
Linearizing bad sequences: upper bounds for the
product and majoring well quasi-orders

Sergio Abriola1, Santiago Figueira2,3?, and Gabriel Senno2

1 Dto. Matemática, FCEN, Universidad de Buenos Aires, Argentina
2 Dto. Computación, FCEN, Universidad de Buenos Aires, Argentina

3 CONICET, Argentina

Abstract. Well quasi-orders (wqo’s) are an important mathematical
tool for proving termination of many algorithms. Under some assump-
tions upper bounds for the computational complexity of such algorithms
can be extracted by analyzing the length of controlled bad sequences.
We develop a new, self-contained study of the length of bad sequences
over the product ordering of Nn, which leads to known results but with
a much simpler argument.
We also give a new tight upper bound for the length of the longest con-
trolled descending sequence of multisets of Nn, and use it to give an upper
bound for the length of controlled bad sequences in the majoring order-
ing of sets of tuples. We apply this upper bound to obtain complexity
upper bounds for decision procedures of automata over data trees.
In both cases the idea is to linearize bad sequences, i.e. transform them
into a descending one over a well-order for which upper bounds can be
more easily handled.

1 Introduction

A quasi-order is a binary relation ≤ over a given set A that is reflexive and
transitive. A sequence X = x0, x1, x2, . . . of elements of A is called good if there
are i < j such that xi ≤ xj . A sequence is bad if it is not good. A well quasi-order
(wqo) is a quasi-order where all infinite sequences are good, or, equivalently, all
bad sequences are finite.

Wqo’s are widely used in termination proofs of algorithms in constraint solv-
ing, automated deduction, program analysis, verification and model checking,
logic, etc. From the analysis of a termination proof of a given algorithm S,
whose correctness is grounded in the analysis of certain wqo, one may extract
a computational complexity upper bound for S. Roughly, the idea is that any
sequence of successive configurations of S (with a given input) is transformed
into a bad sequence in the wqo. Thus, having an upper bound for the length
of the bad sequence entails an upper bound for the number of steps that the
algorithm needs to terminate.

? Figueira was partially supported by UBA (UBACyT 20020090200116), ANPCyT
(PICT-2010-0688) and CONICET (PIP 370).

2 Abriola, Figueira and Senno

However, in principle, a bad sequence over a wqo can be arbitrarily large.
For instance, the lexicographic ordering ≤lex over Nn is a well-order, and hence
a wqo. Observe that for N2 and any N , the sequence

〈1, 0〉, 〈0, N〉, 〈0, N − 1〉, 〈0, N − 2〉, . . . , 〈0, 1〉, 〈0, 0〉 (1)

is ≤lex-bad (which in a total order is equivalent to say that it is decreasing) and
has length greater than N . Therefore, in general there is no bound to the length
of a bad sequence starting with a given element: bad sequences in a wqo are
finite but could be arbitrarily large.

In practice, in the analysis of termination proofs, one has two additional
assumptions of a wqo (A,≤). First, one has some effective way of measuring the
size of each element x ∈ A, notated |x|A or simply |x|.

Definition 1. [13] A norm function |·|A over a set A is a mapping |·|A : A→ N
that provides every element of A with a positive integer, its norm. The norm
function is said to be proper if {x ∈ A | |x|A < n} is finite for every n.

Second, we may restrict ourselves to bad sequences x = x0, x1, x2 . . . with a
controlled behavior, which means that there is an effective way of computing,
given i, an upper bound for |xi|.

Definition 2. Let g : N→ N be a computable increasing function and let (A,≤)
be a wqo with a proper norm. A bad sequence x = x0, x1, x2 . . . is g, t-controlled
if for all i, |xi|A < g(t+ i). We say that g is the control function for x.

As a consequence of König’s Lemma, controlled bad sequences over wqos
cannot be arbitrarily large: given a control, there exist upper bounds for their
lengths. Let us go back to the example of the ≤lex-decreasing sequence in (1).
If we further impose that the sequence is g, 0-controlled, where g(0) = 2 and we
fix |x|N2 to be the infinity norm of x then the reader may verify that the longest
g, 0-controlled decreasing sequence is

〈1, 1〉, 〈1, 0〉, 〈0, g(2)− 1〉, 〈0, g(2)− 2〉, . . . , 〈0, 1〉, 〈0, 0〉. (2)

In this paper we give upper bounds for the length of g, t-controlled bad
sequences, when t is a parameter. That is, given a well (quasi) order under
study (we address lexicographic, product, multiset and majoring) (A,≤), we
define LAg (t) as the length of the longest g, t-controlled bad sequence in (A,≤),
and we study upper bounds for LAg , which are classified in the Fast Growing
Hierarchy (Fα)α<ε0 of Löb and Wainer [10].

For a more detailed introduction to some topics of this paper, see [1].

Linearizing

Our technique to obtain an upper bound for LAg is to linearize the wqo (A,≤A)
with a proper norm | · |A into a suitable well linear order (B,≤B) with a proper
norm | · |B . This means to find a function h : A+ → B such that for every

Linearizing bad sequences 3

a ∈ A+ and a ∈ A, if aaa is a bad sequence in (A,≤A) then h(a) >B h(aaa).
So if a = a0, . . . , ak is bad in (A,≤A) then

b = h(a0), h(a0, a1), h(a0, a1, a2), . . . , h(a)

is descending in (B,≤B). Furthermore, for any control function g we seek a
control function g̃ such that if a is g, t-controlled then |h(a)|B < g̃(|a| + t − 1)
—here |a| denotes the length of a. Hence if a is g, t-controlled then b is g̃, t-
controlled and therefore from a g, t-controlled bad sequence in (A,≤A) one can
get a g̃, t-descending sequence in (B,≤B) of the same length. Hence LAg ≤ LBg̃ ,
and the task is now to find an upper bound for LBg̃ . In practice, these upper
bounds are easier to devise for well-orders than for wqo’s.

Our contributions

Product and lexicographic ordering. For some dimension n, let (Nn,≤pr) be the
set of n-tuples of N ordered with the natural product ordering. Dickson’s Lemma
is the statement that (Nn,≤pr) is a wqo. We denote Lpr

n,g(t) the length of the
longest g, t-controlled bad sequence over (Nn,≤pr). Here we take |x|Nn to be
|x|∞.

