
Definability for Downward and Vertical XPath
on Data Trees

Sergio Abriola1, Maŕıa Emilia Descotte1, and Santiago Figueira1,2

1 University of Buenos Aires, Argentina
2 CONICET, Argentina

Abstract. We study the expressive power of the downward and vertical
fragments of XPath equipped with (in)equality tests over data trees. We
give necessary and sufficient conditions for a class of pointed data trees
to be definable by a set of formulas or by a single formula of each of
the studied logics. To do so, we introduce a notion of saturation, and
show that over saturated data trees bisimulation coincides with logical
equivalence.

Keywords: XPath · data tree · bisimulation · definability · first-order logic ·
ultraproduct · saturation.

1 Introduction

The abstraction of an XML document is a data tree, i.e. a tree whose every
node contains a tag or label (such as LastName) from a finite domain, and a
data value (such as Smith) from an infinite domain. XPath is the most widely
used query language for XML documents; it is an open standard and consti-
tutes a World Wide Web Consortium (W3C) Recommendation [5]. XPath has
syntactic operators to navigate the tree using the ‘child’, ‘parent’, ‘sibling’, etc.
accessibility relations, and can make tests on intermediate nodes. Core-XPath [9]
is the fragment of XPath 1.0 containing only the navigational behavior of XPath.
It can express properties of the underlying tree structure of the XML document,
such as “the root of the tree has a child labeled a and a child labeled b”, but it
cannot express conditions on the actual data contained in the attributes, such as
“the root of the tree has two children with same tag a but different data value”.
However, Core-Data-XPath [3], here called XPath=, can. Indeed, XPath= is the
extension of Core-XPath with (in)equality tests between attributes of elements
in an XML document.

In a recent paper [8], the expressive power of XPath= was studied, from a
logical and modal model theoretical point of view. A notion of bisimulation is
introduced for some fragments of XPath=, and a van Benthem like characteri-
zation theorem is shown for some of them. In this work we show a definability
theorem, which answers the basic question of when a class of data trees is defin-
able by a set of formulas, or by a single formula, over two fragments of XPath=:

2 Abriola, Descotte and Figueira

the downward fragment (which only has the ‘child’ accessibility relation) and the
vertical fragment (which has both ‘child’ and ‘parent’ axes).

Our main result is the analog of the classic first-order definability theorem
(see, e.g.[4, Cor. 6.1.16]), which can be stated as follows:

A class of models K is definable by means of a set of first-order formulas
if and only if K is closed under ultraproducts and isomorphisms, and the
complement of K is closed under ultrapowers. Also K is definable by a
single first-order formula if and only if both K and its complement are
closed under ultraproducts and isomorphisms.

The above result was adapted to the context of many modal logics, where the
notion of isomorphism is replaced by the weaker concept of bisimulation (the
one which turns to be adequate for the chosen modal logic). Thus definability
theorems were established for the basic modal logic [6], for temporal logics with
since and until operators [11], for negation-free modal languages [12], etc. A
global counterpart was studied in [7], and a general framework stating sufficient
conditions for an arbitrary (modal) logic L to verify it was given in [1]. One of
those requirements is that the models of L are closed under ultraproducts, which
is true for the aforementioned logics, but not for XPath=: models of XPath= are
data trees, which may not remain connected under ultraproducts. Hence one
cannot expect to use that framework in this case.

Though we take as motivation the current relevance of XML documents
(which of course are finite) and the logics for reasoning over them, we do not
restrict ourselves to the finite case. Indeed, an infinite set of formulas may force
all its data tree models to be infinite. Hence, since we aim at working with
arbitrary sets of formulas, we must consider arbitrary (i.e. finite or infinite) data
trees.

Our definability theorems for XPath= themselves are shown using rather
known techniques. The main contribution, however, is to devise and calibrate
the adequate notions to be used in the XPath= scenario, and to study the subtle
interaction between them:

– Bisimulation: already introduced in [8], it is the counterpart of isomorphisms
in the classical theorem for first-order logic. In [8] it is shown that if two
(possibly infinite) data trees are bisimilar then they are logically equivalent
(that is, they are not distinguishable by an XPath= formula) but that the
converse is not true in general.

– Saturation: we define and study the new notion of XPath=-saturation. We
show that for XPath=-saturated data trees being bisimilar is the same as
being logically equivalent. It is also shown that a 2-saturated data tree (re-
garded as a first-order structure) is already XPath=-saturated.

– Utlraproducts: contrary to other adaptations of the classical first-order defin-
ability theorem to modal logics, in our case we have to adjust also the notion
of ultraproduct, and so we work with a variant of it called quasi-ultraproduct.
The reason is that we must not abandon the universe of data trees, as these
are the only allowed models of XPath=.

Definability for Downward and Vertical XPath on Data Trees 3

x : (a, 0)

y : (a, 1) z : (b, 2)

u : (a, 0) v : (a, 1) w : (b, 0)

– ϕ1 = 〈↓[a]〉 ∧ 〈↓[b]〉, [[ϕ1]]T = {x, z}
(“nodes with a child labeled a and a child la-
beled b”)

– ϕ2 = 〈↓[a] 6= ↓[a]〉, [[ϕ2]]T = {z}
(“nodes with two children with same tag a but
different data value”)

– ϕ3 = 〈ε 6= ↑[〈ε 6= ↑〉]〉, [[ϕ3]] = {u, v, w}
(“nodes with a data value different from the
one of his parent, who, in turn, has a data
value different from his parent”)

– ϕ4 = 〈ε 6= ↓↓[ϕ3]〉, [[ϕ4]] = {x}
(“nodes with a downward path of length 2,
with all distinct data values”)

Fig. 1. A data tree T ∈ Trees({a, b} × N) and the meaning of some XPathl
=-formulas

There are many works in the literature studying the expressive power of
Core-XPath (see e.g. [10,13,14]). All these consider the navigational fragment of
XPath. A first step towards the study of the expressive power of XPath when
equipped with (in)equality test over data trees, is the recent paper [8]. We aim
to shed more light in this direction.

