}N, the frac-
tional binary expansion of x, is not polynomial time random to base β. By
Lemma 5.24, there is a polynomial time computable Pβ-martingale M which
succeeds on s = pβ(x), and by Lemma 5.6 there is a polynomial time com-

putable Pβ-martingale M̃ with the savings property that succeeds on all the
sequences M succeeds on, in particular on s. By Theorem 5.25, Y is not
polynomial time random.
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