McAloon [11] shows an upper bound for Lpr
n,g when g is linear, and places

it at the level Fn+1 of the Fast Growing Hierarchy. Later Clote [2] simplifies
McAloon’s argument and finds an upper bound in Fn+6. Neither of these proofs
are self contained and both are quite complex. In [5] D. and S. Figueira, Schmitz
and Schnoebelen show an improved upper bound of Fn with a simpler proof,
relying in a mathematical more general setting of disjoint unions of powers of
N. In fact, the main result is both more general and more precise than those of
McAloon and Clote: if g ∈ Fγ then Lpr

n,g is bounded by a function in Fγ+n−1.
Although this proof is markedly simpler than those of [11] and [2], there are still
some technical lemmas regarding this richer setting.

In Thm. 4 we give an even shorter, elementary and self-contained proof of
the result of [5] which only uses a linearization of (Nn,≤pr) into (Nn,≤lex). As
a side result, in Prop. 3 we obtain a tight upper bound for the length of the
longest decreasing sequence in (N,≤lex).

Majoring and multiset ordering. Informally, if A and B are finite subsets of Nn
then A ≤maj B iff every element of A is majorized (with respect to ≤pr) in B.
It is well-known that ≤maj over subsets of Nn is a wqo, and this fact is used in
a number of decidability results.

In Cor. 19, we show an upper bound for Lmaj
n,g (t), the length of the longest

g, t-controlled ≤maj-bad sequence of finite subsets of Nn. To obtain this upper
bound, we linearize the wqo into the multiset ordering over (Nn,≤lex), which
is a well-order. In Thm. 12 and Thm. 14 we show a tight upper bound for the
longest decreasing sequence of multisets.

We also give some applications on how our upper bound for Lmaj
n,g (t) can be

used in some decision procedures of some types of automata over data trees.

4 Abriola, Figueira and Senno

Outline

In §2 we give the formal definitions of all the involved orders and the definition
of the Fast Growing Hierarchy. In §3, §4, §5, §6 we study the lexicographic,
product, multiset and majoring ordering, respectively. In §7 we mention some
applications of our upper bounds in concrete decision procedures. We close with
some conclusions and future work in §8.

2 Basic definitions

If A is a set then |A| denotes the cardinality of A. If x ∈ An then the i-th coordi-
nate of x is denoted x[i], so x = 〈x[1], . . . , x[n]〉. Sequences are always in boldface
and if x is a finite sequence then |x| denotes its length. The concatenation of
the sequence x and the element x at the rightmost place is denoted xax. We fix
g : N→ N to be a computable and increasing function.

Given a set X provided with a total order ≤, (X,≤) is called a well-order if
every non-empty subset of X has a minimum.

We work with the following wqo’s:
Lexicographic ordering. If x, y ∈ Nn then it is the well-order defined as

x <lex y
def⇔ x[1] < y[1] ∨ (x[1] = y[1] ∧ 〈x[2], . . . , x[n]〉 <lex 〈y[2], . . . , y[n]〉) .

Product ordering. If x, y ∈ Nn then it is the wqo defined as

x ≤pr y
def⇔ (∀i ∈ {1, . . . , n}) x[i] ≤ y[i].

Multiset ordering. A multiset M over a set X is a function X → N. Intuitively a
multiset is a generalization of a set, where elements may be repeated. For x ∈ X,
M(x) is called the multiplicity of x. A multiset is finite if the set of elements with
positive multiplicity is finite. We notate x ∈ M for M(x) > 0. Let M<∞(X)
denote the class of finite multisets over X.

Let (X,≤) be a poset and let M,N ∈M<∞(X). We define

N <(≤)
ms M

def⇔M 6=N ∧ (∀x∈X)[N(x)>M(x)⇒ (∃y∈X)[y>x∧M(y)>N(y)]].

Intuitively, this says that N can be obtained from M by replacing some elements
by finitely many (possibly zero) smaller (with respect to ≤) elements. If (X,≤) is
a well-order then (M<∞(X),≤(≤)

ms) is also a well-order. See [3] for more details.
We will study (M<∞(Nn),≤(≤lex)

ms), the multiset ordering of finite multisets
of tuples with the underlying lexicographic ordering. In this context, we write
≤ms for ≤(≤lex)

ms . Observe that it is a well-order because (Nn,≤lex) is so.

Majoring ordering. Let P<∞(X) denote the finite and non-empty parts of X.
For a wqo (X,≤) and A,B ∈ P<∞(X), the majoring ordering is defined as

A ≤(≤)
maj B

def⇔ (∀x ∈ A)(∃y ∈ B) x ≤ y.

Linearizing bad sequences 5

We will study (P<∞(Nn),≤(≤pr)
maj), the majoring ordering of finite sets of tuples

with the underlying product ordering. In this context, we write ≤maj for ≤(≤pr)
maj .

Observe that it is a wqo because (Nn,≤pr) is so (see for instance [4, Prop. 2.5]).

The Fast Growing Hierarchy (Fα)α<ε0 . Let ε0 be the least infinite ordinal α such
that ωα = α. The Fast Growing Hierarchy is defined as

F0(x) def= x+ 1 Fα+1(x) def= F x+1
α (x) Fλ

def= Fλx
(x),

where in general gk denotes the k-th iteration of g (i.e. g1 = g and gk+1 = g◦gk),
α < ε0 is an ordinal, λ < ε0 is a limit ordinal and (λx)x<ω is an increasing
sequence of ordinals with limit λ (a fundamental sequence), which we fix to be:

(γ + ωβ+1)x
def= γ + ωβ · (x+ 1) (γ + ωλ)x

def= γ + ωλx .

The class Fα of the Fast Growing Hierarchy is the closure under substitution
and limited recursion of the constant, sum, projections, and the functions Fα.
F0 = F1 contains all linear functions, F2 contains all the elementary functions, F3

contains all the tetration functions.
⋃
n<ω Fn is the class of all primitive recursive

functions and in general
⋃
α<ωk Fα is the class of k-recursive functions [12]. There

are a number of important monotonicity results regarding the Fast Growing
Hierarchy: for ordinals α < β < ε0, the function Fα is strictly increasing, Fα+1 ≥
Fα, Fα is eventually majorized by Fβ , and then Fα (Fβ (except α = 0 and
β = 1), etc. For more results on the Fast Growing Hierarchy, cf. [10].