The paper is organized as follows, In §2 we introduce the formal syntax and
semantics of the downward and vertical fragments of XPath=, together with no-
tions of bisimulations from [8]. Suitable notions of saturation for both fragments
are given in §3, where it is also shown that for saturated trees bisimilarity coin-
cides with logical equivalence. In §4 we explain the connection between XPath=

and first-order logic, and we introduce the idea of quasi-ultraproducts for the
downward and vertical fragments. In §5 we state the theorems on definability,
and we close in §6 with a few words about future research and show some appli-
cations of the definability results.

Acknowledgements. This work was partially supported by grant ANPCyT-PICT-
2011-0365, UBACyT 20020110100025, the FP7-PEOPLE-2011-IRSES Project
MEALS and the Laboratoire International Associé INFINIS.

2 Preliminaries

Data trees. Let Trees(A) be the set of ordered and unranked (finite or infinite)
trees over an arbitrary alphabet A. We say that T is a data tree if it is a tree
from Trees(A × D), where A is a finite set of labels and D is an infinite set of
data values (see Figure 1 for an example). A data tree is finitely branching if
every node has finitely many children. For any given data tree T , we denote by T
its set of nodes. We use letters x, y, z, u, v, w as variables for nodes. Given a node
x ∈ T of T , we write label(x) ∈ A to denote the node’s label, and data(x) ∈ D
to denote the node’s data value.

4 Abriola, Descotte and Figueira

Given two nodes x, y ∈ T we write x→y if y is a child of x, and x
n→y if y is a

descendant of x at distance n. In particular,
1→ is the same as →, and

0→ is the
identity relation. (

n→y) denotes the sole ancestor of y at distance n (assuming it
has one).

Vertical and Downward XPath with data tests. We work with a simplification
of XPath, stripped of its syntactic sugar. We consider fragments of XPath that
correspond to the navigational part of XPath 1.0 with data equality and inequal-
ity. XPath= is a two-sorted language, with path expressions (that we write
α, β, γ) and node expressions (that we write ϕ,ψ, η). The vertical XPath,

notated XPathl= is defined by mutual recursion as follows:

α, β ::= o | [ϕ] | αβ | α ∪ β o ∈ {ε, ↑, ↓}
ϕ,ψ ::= a | ¬ϕ | ϕ ∧ ψ | ϕ ∨ ψ | 〈α〉 | 〈α = β〉 | 〈α 6= β〉 a ∈ A

We call downward XPath, notated XPath↓=, to the syntactic fragment which

only uses the navigation axis ↓, but not ↑. An XPathl=-formula [resp. XPath↓=-

formula] is simply a node expression of XPathl= [resp. XPath↓=].

Semantics of XPathl= in a given data tree T are defined as follows:

[[↓]]T = {(x, y) | x→y}

[[↑]]T = {(x, y) | y→x}

[[ε]]T = {(x, x) | x ∈ T}

[[¬ϕ]]T = T \ [[ϕ]]T

[[ϕ ∧ ψ]]T = [[ϕ]]T ∩ [[ψ]]T

[[α ∪ β]]T = [[α]]T ∪ [[β]]T

[[a]]T = {x ∈ T | label(x) = a}

[[[ϕ]]]T = {(x, x) | x ∈ [[ϕ]]T }

[[αβ]]T = {(x, z) | (∃y ∈ T) (x, y) ∈ [[α]]T , (y, z) ∈ [[β]]T }

[[〈α〉]]T = {x ∈ T | (∃y ∈ T) (x, y) ∈ [[α]]T }

[[〈α = β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) = data(z)}

[[〈α 6= β〉]]T = {x ∈ T | (∃y,z ∈ T)(x, y) ∈ [[α]]T , (x, z) ∈ [[β]]T , data(y) 6= data(z)}

See Figure 1 for the semantics of some formulas. For a data tree T and u ∈ T , we
write T , u |= ϕ to denote u ∈ [[ϕ]]T , and we say that T , u satisfies ϕ or that ϕ is

true at T , u. Let Thl(T , u) [resp. Th↓(T , u)] be the set of all XPathl=-formulas

[resp. XPath↓=-formulas] true at T , u. In terms of expressive power, it is easy to
see that ∪ is unessential (see [8, §2.2]). We will henceforth assume that formulas
do not contain union of path expressions.

Let T and T ′ be data trees, and let u ∈ T , u′ ∈ T ′. We say that T , u and
T ′, u′ are equivalent for XPathl= [resp. equivalent for XPath↓=] (notation:

T , u ≡l T ′, u′ [resp. T , u ≡↓ T ′, u′]) iff for all formulas ϕ ∈ XPathl= [resp.
ϕ ∈ XPath↓=], we have T , u |= ϕ iff T ′, u′ |= ϕ.

Bisimulations. In [8] the notions of downward and vertical bisimulations are
introduced. We reproduce them here, as they are key concepts for our results.

We say that u ∈ T and u′ ∈ T ′ are bisimilar for XPath↓= (or ↓-bisimilar;
notation: T , u↔↓ T ′, u′) iff there is a relation Z ⊆ T × T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

Definability for Downward and Vertical XPath on Data Trees 5

– Harmony: If xZx′ then label(x) = label(x′).

– Zig: If xZx′, x
n→v and x

m→w then there are v′, w′ ∈ T ′ such that x′
n→v′,

x′
m→w′ and

1. data(v) = data(w)⇔ data(v′) = data(w′),

2. (
i→v)Z (

i→v′) for all 0 ≤ i < n, and

3. (
i→w)Z (

i→w′) for all 0 ≤ i < m.

– Zag: If xZx′, x′
n→v′ and x′

m→w′ then there are v, w ∈ T such that x
n→v,

x
m→w and items 1, 2 and 3 above are verified.

We say that u ∈ T and u′ ∈ T ′ are bisimilar for XPathl= (or l-bisimilar;
notation: T , u↔l T ′, u′) iff there is a relation Z ⊆ T × T ′ such that uZu′ and
for all x ∈ T and x′ ∈ T ′ we have

– Harmony: If xZx′ then label(x) = label(x′),

– Zig: If xZx′, y
n→x and y

m→z then there are y′, z′ ∈ T ′ such that y′
n→x′,

y′
m→z′, data(z) = data(x)⇔ data(z′) = data(x′), and zZz′.

– Zag: If xZx′, y′
n→x′ and y′

m→z′ then there are y, z ∈ T such that y
n→x, y

m→z,
data(z) = data(x)⇔ data(z′) = data(x′), and zZz′.

The main results establishing the connection between bisimulation and equiva-
lence is the following:

Theorem 1 ([8]). If T , u↔↓ T ′, u′ then T , u ≡↓ T ′, u′, and if T , u↔l T ′, u′,
then T , u ≡l T ′, u′.

3 Saturation

In [8] is is shown that the reverse implications of Theorem 1 hold over finitely
branching trees. However, they do not hold in general. In this section we intro-
duce notions of saturation for the downward and vertical fragments of XPath,
and show that the reverse implications of Theorem 1 are true over saturated
data trees.

Saturation for the downward fragment. Let 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 be
tuples of sets of XPath↓=-formulas. Given a data tree T and u ∈ T , we say that
〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-satisfiable [resp. 6=↓n,m-satisfiable] at
T , u if there exist v0 → v1 → · · · → vn ∈ T and w0 → w1 → · · · → wm ∈ T such
that u = v0 = w0 and

1. for all i ∈ {1, . . . , n}, T , vi |= Σi;
2. for all j ∈ {1, . . . ,m}, T , wj |= Γj ; and
3. data(vn) = data(wm) [resp. data(vn) 6= data(wm)].

We say that 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-finitely satisfiable [resp.

6=↓n,m-finitely satisfiable] at T , u if for every finite Σ′i ⊆ Σi and finite Γ ′j ⊆ Γj ,

we have that 〈Σ′1, . . . , Σ′n〉 and 〈Γ ′1, . . . , Γ ′m〉 are =↓n,m-satisfiable [resp. 6=↓n,m-
satisfiable] at T , u.

6 Abriola, Descotte and Figueira

Definition 2. We say that a data tree T is ↓-saturated if for every n,m ∈ N,
every pair of tuples 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 of sets of XPath↓=-formulas,
every u ∈ T , and ? ∈ {=, 6=}, the following is true:

if 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are ?↓n,m-finitely satisfiable at T , u then

〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are ?↓n,m-satisfiable at T , u.

Proposition 3. Any finitely branching data tree is ↓-saturated.

Proof. Suppose by contradiction that there is u ∈ T and tuples 〈Σ1, . . . , Σn〉
and 〈Γ1, . . . , Γm〉 of sets of XPath↓=-formulas which are finitely =↓n,m-satisfiable

at T , u but not =↓n,m-satisfiable at T , u (the case for T being 6=↓n,m-satisfiable is
analogous). Let

P = {(v, w) ∈ T 2 | u n→v ∧ um→w ∧ data(v) = data(w)}.

Observe that P is finite because T is finitely branching. It is clear that if (v, w) ∈
P , so that u = v0 → v1 → · · · → vn = v ∈ T , and u = w0 → w1 → · · · → wm =
w ∈ T then either

1. there is i ∈ {1, . . . , n} such that T , vi 6|= Σi, or
2. there is j ∈ {1, . . . ,m} such that T , wj 6|= Γj .

We will define sets (Σi,v,w)1≤i≤n and (Γj,v,w)1≤j≤m, each one of them with
at most one element, as follows: If case 1 holds, assume i0 is the least such
number and define Σi0,v,w as {ρ} for some formula ρ ∈ Σi0 such that T , vi0 6|= ρ,
define Σi,v,w = ∅ for any i ∈ {1, . . . , n} \ {i0}, and define Γj,v,w = ∅ for any j ∈
{1, . . . ,m}. If case 1 does not hold then case 2 holds, so assume j0 is the least such
number and define Γj0,v,w as {ρ} for some formula ρ ∈ Γj0 such that T , wj0 6|= ρ,
define Γj,v,w = ∅ for any j ∈ {1, . . . ,m} \ {j0}, and define Σi,v,w = ∅ for any
i ∈ {1, . . . , n}. Finally, define the finite sets Σ′i =

⋃
(v,w)∈P Σi,v,w and Γ ′j =⋃

(v,w)∈P Γj,v,w. By construction, we have Σ′i ⊆ Σi, Γ
′
j ⊆ Γj and 〈Σ′1, . . . , Σ′n〉

and 〈Γ ′1, . . . , Γ ′m〉 are not =↓n,m-satisfiable at T , u which is a contradiction. ut

Proposition 4. Let T and T ′ be ↓-saturated data trees, and let u ∈ T and
u′ ∈ T ′. If T , u ≡↓ T ′, u′, then T , u↔↓ T ′, u′.

Proof. We show that Z, defined by xZx′ iff T , x ≡↓ T ′, x′ is a ↓-bisimulation
between T , u and T ′, u′. Clearly uZu′, and Harmony holds. We only need to
show that Zig and Zag are satisfied. We see only Zig, as Zag is analogous.

Suppose xZx′, x = v0 → v1 → · · · → vn and x = w0 → w1 → · · · → wm are
paths on T , and data(vn) = data(wm) (the case data(vn) 6= data(wm) is shown
analogously). For i ∈ {1, . . . , n}, let Σi = Th↓(T , vi), and for j ∈ {1, . . . ,m}, let
Γj = Th↓(T , wj). Furthermore, let Σ′i be a finite subset of Σi, and let Γ ′j be a
finite subset of Γj . Define

ϕ = 〈↓[∧Σ′1]↓ . . . ↓ [∧Σ′n] = ↓[∧Γ ′1]↓ . . . ↓ [∧Γ ′m]〉.