3 The lexicographic ordering

We denote by Llex
n,g(t) the length of the longest g, t-controlled decreasing sequence

in (Nn,≤lex). In [5, Section VI], it is shown that

Llex
1,g(t) = g(t), Llex

n+1,g(t) =
g(t)∑
j=1

Llex
n,g

(
oj−1
n,g (t)

)
, on,g(t)

def= t+ Llex
n,g(t). (3)

Proposition 3. For any ordinal γ ≥ 1, if g ∈ Fγ then Llex
n,g has an upper bound

in Fγ+n−1.

Proof. We proceed by induction on n. If n = 1 then Llex
1,g(t) = g(t), and by

hypothesis g ∈ Fγ . Now suppose Llex
n,g ≤ h ∈ Fγ+n−1. We have Llex

n+1,g(t) ≤
g(t) · Llex

n,g(o
g(t)−1
n,g (t)) ≤ g(t) · og(t)n,g (t) where the first inequality follows from (3),

since on,g is growing, and the second one because Llex
n,g ≤ on,g.

Since Llex
n,g ≤ h ∈ Fγ+n−1 then on,g(t) ≤ h(t) + t and so on,g ∈ Fγ+n−1.

By [10, Thm. 2.10], there is p such that F pγ+n−1 majorizes on,g. Therefore

Llex
n+1,g(t) < g(t) · F p·g(t)γ+n−1(t)

≤ g(t) · F p·g(t)+1
γ+n−1 (p · g(t)) (by monononicity of Fγ+n−1)

= g(t) · Fγ+n(p · g(t)),

6 Abriola, Figueira and Senno

which lies in Fγ+n, since it is the composition and product of functions in Fγ+n
(and since γ + n ≥ 2, Fγ+n is closed by products). ut

In [5, Prop. VI.3] it is shown that if g = Fγ then Llex
n,g ≥ Fγ+n−1. Hence our

upper bound is tight.

4 The product ordering

In this section we linearize the wqo (Nn,≤pr) into the well-order (Nn,≤lex) and
derive an upper bound for Lpr

n,g(t), the length of the longest g, t-controlled bad
sequence over (Nn,≤pr).

The next result follows the idea of Harwood, Moller and Setzer [7] adapted to
controlled bad sequences. For the sake of completeness we include the full proof.

First, let us mention the intuition behind the proof. For x ∈ Nn, define
↑x def= {z ∈ Nn | x ≤pr z}. Let n = 2, and suppose

x = 〈x0, y0〉, 〈x1, y1〉, 〈x2, y2〉, . . . , 〈xk, yk〉

is a bad sequence in (N2,≤pr). Let a(x) = min0≤i<|x| xi, b(x) = min0≤i<|x| yi
and C(x) = ↑〈a(x), b(x)〉 \

⋃
0≤i<|x| ↑〈xi, yi〉. It is easy to see that C(x) is finite.

Here is how we can linearize (N2,≤pr) into (N2,≤lex): Define h(x) def= 〈a(x) +
b(x), |C(x)|〉 ∈ N2 and suppose that xa〈x, y〉 is bad. If x < a(x)∨ y < b(x) then
h(xa〈x, y〉)[1] < h(x)[1]; in case x ≥ a(x)∧y ≥ b(x) then C(xa〈x, y〉) ⊆ C(x). In
this last case, since 〈x, y〉 ∈ C(x) \C(xa〈x, y〉), we have |C(xa〈x, y〉)| < |C(x)|.
Therefore h(xa〈x, y〉) <lex h(x). Furthermore, if x is g, t-controlled then C(x)
has at most g(t+ |x| − 1)2 elements, and a(x) + b(x) < 2g(t+ |x| − 1). Hence if
x is g, t-controlled, then the sequence

y = h(〈x0, y0〉), h(〈x0, y0〉, 〈x1, y1〉), . . . , h(x),

is <lex-descending and g̃, t-controlled, where g̃(x) = 2g(x)2.
The argument for any n > 2 cannot be generalized straightforwardly, obtain-

ing a linearization into (N2,≤lex). For instance, for n=3 and x=〈0, 0, 1〉, 〈0, 1, 0〉,
we would have C(x) = ↑〈0, 0, 0〉 \ (↑〈0, 0, 1〉 ∪ ↑〈0, 1, 0〉) and this set is infinite
((N, 0, 0) ∈ C(x) for any N). However, by an inductive argument (Nn,≤pr) can
be linearized into (Nn,≤lex).

Theorem 4. There is a function hn : (Nn)+ → Nn such that if xax is bad in
(Nn,≤pr) and x is nonempty, then hn(xax) <lex hn(x). Furthermore if x is
g, t-controlled then |hn(x)|∞ < g̃(|x| − 1 + t), for g̃(x) = n! g(nx)n.

Proof. We define the functions hn by induction in n. If x = x0, x1, x2, . . . , xk
is a bad sequence in N then define h1(x0, x1, x2, . . . , xk) def= xk. Since in N the
product order and the lexicographic order coincide, we have h1(xax) <lex h1(x).

For the inductive construction of hn, let n > 1 and assume the statement of
the theorem for dimension n− 1. For 1 ≤ i ≤ n and x ∈ Nn we define

deli(x) def= 〈x[1], . . . , x[i− 1], x[i+ 1], . . . , x[n]〉,

Linearizing bad sequences 7

i.e. deli(x) deletes the i-th component of the n-tuple x. Given a finite and
nonempty bad sequence x = x0, x1, . . . , xk of n-tuples, we define the set

badi(x) def= {deli(xj0), . . . ,deli(xjp) | p ≥ 0, 0 ≤ j0 < · · · < jp ≤ k, and
deli(xj0), . . . ,deli(xjp) is bad},

i.e. badi(x) consists of the bad subsequences of (n− 1)-tuples of x in which the
i-th components of the n-tuples have been deleted. Finally we define

mini(x) def= min<lex{hn−1(y) | y ∈ badi(x)} and

extn(x) def= {x ∈ Nn | (∀i ∈ {1, . . . , n}) mini(x) = mini(xax), and
(∀j ∈ {0, . . . , k}) xj 6≤pr x},

which consists of the n-tuples with which the sequence x can be extended without
altering the mini values and yet while maintaining badness.