Definability for Downward and Vertical XPath on Data Trees 7

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡↓ T ′, x′,
we conclude that T ′, x′ |= ϕ. Hence 〈Σ′1, . . . , Σ′n〉 and 〈Γ ′1, . . . , Γ ′m〉 are =↓n,m-
satisfiable at x′. This holds for any finite sets Σ′i ⊆ Σi and Γ ′j ⊆ Γj , and so

〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-finitely satisfiable at x′, Since T ′ is ↓-
saturated, 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-satisfiable at T ′, x′, so there
are paths x′ = v′0 → v′1 → · · · → v′n and x′ = w′0 → w′1 → · · · → w′m on T ′ such
that

i. data(v′n) = data(w′m);
ii. for all 1 ≤ i ≤ n, T ′, v′i |= Th↓(T , vi), i.e. T , vi ≡↓ T ′, v′i; and

iii. for all 1 ≤ j ≤ m, T ′, w′j |= Th↓(T , wj), i.e T , wj ≡↓ T ′, w′j .

By the definition of Z, conditions i, ii and iii above imply items 1, 2 and 3 of
the Zig clause for ↓-bisimulation. ut

Saturation for the vertical fragment. Given a data tree T and u ∈ T , we say that

the set of XPathl=-formulas Γ is =
l
n,m-satisfiable [resp. 6=ln,m-satisfiable] at

T , u if there exist v, w ∈ T such that v
n→u, v

m→w, w |= Γ and data(u) = data(w)

[resp. data(u) 6= data(w)]. We say that Γ is =
l
n,m-finitely satisfiable [resp.

6=ln,m-finitely satisfiable] at T , u if for every finite Γ ′ ⊆ Γ , we have that Γ ′ is

=
l
n,m-satisfiable [resp. =

l
n,m-satisfiable] at T , u.

Definition 5. We say that a data tree T is l-saturated if for every set of
XPathl=-formulas Γ , every u ∈ T , every n,m ∈ N, and ? ∈ {=, 6=}, the following
is true:

if Γ is ?
l
n,m-finitely satisfiable at T , u then Γ is ?

l
n,m-satisfiable at T , u.

Proposition 6. Let T and T ′ be l-saturated data trees, and let u ∈ T and
u′ ∈ T ′. If T , u ≡l T ′, u′, then T , u↔l T ′, u′.

Proof. We show that Z ⊆ T × T ′, defined by xZx′ iff T , x ≡l T ′, x′ is a l-
bisimulation between T , u and T ′, u′. Clearly uZu′, and Harmony also holds, so
we only need to show that Zig and Zag are satisfied. We see only Zig, as Zag is
analogous.

Suppose xZx′, y
n→x and y

m→z are in T , and data(x) = data(z) (the case
data(x) 6= data(z) can be shown analogously). Let Γ = Thl(T , z), and let Γ ′ be
a finite subset of Γ . Define

ϕ = 〈ε = ↑n ↓m [∧Γ ′]〉.

It is clear that T , x |= ϕ, and since by definition of Z we have T , x ≡l T ′, x′,
we conclude that T ′, x′ |= ϕ. Hence Γ ′ is =

l
n,m-satisfiable at x′. This holds for

any finite set Γ ′ ⊆ Γ , and so Γ is =
l
n,m-finitely satisfiable at x′. Since T ′ is

l-saturated, Γ is =
l
n,m-satisfiable at x′, and thus there are y′

n→x′ and y′
m→z′ on

T ′ such that data(x′) = data(z′) and T ′, z′ |= Thl(T , z), i.e T , z ≡l T ′, z′. By
the definition of Z, we have zZz′ and hence the Zig clause for l-bisimulation is
verified. ut

8 Abriola, Descotte and Figueira

4 Weak Data Trees and Quasi-ultraproducts

We fix the signature σ with binary relations and ∼, and a unary predicate Pa

for each a ∈ A. Any data tree T can be seen as a first-order σ-structure, where

 T = {(x, y) ∈ T 2 | x→ y in T };
∼T = {(x, y) ∈ T 2 | data(x) = data(y)};
P Ta = {x ∈ T | label(x) = a}.

If ϕ(x) is a first-order formula with a free variable x, we use T |= ϕ[a], as
usual, to denote that that ϕ is true in T under the valuation which maps x to
a ∈ T . In [8] it is shown a truth preserving translation Trx mapping XPathl=-
formulas into first-order σ-formulas with one free variable x. By truth preserving
we mean that for ϕ ∈ XPathl= we have T , u |= ϕ iff T |= Trx(ϕ)[u].

For reasons that will become clearer later on, we will need to work with
σ-structures which are slightly more general than data trees.

Definition 7. A σ-structure T is a weak data tree if ∼ is an equivalence
relation; there is exactly one node r with no u such that u r (r is called root
of T); for all nodes x 6= r there is exactly one y such that y x; and for each
n ≥ 0 the relation has no cycles of length n.

Observe that a weak data tree need not be connected, and that the class of weak
data trees is elementary, i.e. definable by a set of first-order σ-sentences (with
equality). For a weak data tree T and u ∈ T , let T |u denote the substructure of
T induced by {v ∈ T | u ∗ v}. Observe that in this case T |u is a data tree.

The following proposition shows the ‘local’ aspect of XPath↓= and XPathl=.
It is stated in terms of first-order because models are weak data trees.

Proposition 8. Let T be a weak data tree and let r ∗ u in T .

1. If ϕ ∈ XPath↓=-formula then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

2. If r is the root of T and ϕ ∈ XPathl= then T |= Trx(ϕ)[u] iff T |r |= Trx(ϕ)[u].

Observe that the condition of r being the root in the second item is needed.
Suppose for example we are on the data tree with only 2 nodes, the root r and its
child u, with same data value. Consider now ϕ = 〈ε = ↑〉. Clearly T |= Trx(ϕ)[u],
but T |u 6|= Trx(ϕ)[u].

If M is a first-order σ-structure and A ⊆ M , we denote by σA the lan-
guage obtained by adding to σ constant symbols for each a ∈ A. M can be
seen as a σA structure by interpreting the new symbols in the obvious way.
Let ThA(M) be the set of all σA-sentences true in M. Let κ be a cardinal.
We recall the definition of κ-saturated first-order structures. We say that the
σ-structure M is κ-saturated if for all A ⊆ M and all n, if |A| < κ and
Γ (x1, . . . , xn) is a set of σA-formulas with free variables among x1, . . . , xn such
that Γ (x1, . . . , xn) ∪ ThA(M) is satisfiable, then Γ (x1, . . . , xn) is realized inM.

We now show that 2-saturated data trees are already both downward and
vertical saturated. For technical reasons we state these results in the more general
setting of weak data trees.

Definability for Downward and Vertical XPath on Data Trees 9

Proposition 9. Let T be a 2-saturated weak data tree and r ∈ T .

1. T |r is a ↓-saturated data tree.
2. If r is the root of T then T |r is a l-saturated data tree.

Proof. Let T ′ = T |r and let u ∈ T ′. For item 1, let 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉
be tuples of sets of XPath↓=-formulas. Suppose 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are
=↓n,m-finitely satisfiable at T ′, u (the case for 6=↓n,m-finitely satisfiable is analo-

gous). We show that 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-satisfiable at T ′, u.
Consider the following first-order σ{u}-formula with free variables x̄ = x1, . . . , xn
and ȳ = y1, . . . , ym:

ϕ(x̄, ȳ) = u x1 ∧
n−1∧
i=1

xi xi+1 ∧ u y1 ∧
m−1∧
j=1

yj yj+1 ∧ xn ∼ ym.

Define the following set of first-order σ{u}-formulas:

∆(x̄, ȳ) = {ϕ(x̄, ȳ)} ∪
n⋃

i=1

Trxi
(Σi) ∪

m⋃
j=1

Tryj
(Γj).

Let ∆′(x̄, ȳ) be a finite subset of ∆(x̄, ȳ). Since 〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉
are =↓n,m-finitely satisfiable at T ′, u, then ∆′(x̄, ȳ) is satisfiable and, by item 1 of
Proposition 8, consistent with Th{u}(T). By compactness, ∆(x̄, ȳ) is satisfiable
and consistent with Th{u}(T). By 2-saturation, we conclude that ∆(x̄, ȳ) is
realizable in T , say at v̄ = v1, . . . , vn and w̄ = w1, . . . , wm. Thus we have:

i. u v1 · · · vn and u w1 · · · wm in T , and hence in T ′;
ii. for all i ∈ {1, . . . , n}, T |= Trxi

(Σi)[vi], and for all j ∈ {1, . . . ,m}, T |=
Tryj

(Γj)[wj]; by item 1 of Proposition 8 this implies that T ′ |= Trxi
(Σi)[vi]

and T ′ |= Tryj
(Γj)[wj];

iii. vn ∼ wm in T , and hence in T ′.

Since Tr is truth preserving, we have that for all i ∈ {1, . . . , n}, T ′, vi |= Σi,
and for all j ∈ {1, . . . ,m}, T ′, wi |= Γi. Together with i and iii we conclude that
〈Σ1, . . . , Σn〉 and 〈Γ1, . . . , Γm〉 are =↓n,m-satisfiable at T ′, u.

For item 2, let Γ be a set of XPathl=-formulas. Suppose Γ is =
l
n,m-finitely

satisfiable at T ′, u (the case for 6=ln,m-finitely satisfiable is analogous). We show

that Γ are =
l
n,m-satisfiable at T ′, u.

Consider the following first-order σ{u}-formula with free variable y:

ϕ(y) = (∃x0 . . . ∃xn)(∃y0 . . . ∃ym)[xn = u ∧ y = ym ∧ x0 = y0 ∧
n−1∧
i=0

xi xi+1 ∧
m−1∧
j=0

yj yj+1 ∧ xn ∼ ym]

Define the following set of first-order σ{u}-formulas: ∆(y) = {ϕ(y)}∪Try(Γ). Let

∆′(y) be a finite subset of ∆(y). Since Γ is =
l
n,m-finitely satisfiable at T ′, u, then

10 Abriola, Descotte and Figueira

∆′(y) is satisfiable and, by item 2 of Proposition 8, consistent with Th{u}(T). By
compactness, ∆(y) is satisfiable and consistent with Th{u}(T). By 2-saturation,
we conclude that ∆(y) is realizable in T , say at w. Thus we have:

iv. There is v ∈ T such that v
n→u and v

m→w in T and hence in T ′.
v. T |= Try(Γ)[w]; by item 2 of Proposition 8 this implies that T ′ |= Try(Γ)[w];
vi. u ∼ w in T , and hence in T ′.

Since Tr is truth preserving, we have that T ′, w |= Γ . Together with iv and vi

we conclude that Γ is =
l
n,m-satisfiable at T ′, u. ut

In what follows, we introduce the notion of quasi-ultraproduct, a variant
of the usual notion of first-order model theory, which will be needed for the
definability theorems.

Let I 6= ∅, let U be an ultrafilter over I and let (Ti)i∈I be a family of data
trees. As usual, we denote with

∏
U Ti the ultraproduct of (Ti)i∈I modulo U .

Observe that by the fundamental theorem of ultraproducts (see e.g. [4, Thm.
4.1.9]),

∏
U Ti is a weak data tree σ-structure —though it may not be a data

tree because it may be disconnected, as it is shown next:

Example 10. For i ∈ N, let Ti as any data tree of height at least n, and let ui
as any node of Ti at distance n from the root of Ti. Let ϕn(x) be the first-order
property “x is at distance at least n from the root”. It is clear that Tm |= ϕn[um]
for every m ≥ n. Let u∗ be the ultralimit of (ui)i∈I modulo U . Since {m | m ≥
n} ∈ U for any non-principal U , we conclude that

∏
U Ti |= ϕn[u∗] for every n,

and so u∗ is disconnected from the root of
∏

U Ti.

Let (Ti, ui)i∈I be a family of pointed data trees. The ultraproduct of such pointed
data trees is defined, as usual, by (

∏
U Ti, u∗), where u∗ is the ultralimit of (ui)i∈I

modulo U .