Fact 1 |extn(x)| <∞, and if x is g, t-controlled, then |extn(x)| < g(k + t)n.

Proof. Let z = deli(xj0), . . . ,deli(xjp) ∈ (Nn−1)+ be a bad sequence, suppose
mini(x) = hn−1(z), and suppose that s ∈ extn(x). If the sequence zadeli(s)
were bad, then by the ind. hyp. we would get that mini(xas) ≤lex hn−1(zadeli(s)) <lex

hn−1(z) = mini(x), contradicting s ∈ extn(x). Therefore, since z is bad but
zadeli(s) is not, we have deli(xjm) ≤pr deli(s) for some m. But since s ∈
extn(x) we have that xjm 6≤pr s, and therefore s[i] < xjm [i]. Now, since this
goes for all i, we conclude that |extn(x)| is finite.

Now if x is g, t-controlled, then xj [i] < g(k+ t) for all j, because g is increas-
ing. By the above argument |extn(x)| ≤ g(k + t)n, but since x was nonempty
and x0 /∈ extn(x), we conclude |extn(x)| < g(k + t)n. ut

We finally define

hn(x) def=

〈
n∑
i=1

mini(x), |extn(x)|

〉
∈ Nn,

where the sum is taken componentwise and thus results in a tuple in Nn−1. We
conclude the proof with the following two facts:

Fact 2 If xax is bad then hn(xax) <lex hn(x).

Proof. Suppose that y = xax bad. Since for any i ∈ {1, . . . , n}, badi(x) ⊆
badi(y), then mini(y) ≤lex mini(x); and if mini(y) = mini(x) for all i then
extn(y) (extn(x), since extn(y) ⊆ extn(x) but x ∈ extn(x) \ extn(y).
Thus |extn(y)| < |extn(x)|. ut

Fact 3 If x is g, t controlled then |hn(x)|∞ < g̃(|x| − 1 + t), where g̃(x) =
n! g(nx)n.

8 Abriola, Figueira and Senno

Proof. By induction in n ≥ 1. If n = 1 then If x = x0, . . . , xk is g, t-controlled,
then h1x = xk < g(t+ k) = g(t+ |x| − 1) = g̃(t+ |x| − 1).

Since any y ∈ badi(x) is a g, (t + k)-controlled bad sequence of Nn−1, by
inductive hypothesis we get

|hn−1(y)|∞ < (n− 1)! g((n− 1)(|y| − 1) + t+ k)n−1

≤ (n− 1)! g((n− 1)k + t+ k)n−1

= (n− 1)! g(nk + t)n−1.

In particular, for y such that mini(x) = hn−1(y), we conclude |mini(x)|∞ <
(n − 1)! g(nk + t)n−1, and so the first n − 1 coordinates of hn(x) are strictly
bounded by n! g(nk + t)n−1 (the factor n comes from the n additions). By
Fact 1, the last coordinate of hn(x) is strictly bounded by g(k + t)n. Therefore,
|hn(x)|∞ < max{n! g(nk+ t)n−1, g(k+ t)n} ≤ n! g(nk+ t)n ≤ g̃(|x|− 1 + t). ut

Let Lpr
n,g(t) denote the length of the longest g, t-controlled bad sequence in

(Nn,≤pr), and let Llex
n,g(t) denote the length of the longest g, t-controlled decreas-

ing sequence in (Nn,≤lex). We arrive to the same result as in [5]:

Corollary 5. Lpr
n,g ≤ Llex

n,g̃, for g̃ as in Thm. 4. Hence if g ∈ Fγ , and γ ≥ 2 is
an ordinal, then Lpr

n,g has an upper bound in Fγ+n−1.

Proof. The function g̃ is defined through finite substitution from g and product.
Since F2 and higher levels are closed under finite products, we have g̃ ∈ Fγ . By
Prop. 3, there is a function h ∈ Fγ+n−1 such that h ≥ Llex

n,g̃. ut

5 The multiset ordering

We need a notion of g, t-controlled sequence of (multi)sets. By Def. 2 it suffices
to give a proper norm:

Definition 6 (A proper norm of sets and multisets of tuples). Given
X ∈ M<∞(Nn), we define |X|, the norm of X, as the maximum between
maxx∈Nn X(x) and max{|x|∞ | x ∈ Nn ∧X(x) > 0}. For X ∈ P<∞(Nn), |X| is
defined analogously, as any set is a multiset.

We denote by Lms
g,n(t) the length of the longest g, t-controlled decreasing se-

quence in (M<∞(Nn),≤(≤lex)
ms), i.e. a sequence of finite multisets of Nn, with the

underlying lexicographic ordering. In this section we give a tight upper bound
for Lms

g,n(t) in terms of the Fast Growing Hierarchy.

5.1 Maximizing strategy.

To study the longest g, t-controlled ≤ms-descending sequence of multisets we
define the maximizing strategy which, given a nonempty g, t-controlled multiset
M , determines the greatest g, (t+1)-controlled multiset N which is smaller than

Linearizing bad sequences 9

M . The strategy says that to obtain N one should take out one of the minimum
elements of M , say m, (i.e. decrement in one the multiplicity of m) and add as
many elements smaller than m as the control function permits.

For the rest of this subsection, assume (X,≤) is a well-order. We write <ms

instead of <(≤)
ms . Let M ∈ M<∞(X) which is g, t-controlled and a proper norm

| · |X = | · | for X. We define the g, t-predecessor of M as follows: For x ∈ X,

predgt (M)(x) def=


g(t+ 1)− 1 x < minM ∧ |x| < g(t+ 1);
M(x)− 1 x = minM ;
M(x) otherwise.

where minM def= min{x |M(x) > 0}.

Lemma 7. Let M be a nonempty finite multiset over a totally ordered set
P , which is g, t-controlled and let N = predgt (M). Then (1) N is g, (t + 1)-
controlled; (2) N <ms M ; and (3) if N ′ is g, (t + 1)-controlled and N ′ <ms M
then N ′ ≤ms N .

Proof. (1) is clear from the definition of N and the fact that g is monotone
increasing. For (2), it is obvious that M 6= N . By definition, if N(x) > M(x)
then x < m = minM and M(m) > N(m).