Definition 11. Suppose (Ti, ui)i∈I is a family of pointed data trees, ri is the root
of Ti, U is an ultrafilter over I, T ∗ =

∏
U Ti, and u∗ and r∗ are the ultralimits

of (ui)i∈I and (ri)i∈I modulo U respectively.

1. The ↓-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pointed data tree
(T ∗|u∗, u∗).

2. The l-quasi ultraproduct of (Ti, ui)i∈I modulo U is the pair (T ∗|r∗, u∗).

Observe that both T ∗|u∗ and T ∗|r∗ are data trees. However, while u∗ is in the
domain of the former, it may not be in the domain of the latter (cf. Example 10).
Hence, in general, pointed data trees are not closed under l-quasi ultraproduct.
Let k ≥ 0, let T be a data tree and let u ∈ T . We say that (T , u) is a k-bounded
pointed data tree if u is at distance at most k from the root of T . In particular,
if r is the root of T (as it is often the case) then (T , r) is a 0-bounded pointed
data tree. The following proposition states that k-bounded data trees are closed
under l-quasi ultraproducts.

Proposition 12. Let (Ti, ui)i∈I be a family of k-bounded pointed data trees.
Then the l-quasi ultraproduct of (Ti, ui)i∈I is a k-bounded pointed data tree.

Definability for Downward and Vertical XPath on Data Trees 11

Proof. Let (T l, u∗) be the l-quasi ultraproduct of (Ti, ui)i∈I modulo U . By
definition it is clear that T l is a data tree. To see that u∗ ∈ T l, let

ϕ(x) = (∃r) [¬(∃y)y r ∧ [r = x ∨ r x ∨∨
1≤i<k

(∃z1 . . . ∃zi)[r z1 ∧ zi−1 x ∧
∧

1≤j<i−1

zj zj+1]]],

which is a first-order formula for “r is the root and x is at distance at most k
from r”. Since for every i ∈ I we have Ti |= ϕ[ui], we conclude that T l |= ϕ[u∗]
and hence u∗ is at distance at most k from the root of T l. ut

As a particular case one has the notion of ↓-quasi ultrapower and l-quasi
ultrapower of a family of pointed data trees. Observe that if (T l, u∗) is the
l-quasi ultrapower of (T , u)i∈I then u∗ belongs to the domain of T l and so
(T l, u∗) is a pointed data tree.

5 Definability

In this section we state the main results. If K is a class of pointed data trees,
we denote its complement by K. We begin with the downward fragment.

Lemma 13. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡↓
T ′, u′. Then there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗) of (T , u) and
(T ′, u′) respectively such that (T ↓, u∗)↔↓ (T ′↓, u′∗)

Proof. It is known that there is a suitable ultrafilter U such that
∏

U T and∏
U T ′ are ω-saturated (see e.g. [2, Lem. 2.7.3]). By item 1 Proposition 9, T ↓ =

(
∏

U T)|u∗ and T ↓ = (
∏

U T ′)|u′∗ are ↓-saturated data trees. By hypothesis
T , u ≡↓ T ′, u′, and hence T ↓, u∗ ≡↓ T ′↓, u′∗. Finally, by Proposition 4, T ↓, u∗↔↓
T ′↓, u′∗. ut

Lemma 14. Let K be a class of pointed data trees and let Σ be a set of XPath↓=-
formulas finitely satisfiable in K. Then Σ is satisfiable in some ↓-quasi ultra-
product of pointed data trees in K.

Proof. Let I = {Σ0 ⊂ Σ | Σ0 is finite} and for each ϕ ∈ Σ, let ϕ̂ = {i ∈ I |
ϕ ∈ i}. Then the set E = {ϕ̂ | ϕ ∈ Σ} has the finite intersection property:
{ϕ1, . . . , ϕn} ∈ ϕ̂1 ∩ · · · ∩ ϕ̂n. By the Ultrafilter Theorem (see [4, Prop. 4.1.3]) E
can be extended to an ultrafilter U over I.

Since Σ is finitely satisfiable in K, for each i ∈ I there is (Ti, ui) ∈ K such
that Ti, ui |= i. Let (T ↓, u∗) be the ↓-quasi ultraproduct of (Ti, ui)i∈I modulo
U . We show that T ↓, u∗ |= Σ: let ϕ ∈ Σ. Then ϕ̂ ∈ E ⊆ U and ϕ̂ ⊂ {i ∈
I | Ti, ui |= ϕ}. Hence {i ∈ I | Ti, ui |= ϕ} ∈ U , which implies that

∏
U Ti |=

Trx(ϕ)[u∗], where u∗ is the ultralimit of (ui)i∈I . Since T ↓ = (
∏

U Ti)|u∗, by
item 1 of Proposition 8 we conclude that T ↓, u∗ |= ϕ. ut

12 Abriola, Descotte and Figueira

Theorem 15. Let K be a class of pointed data trees. Then K is definable by a
set of XPath↓=-formulas iff K is closed under ↓-bisimulations and ↓-quasi ultra-
products, and K is closed under ↓-quasi ultrapowers.

Proof. For (⇒), suppose that K is definable by a set of XPath↓=-formulas. By
Theorem 1 it is clear that K is closed under ↓-bisimulations. By the fundamental
theorem of ultraproducts together with item 1 of Proposition 8 it is clear that
K is closed under ↓-quasi ultraproducts. It is also clear that the fundamental
theorem of ultraproducts and the fact that any XPath↓=-formula is expressible
in first-order imply that T , u ≡↓ T ↓, u∗ for any (T ↓, u∗) ↓-quasi ultrapower
modulo U , and therefore that K is closed under ↓-quasi ultrapowers.

For (⇐), suppose K is closed under bisimulations and ↓-quasi ultraproducts,
andK is closed under ↓-quasi ultrapowers. We show that Γ =

⋂
(T ,u)∈K Th↓(T , u)

defines K. It is clear that if (T , u) ∈ K then T , u |= Γ .
Now suppose that T , u |= Γ and consider Σ = Th↓(T , u). Let ∆ be a finite

subset of Σ, and assume that ∆ is not satisfiable in K. Then ¬ ∧∆ is true in
every pointed data tree of K, so ¬ ∧∆ ∈ Γ . Therefore T , u |= ¬ ∧∆ which is a
contradiction because ∆ ⊆ Σ. This shows that Σ is finitely satisfiable in K.

By Lemma 14, Σ is satisfiable in some ↓-quasi ultraproduct of pointed data
trees in K, and since K is closed under ↓-quasi ultraproducts, Σ is satisfiable in
K. Then there exists (T ′, u′) ∈ K such that T ′, u′ |= Σ and therefore T , u ≡↓
T ′, u′. By Lemma 13, there exist ↓-quasi ultrapowers (T ↓, u∗) and (T ′↓, u′∗)
of (T , u) and (T ′, u′) respectively such that (T ↓, u∗)↔↓ (T ′↓, u′∗). Since K is
closed under ↓-bisimulations, (T ↓, u∗) ∈ K. Suppose (T , u) ∈ K. Since K is
closed under ↓-quasi ultrapowers, (T ↓, u∗) ∈ K, and this is a contradiction.
Hence we conclude (T , u) ∈ K. ut

Theorem 16. Let K be a class of pointed data trees. Then K is definable by an
XPath↓=-formula iff both K and K are closed under ↓-bisimulations and ↓-quasi
ultraproducts.

Proof. For (⇒) suppose that K is definable by an XPath↓=-formula. By Theo-
rem 1 it is clear that K and K are closed under bisimulations. By the funda-
mental theorem of ultraproducts together with item 1 of Proposition 8 it is clear
that K and K are closed under ↓-quasi ultraproducts.

For (⇐) suppose K and K are closed under bisimulations and ↓-quasi ultra-
products. Then, by Theorem 15, there exist sets Γ1 and Γ2 of XPath↓=-formulas
defining K and K respectively. Consider the set of XPath↓=-formulas Γ1 ∪ Γ2.
This set is clearly inconsistent and so, by compactness, there are finite sets ∆1

and ∆2 such that ∆i ⊆ Γi (i = 1, 2) and

T , u |= ∧∆1 → ¬∧∆2 (1)

for any pointed data tree (T , u). We show that ϕ = ∧∆1 defines K. On the one
hand, it is clear that if (T , u) ∈ K then T , u |= ϕ. On the other hand, suppose
that T , u |= ϕ. From (1) we conclude T , u |= ¬ ∧ ∆2 and so T , u 6|= Γ2. Then
(T , u) /∈ K as we wanted to prove. ut

Definability for Downward and Vertical XPath on Data Trees 13

In [8, §3.1.1] a restricted version of ↓-bisimulations, called `-bisimulation, is
introduced. It is shown to coincide with the notion of `-equivalence, which infor-
mally means indistinguishable by XPath↓= formulas that cannot “see” beyond `
‘child’-steps from the current point of evaluation. Like Theorem 16, the following
result characterizes when a class of pointed data trees is definable by a single
XPath↓=-formula. However, instead of using the rather abstract notion of ↓-quasi
ultraproducts, it uses the perhaps more natural notion of `-bisimulation.

Theorem 17. Let K be a class of pointed data trees. Then K is definable by a
formula of XPath↓= iff K is closed by `-bisimulations for XPath↓= for some `.

Proof. (⇒) is a direct consequence of Theorem 1. Let us see (⇐). We know [8,

Cor. 3.2] that {T ′, u′ | T , u ≡↓` T ′, u′} is definable by an XPath↓=-formula χ`,T ,u

of downward depth ≤ `. We show that

ϕ =
∨

(T ,u)∈K

χ`,T ,u

defines K. In [8, Prop. 3.1] it is shown that ≡↓` has finite index, and therefore the
above disjunction is equivalent to a finite one. On the one hand, if T ′, u′ ∈ K
then it is clear that T ′, u′ |= χ`,T ′,u′ and so T ′, u′ |= ϕ. On the other hand,
we have T ′, u′ |= ϕ iff there is (T , u) ∈ K such that T ′, u′ |= χ`,T ,u iff there

is (T , u) ∈ K such that T , u↔↓` T ′, u′. Hence since K is closed under↔↓` , if
T ′, u′ |= ϕ we have T ′, u′ ∈ K. ut

We turn to the vertical fragment.

Lemma 18. Let (T , u) and (T ′, u′) be two pointed data trees such that T , u ≡l
T ′, u′. Then there exist l-quasi ultrapowers (T l, u∗) and (T ′l, u′∗) of (T , u) and
(T ′, u′) respectively such that (T l, u∗)↔l (T ′l, u′∗)

Proof. The proof is analogous to the proof of Lemma 13 but using item 2 instead
of item 1 of Proposition 9 and Proposition 6 instead of Proposition 4. ut

Lemma 19. Let K be a class of k-bounded pointed data trees and let Σ be a
set of XPathl=-formulas finitely satisfiable in K. Then Σ is satisfiable in some
l-quasi ultraproduct of pointed data trees in K.

Proof. The proof is analogous to the proof of Lemma 14 but taking l-quasi
ultraproducts instead of ↓-quasi ultraproducts and using item 2 instead of item 1
of Proposition 8. To apply this Proposition, one has to note that u∗ ∈ T l since
the Ti, ui are k-bounded pointed. ut

In the next two theorems, the universe of pointed data trees is restricted to
those which are k-bounded (for any fixed k). Therefore, the operations of closure
and complement must be taken with respect to this universe.

Theorem 20. Over k-bounded pointed data trees: K is definable by a set of
XPathl=-formulas iff K is closed under l-bisimulations and l-quasi ultraproducts,
and K is closed under l-quasi ultrapowers.