For (3), assume N ′ < M is g, (t+1)-controlled. We show that if N ′(x) > N(x)
then there is z > x such that N(z) > N ′(z). Suppose N ′(x) > N(x). First, if
x < minM then N(x) = g(t + 1) − 1 ≥ N ′(x), contradicting N ′(x) > N(x).
Second, suppose x > minM . Then N(x) = M(x) and therefore N ′(x) > M(x).
Since N ′ <ms M there is z > x such that N(z) = M(z) > N ′(z). Third, suppose
x = minM . Then N(x) = M(x) − 1, and so N ′(x) ≥ M(x). If N ′(x) > M(x)
then, since M <ms N

′, there is z > x with M(z) > N ′(z). For such z, by
definition of N , we have N(z) = M(z) > N ′(z). If N ′(x) = M(x) then, since
N ′ 6= M , there is y such that N ′(y) 6= M(y). Any such y must be different
from x. Suppose that all such y’s were smaller than x = minM . In this case
M ≤ms N

′ and this contradicts the hypothesis. Hence there is y > x such that
N ′(y) 6= M(y). If N ′(y) > M(y), there is z > y > x such that N ′(z) < M(z) =
N(z). If N ′(y) < M(y), since M(y) = N(y), we conclude N ′(y) < N(y). ut

We represent a finite multiset M such that {x | M(x) > 0} = {x1, . . . , xn} as
M

def= M(x1) · x1 + · · ·+M(xn) · xn.
For a finite multiset M , let Lg,M (t) denote the length minus one of the

longest g, t-controlled and <ms-decreasing sequence of multisets starting with
the multiset M . For x ∈ X, let og,x(t) = t+ Lg,1·{x}(t).

Lemma 8. If k ≥ 1 then Lg,k·{x}(t) =
∑k−1
i=0 Lg,1·{x}(o

i
g,x(t)).

Proof (Sketch). We write Lk for Lg,k·{x} and o for og,x. First show by induction
in i that oi(t) = t+

∑i−1
j=0 L1(oj(t)). Then show the statement of the Lemma by

10 Abriola, Figueira and Senno

induction in k ≥ 1. Observe that the longest g, t-controlled decreasing sequence
of multisets beginning with M1 = (k + 1) · {x} is

M1 >ms M2 >ms . . . , >ms Ml1 >ms N2 >ms N3 >ms . . . >ms Nl2 ,

of length l1 + l2−1 and where l1 = Lk(t)+1, Ml1 = 1 ·{x}, l2 = L1(t+Lk(t))+1
and Nl2 = ∅. Use straightforwardly the inductive hypothesis. ut

Corollary 9. For k ≥ 1, Lg,k·{x} ≥ Lkg,1·{x}.

Corollary 10. For k ≥ 1, Lg,k·{x}(t) ≤ k · Lg,1·{x}(ok−1
g,x (t)).

In the sequel we fix (X,≤) to be (Nn,≤lex). If M ∈ M<∞(Nn) then Pg,n(M, t)
denotes the length minus one of the longest g, t-controlled <ms-decreasing se-
quence of multisets starting with M . If M consists of one copy of (x1, . . . , xn),
we simply write Pg,n(x1, . . . , xn, t) instead of Pg,n(1 · {(x1, . . . , xn)}, t). Observe
that, having fixed (X,≤), we have Lg,M (t) = Pg,n(M, t).

5.2 Lower bound.

Define Gg,n : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Gg,n(0, . . . , 0, 1, t) def= g(t+ 1) (4)

Gg,n(x, xn + 1, t) def= Gg(t+1)−1
g,n (x, xn, t), for x = x1, . . . , xn−1 (5)

Gg,n(x, xj + 1, 0, t) def= Gg,n(x, xj , g(t+ 1)− 1, 0, t), for x = x1, . . . , xj−1 (6)

Equation (5) applies when xi > 0 for some i, and (6) when j < n. Gkg,n(a, b) de-
notes the k-th iteration of Gg,n in the last component, i.e. G1

g,n(a, b) = Gg,n(a, b)
and Gk+1

g,n (a, b) = Gg,n(a,Gkg,n(a, b)).

Lemma 11. If g(x) ≥ x+ 1 then Pg,n ≥ Gg,n.

Proof (Sketch). By induction in the lexicographic order of x1, . . . , xn. For (4),
the longest g, t-controlled <ms-decreasing sequence starting with 1 · {(0, 1)} is

1 · {(0, 1)} >ms (g(t+ 1)− 1) · {(0, 0)} >ms . . . >ms 0 · {(0, 0)} = ∅,

which has length g(t + 1) + 1 and then Pg,n(0, . . . , 0, 1, t) = g(t + 1). For (5),
the longest g, t-controlled <ms-decreasing sequence of multisets starting with
1·{(x, xn+1)} contains the multiset M = (g(t+1)−1)·{(x, xn)}, so Pg,n(x, xn+
1, t) ≥ Pg,n(M, t + 1). Now apply Cor. 9, monotonicity of Gg,n and ind. hyp.
For (6), the longest g, t-controlled <ms-decreasing sequence of multisets starting
with 1 ·{(x, xj+1, 0)} contains 1 ·{(x1, . . . , xj , g(t+1)−1, 0)} as one of its terms,
so Pg,n(x, xj + 1, 0, t) ≥ Pg,n(x, xj , g(t+ 1)− 1, 0, t). Then apply ind. hyp. ut

Theorem 12. If g ≥ F1 and g(x) ≥ x+ 2, then Lms
g,n ≥ Fωn .

Linearizing bad sequences 11

Proof (Sketch). Show that if xi > 0 for some i then Gg,n(xn−1, . . . , x0, t) ≥
Fα(t), where α = ωn−1 · xn−1 + · · ·+ x0 · ω0 by induction in (xn−1, . . . , x0). Use
monotonicity of Gg,n and the fact that g(x) ≥ x+ 2. Finally, for all t we have

Lms
g,n(t) ≥ Pg,n(g(t)− 1, 0, t)

≥ Pg,n(t+ 1, 0, t)
≥ Gg,n(t+ 1, 0, t)
≥ Fωn−1·(t+1)(t) = Fωn(t).

The second inequality follows from the monotonicity of Pg,n and g(x) ≥ x + 2;
the third one from Lem. 11. ut

5.3 Upper bound.

Define Ug,n : Nn+1 \ {(0, . . . , 0)} → N by multiple recursion as:

Ug,n(0, . . . , 0, 1, t) def= g(t+ 1) (7)

Ug,n(x, xn + 1, t) def= g(t+ 1) · Ug,n(x, xn, og(t+1)−1
x1,...,xn

(t+ 2)) (8)

Ug,n(x, xj + 1, 0, t) def= Ug,n(x, xj , g(t+ 1), 0, t+ 2) (9)

where ox1,...,xn
(t) = t+Ug,n(x1, . . . , xn−1, xn, t); equation (8) applies when xi >

0 and x=x1, . . . , xn−1; and equation (9) applies when j < n and x=x1, . . . , xj−1.

Lemma 13. Pg,n ≤ Ug,n.

Proof. By induction in the lexicographic order of x1, . . . , xn. For (7), as in the
proof of Lem. 11, the longest g, t-controlled <ms-decreasing sequence starting
with 1 · {(0, 1)} has length g(t + 1) + 1 and then Pg,n(0, 1, t) = g(t + 1) =
Ug,n(0, 1, t). For (8) the longest g, t-controlled <ms-decreasing sequence starting
with M0 = 1 · {(x, xn + 1)} continues with a multiset M1whose <lex-maximum
element is (x, xn), of multiplicity g(t+1)−1. Therefore if N = g(t+1) ·{(x, xn)}
then M0 >ms N >ms M1 and N is g, (t+ 2)-controlled. Hence

Pg,n(x, xn + 1, t) ≤ Pg,n(g(t+ 1) · {(x, xn)}, t+ 2)

≤ g(t+ 1) · Pg,n(x, xn, õg(t+1)−1
x1,...,xn

(t+ 2))

≤ g(t+ 1) · Ug,n(x, xn, og(t+1)−1
x1,...,xn

(t+ 2)) = Ug,n(x, xn + 1, t)

where õx1,...,xn
(t) = t + Pg,n(x1, . . . , xn, t), the second inequality follows from

Cor. 10, and the third one from ind. hyp. and monotonicity of Ug,n. For (8)
the longest g, t-controlled <ms-decreasing sequence of multisets starting with
M ′0 = 1 · {(x, xj + 1, 0)} continues with a multiset M ′1 whose <lex-maximum
element is (x, xj , g(t+ 1)− 1, . . . , g(t+ 1)− 1), of multiplicity g(t+ 1)− 1. Then
M ′0 >ms N

′ >ms M
′
1, where N ′ = 1 · {(x, xj , g(t + 1), 0)}, and hence N ′ is

g, (t+ 2)-controlled. Therefore by inductive hypothesis we have

Pg,n(x, xj + 1, 0, t) ≤ Pg,n(x, xj , g(t+ 1), 0, t+ 2)

≤ Ug,n(x, xj , g(t+ 1), 0, t+ 2) = Ug,n(x, xj + 1, 0, t),

and this concludes the proof. ut

12 Abriola, Figueira and Senno

Theorem 14. If g is primitive recursive and g(t) ≥ t+1 then Lms
g,n has an upper

bound in Fωn . Also, this bound is tight.

Proof. The fact that the bound is tight follows from Thm. 12. Without loss of
generality suppose, t > 2 and let 2 ≤ e < ω such that g(t + 1) ≤ Fe(t). By
(∀∞x)ϕ(x) we mean that ϕ holds for almost every x, i.e (∃k)(∀x > k)ϕ(x).

Fact 4 If x 6= 0 then (∀∞t)(∀x)Ug,n(0, x, t) ≤ F3(x−1)+e(t).

Proof. By induction in x 6= 0. For x = 1, observe that Ug,n(0, 1, t) = g(t +
1) ≤ Fe(t). For the inductive step, o0,x = t + Ug,n(0, x, t) ≤ t + F3(x−1)+e(t) ≤
F3(x−1)+e+1(t). Now

Ug,n(0, x+ 1, t) =g(t+ 1) · Ug,n(0, x, og(t+1)−1

0,x
(t+ 2))

≤g(t+ 1) · F3(x−1)+e(o
g(t+1)−1

0,x
(t+ 2)) (ind. hyp.)

≤Fe(t) · Fp(x)(F
g(t+1)−1
p(x)+1 (t+ 2)) (p(x) def= 3(x− 1) + e)

≤Fe(t) · Fp(x)(F
g(t+1)+1
p(x)+1 (g(t+ 1))

=Fe(t) · Fp(x)(Fp(x)+2(g(t+ 1))
≤Fp(x)+2(Fp(x)+2(Fp(x)+2(Fp(x)+2(t)))

=F 4
p(x)+2(t) ≤ Fp(x)+3(t) = F3x+e. (t ≥ 3)

This concludes the proof of the Fact ut
Fact 5 If x0 > 0 then (∀∞t)(∀xn−1, . . . , x0)[Ug,n(xn−1, . . . , x0, t) ≤ Fγ(t) ⇒
Ug,n(xn−1, . . . , x0 + 1, t) ≤ Fγ+3(t)].

Proof. Same idea as in Fact 4. ut
Fact 6 If xi > 0 for some i ≥ 1 then (∀∞t)(∀x = xn−1, . . . , x1)Ug,n(x, 0, t) ≤
Fα(t), where α = xn−1 · ωn−1 + xn−2 · ωn−2 + · · ·+ x2 · ω2 + x1 · ω + 1.

Proof. By induction in x 6= 0. Ug,n(0, 1, 0, t) = Ug,n(0, g(t+ 1), t+ 2) ≤ Fd(t)(t+
2) ≤ Fd(t)+1(d(t)) = Fω(d(t)) ≤ Fω+1(t) where d(t) def= 3(g(t + 1) − 1) + e, the
first inequality follows from Fact 4 and the last one is true for all t ≥ k1.

Next, Ug,n(0, x1 + 1, 0, t) = Ug,n(0, x1, g(t+ 1), t+ 2) ≤ Fx1·ω+1+r(t)(t+ 2) ≤
Fx1·ω+1+r(t)(r(t)) = F(x1+1)·ω(r(t)) ≤ F(x1+1)·ω+1(t) where r(t) def= 3g(t+ 1), the
first inequality follows from ind. hyp. and Fact 5 and the last one is true for all
t ≥ k2 ≥ k1 (independently of x1).