14 Abriola, Descotte and Figueira

Proof. The proof is analogous to the proof of Theorem 15 but replacing pointed
data trees for k-bounded pointed data trees and every occurrence of ↓ for l.
Also, for (⇒), one has to use item 2 instead of item 1 of Proposition 8 and for
(⇐), Lemmas 19 and 18 instead of Lemmas 14 and 13. ut

Theorem 21. Over k-bounded pointed data trees: K is definable by an XPathl=-
formula iff both K and K are closed under l-bisimulations and l-quasi ultraprod-
ucts.

As in Theorem 17, one can also restate Theorem 21 in terms of (r, s, k)-bisim-

ulations for XPathl= (see [8, §3.2.3] for a definition).

Theorem 22. Let K be a class of pointed data trees. Then K is definable by a
formula of XPathl= iff K is closed by (r, s, k)-bisimulations for XPathl= for some
r, s, k.

6 Future Research and Applications

In this work we introduced new tools for showing definability results for the
downward and vertical fragments of XPath with (in)equality tests over data
trees. The general road to prove these theorems themselves is somewhat similar
to the one used for the basic modal logic BML (namely, a detour to first-order),
but the new concepts (and their interactions) needed to be used in the context
of XPath= are more sophisticated. The notions of ↓-saturation and l-saturation
are more refined than the usual notions of BML, as they need to take care of the
(in)equality tests over the data. Another difference with respect to the models of
BML, namely Krike models, is that models of XPath= are trees (in particular,
connected) and so they are not closed under ultraproducts. Thus the notions
of ↓-quasi and l-quasi ultraproducts arise. These are variants of the classical
first-order ultraproducts, and they are, of course, absent in the BML framework.

Our development may be useful for showing other basic model theoretical
results such as separation or interpolation of XPath↓= and XPathl=. We plan to
study those and other properties using the tools introduced in this work.

An interesting question is what can be said about other fragments of XPath=

such as XPath↓↓∗= (‘child’ and ‘descendant’ axes) or XPathll
∗

= (‘child’, ‘parent’,
‘descendant’ and ‘ancestor’ axes). As it is mentioned in [8, §5], the bisimulation

notions of these two fragments correspond to those for XPath↓= and XPathl=
respectively. However, in the case of XPath↓↓∗= and XPathll

∗

= , the connection to
first-order logic is not clear, as we cannot express transitive closure.

We finish with some applications:

Example 23. Let K be the class of pointed data trees (T , u) where u is the root
of T and T has some node labeled a. On the one hand, K is definable by a
first-order σ-sentence. On the other, K is closed under XPathl=-bisimulations
but not closed under l-quasi ultraproducts: for i ∈ N define Ti as any tree of
height i whose only node labeled a is at distance i from the root, and define ui

Definability for Downward and Vertical XPath on Data Trees 15

as the root of Ti. By an argument similar to the one used in Example 10 one can
show that if (T l, u∗) is any l-quasi ultraproduct of (Ti, ui)i∈N then no node of

T l has label a. By Theorem 20, K is not definable by a set of XPathl=-formulas.

Example 24. Let dist3(x) be the property stating that there are nodes y, z so
that x→y→z and x, y, z have pairwise distinct data values. It can be checked
that the XPathl=-formula ϕ4 from Figure 1 expresses dist3(x). Let K be the
class of pointed data trees (T , u), where u is the root of T , and for all v ∈ T we

have dist3(v). On the one hand, K is definable by the set of XPathl=-formulas
{¬〈↓n [¬ϕ4]〉 | n ≥ 0}. On the other, for i ∈ N, let (Ti, ui) be any pointed data
tree not in K, of height at least i+ 1, where ui is the root of Ti, and such that
for all v ∈ Ti at distance at most i from ui we have dist3(v). Let (T l, u∗) be
any l-quasi ultraproduct of (Ti, ui)i∈N. One can see that all nodes of v ∈ T l

satisfy dist3(v), and so (T l, u∗) ∈ K. Therefore K is not closed under l-quasi

ultraproducts and by Theorem 21, K is not definable by an XPathl=-formula.
The reader can verify that K is not closed under ↓-bisimulations (see [8, Prop.
7.5]) and hence, by Theorem 15, K is not definable by a set of XPath↓=-formulas.

References

1. C. Areces, F. Carreiro, and S. Figueira. Characterization, definability and separa-
tion via saturated models. Theoretical Computer Science, 2014. To appear.

2. P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic, volume 53 of Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 2001.

3. M. Bojańczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic
on data trees and XML reasoning. Journal of the ACM, 56(3):1–48, 2009.

4. C.C. Chang and H.J. Keisler. Model theory. Studies in logic and the foundations
of mathematics. North-Holland, 1990.

5. J. Clark and S. DeRose. XML path language (XPath). Website, 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

6. M. De Rijke. Modal model theory. Annals of Pure and Applied Logic, 1995.
7. M. De Rijke and H. Sturm. Global definability in basic modal logic. Essays on

non-classical logic, 1:111, 2001.
8. D. Figueira, S. Figueira, and C. Areces. Basic model theory of XPath on data

trees. In ICDT, pages 50–60, 2014.
9. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath

queries. ACM Transactions on Database Systems, 30(2):444–491, 2005.
10. M. Gyssens, J. Paredaens, D. Van Gucht, and G.H.L. Fletcher. Structural charac-

terizations of the semantics of XPath as navigation tool on a document. In PODS,
pages 318–327. ACM, 2006.

11. N. Kurtonina and M. de Rijke. Bisimulations for temporal logic. Journal of Logic,
Language and Information, 6:403–425, 1997.

12. N. Kurtonina and M. de Rijke. Simulating without negation. Journal of Logic and
Computation, 7:503–524, 1997.

13. M. Marx and B. de Rijke. Semantic characterizations of navigational XPath.
SIGMOD Record, 34(2):41–46, 2005.

14. B. ten Cate. The expressivity of XPath with transitive closure. In Stijn Vansum-
meren, editor, PODS, pages 328–337. ACM, 2006.

http://www.w3.org/TR/xpath

	Definability for Downward and Vertical XPath on Data Trees