Finally, let x = xn−1, . . . , xj−1 and let β = xn−1 · ωn−1 + · · ·+ xj−1 · ωj−1.

Ug,n(x, xj + 1, 0, t) =Ug,n(x, xj , g(t+ 1), 0, t+ 2)
≤Fβ+xj ·ωj+g(t+1)·ωj−1+1(t+ 2) (ind. hyp.)

≤Fβ+xj ·ωj+(g(t+1)+1)·ωj−1(t+ 2)

≤Fβ+xj ·ωj+(g(t+1)+1)·ωj−1(g(t+ 1))

≤Fβ+(xj+1)·ωj (g(t+ 1)) ≤ Fβ+(xj+1)·ωj+1(t),

where the last inequality is true for all t ≥ k3 ≥ k2 (independently of x, xj). ut

Linearizing bad sequences 13

Now, let t be sufficiently large. If n = 1 then Lms
g,n(t) ≤ Pg,n(g(t), t +

1) ≤ Ug,n(g(t), t + 1) ≤ F3(g(t)−1)+e(t + 1) ≤ F3(g(t)−1)+e+1(3(g(t) − 1) + e) =
Fω(3(g(t)−1) + e)) ∈ Fω, where the second inequality follows from Lem. 13 and
the third one from Fact 4. If n > 1 we have:

Lms
g,n(t) ≤ Pg,n(g(t), 0, t+ 1)

≤ Ug,n(g(t), 0, t+ 1)
≤ Fg(t)·ωn−1+1(t+ 1)
≤ F(g(t)+1)·ωn−1(g(t)) = Fωn(g(t)) ∈ Fωn .

The second inequality follows from Lem. 13 and the third one from Fact 6. ut

6 The majoring ordering

Recall from §2 that the underlying order of ≤maj is ≤pr and the underlying
order of ≤ms is ≤lex. We linearize the wqo (P<∞(Nn),≤maj) into the well-order
(M<∞(Nn),≤ms) and derive an upper bound for Lmaj

n,g (t), the length of the
longest g, t-controlled bad sequence of finite sets of n-tuples with respect to the
majoring ordering ≤maj. To do this, we use the results of §5.

Our linearization will be done in two steps. Given a ≤maj-bad sequence X =
X0, X1, . . . Xk of finite and nonempty sets of n-tuples we define an intermediate
sequence T0, T1, . . . , Tk of trees whose nodes are decorated with n-tuples. From
these trees we define a sequence of finite and nonempty multisets of n-tuples
M = M0,M1, . . . ,Mk. We show that if X is ≤maj-bad then M is <ms-decreasing.
Furthermore, given a control for X, we find a control for M. Using the results
of §5 we give an answer to the question of the maximum possible length of a
controlled ≤maj-bad sequence of finite sets of n-tuples.

Let X ⊆ Nn. We say X avoids x if for all y ∈ X we have x 6≤pr y. Since
X = X0, X1, . . . , Xk is bad, then for any i < j, Xj avoids some tuple of Xi. In
particular for all j ∈ {1, . . . , k}, Xj avoids some tuple of X0. If a is the ≤pr-
supremum of X0 then X̃ = {a}, X1, . . . Xk is also a bad sequence. Furthermore, if
X was g, t-controlled then X̃ also is, and in this case a ≤pr 〈g(t)−1, . . . , g(t)−1〉.
Even more, if X is the longest such sequence then a = 〈g(t) − 1, . . . , g(t) − 1〉.
Therefore, without loss of generality we may assume that all ≤maj-bad sequences
of sets analyzed here have a singleton as the first element.

Construction of the trees Ti. Without loss of generality suppose X0 = {a0}.
Define the following sequence of finite trees of n-tuples. By path we always refer
to a path from the root to a leaf. See Fig. 1 for an example of this construction.

– T0 is a0, the root.
– Ti+1 is formed by extending Ti as follows. For any path a0, . . . , am in Ti do

the following: if for all j = 0, . . . ,m, Xi+1 avoids aj then add all the elements
of Xi+1 as new children of am.

14 Abriola, Figueira and Senno

〈3, 3〉 〈3, 3〉

〈1, 4〉 〈4, 1〉

〈3, 3〉

〈1, 4〉

〈5, 1〉 〈3, 2〉

〈4, 1〉

〈3, 3〉

〈1, 4〉

〈5, 1〉

〈2, 1〉

〈3, 2〉

〈2, 1〉

〈4, 1〉

〈2, 1〉

〈3, 3〉

〈1, 4〉

〈5, 1〉

〈2, 1〉

〈3, 2〉

〈2, 1〉

〈4, 1〉

〈2, 1〉

〈1, 5〉
T0 T1 T2 T3 T4

Fig. 1. Construction of the trees for the bad sequence X0, X1, X2, X3, X4, where X0 =
{〈3, 3〉}; X1 = {〈1, 4〉, 〈4, 1〉}; X2 = {〈5, 1〉, 〈3, 2〉}; X3 = {〈2, 1〉} ; X4 = {〈1, 5〉}

Proposition 15. At least one path of Ti is strictly extended in Ti+1.

Proof. Recall that Xj 6= ∅ for all j. It is clear that if all internal nodes of Ti have
a child which is avoided by Xi+1 then there is a path a0, . . . , am in Ti such that
Xi+1 avoids aj for all j.

If Ti+1 = Ti then, by construction, there is no path a0, . . . , am with all of its
elements avoided by Xi+1. Then there is an internal node of Ti, say a, with none
of its children avoided by Xi+1. But this contradicts the badness of X since by
construction the set of children of a is Xj for some j ≤ i. ut

As the example in Fig. 1 shows, the height of Ti+1 is not necessarily greater
than the height of Ti. The following follows by construction:

Proposition 16. Any path in Ti is a bad sequence of n-tuples with respect to
the product ordering. Furthermore if X is g, t-controlled then any such path is
g, (t+ i)-controlled.

Construction of the multisets Mi. Let Mi ∈M<∞(Nn) be defined as: Mi(y) def= d
iff there are exactly d paths in Ti, say p1, . . . , pd, such that hn(pj) = y for all j.
In other words, Mi is the multiset where we put hn(p) for every path in Ti.

If the path a = a1, . . . , am in Ti is extended to a, x in Ti+1 then by Thm. 4,
hn(a, x) <lex hn(a). Then Mi+1 <ms Mi. The need for working with multisets
and not simply with sets resides in the fact that h is not injective.

Proposition 17. If X = X0, . . . , Xk is g, t-controlled then |Mk| < g̃(t+ k), for
g̃(x) = n! g(nx)n(x+1) + 1.

Proof. Observe that the maximum multiplicity of an element in Mk is bounded
by
∏k
j=1 g(t + j)n ≤ g(t + k)nk < g̃(t + k). By Prop. 16 each of such path is

g, (t + k)-controlled and by the second part of Thm. 4 we have that if x ∈ Mk

then |x|∞ < n! g(n(k + t))n < g̃(t+ k). ut

Altogether we have shown:

Theorem 18. There is a function fn : (P<∞(Nn))+ → M<∞(Nn) such that
if XaX is a bad sequence in (P<∞(Nn),≤maj), X is nonempty and X is a
nonempty set, then fn(XaX) <ms fn(X). Furthermore if X is g, t-controlled
then |fn(X)| < g̃(|X| − 1 + t), for g̃ as in Prop. 17.

Linearizing bad sequences 15

Proof. Take fn(X) = M|X|−1 as in the above construction. ut

Let Lmaj
n,g (t) denote the length of the longest g, t-controlled bad sequence

in (Nn,≤maj), and let Lms
n,g(t) denote the length of the longest g, t-controlled

decreasing sequence in (Nn, <ms).

Corollary 19. For any primitive recursive g there is a primitive recursive g̃
such that Lmaj

n,g ≤ Lms
n,g̃. Hence there is an upper bound of Lmaj

n,g in Fωn .

Proof. It follows from Thm. 18 and Thm. 14. ut

7 Applications

In Jurdzíınki and Lazić [9] it is shown that for the class of incrementing tree
counter automata (itca) as well as the class of alternating top-down tree one
register automata (atra), the emptiness problem —i.e. whether the language ac-
cepted by an automaton of such classes is empty— is decidable over finite data
trees. Figueira [4] later showed that for some extensions of atra decidability
still holds. All these proofs go along the lines of interpreting the automata exe-
cution as a downward well-structured transition system, then showing that it is
reflexive-downward-compatible with respect to a wqo between sets of configura-
tions, and finally applying Finkel and Schnoebelen results [6] (mainly Prop. 5.4).
That wqo is precisely the majoring order.

From [9], we know that the computational complexity of such decision pro-
cedures is lower-bounded by a non-primitive recursive function. For the upper-
bound for itca’s, an algorithm can be given in a manner analogous to [5, §VII.B.]
for finding the levels (a finite set of configurations) reachable from the initial level
—the emptiness problem is then reduced to testing whether the empty level is
amongst them. The complexity of such an algorithm is mainly determined by the
length of a bad sequence of levels V = V0, V1, . . . , Vm. In more detail, suppose
an itca C has k counters and a finite set of states Q. Then a level of C is a
finite set of tuples of the form 〈q, v〉, where q ∈ Q and v = 〈a1, . . . , ak〉 ∈ Nk is
the current values of the k counters. The levels are ordered by the the majoring
ordering with the following underlying order

〈p, u〉 ≤ 〈q, v〉 def⇔ p = q ∧ u ≤pr v,

which is a wqo. The complexity of the emptiness problem can be bounded by
the length of the longest bad sequence in (P<∞(Q × Nk),≤(≤)

maj). As one can
see, the application of Cor. 19 is not entirely straightforward because it applies
to the majoring ordering of finite sets of tuples of N with the underlying ≤pr

and not to levels with the underlying ≤. We reduce bad sequences of levels to
bad sequences of finite sets of tuples as follows. Suppose Q = {q0, . . . , qs−1}
and let q′i

def= (i, s − i) ∈ N2. Clearly if p′ ≤pr q
′ then p′ = q′ and so p = q.

Let V ∈ P<∞(Q × Nk) be a level. Define V ′ def= {〈p′, u〉 ∈ Nk+2 | 〈p, u〉 ∈ V }.
The reader can verify that if V and W are levels then V ′ ≤(≤pr)

maj W ′ implies

16 Abriola, Figueira and Senno

V ≤(≤)
maj W . Hence V = V0, V1, . . . , Vm, a bad sequence of levels of an itca with

k counters, can be seen as a bad sequence of the same length V′ = V ′0 , V
′
1 , . . . , V

′
m

in P<∞(Nk+2) with the majoring ordering studied in §6. Regarding how V′ is
controlled, the analysis is almost the same as in [5, §VII.B.]. Let V ′0 = {〈0, |Q| −
1, 0〉} and V ′i = {c1, ..., cpi

}. From Def. 6 we have that |V ′i | = maxj{|cj |∞}.
The change from V ′i to V ′i+1 may involve a change of state or increment of cj ’s
counters’ values by one. The ‘state part’ of cj is controlled by the constant |Q|
and the ‘counters part’ is controlled by the successor function. Hence, the bad
sequence of sets is g, 0-controlled by g(t) = t+ 1 + |Q|. Now we can finally apply
Cor. 19 to conclude that the complexity of the emptiness problem for an itca
with k counters is upper bounded by a function in Fωk+2 .

This immediately gives us an upper bound for the emptiness problem for
atra. From [9, Thm. 3.1] we have that emptiness for atra follows from a
pspace-reduction to emptiness for itca. If the atra A has s states then the
itca C constructed in the reduction has k(s) def= 2s−1+24s counters.1 Hence the
complexity of the emptiness problem for an atra with s states is upper bounded
by a function in Fωk(s)+2 .

The above complexities are obtained by the straightforward codification of
levels V into V ′. This increases the dimension of tuples from n to n+2, and this
might be too wasteful. It seems plausible to work directly with levels (i.e. sets
of Q× Nn) and obtain better upper bounds.

8 Conclusions

Upper bounds for controlled descending sequences in a well-order are easier to
obtain than for controlled bad sequences in a wqo’s. We studied upper bounds
for the length of controlled bad sequences of two wqo’s by linearizing them into
well-orders. Such bounds were placed in the Fast Growing Hierarchy.

For the product ordering of tuples, we gave a straightforward elementary
proof for an upper bound of controlled bad sequences, and we arrived to the
same general result as [5] but avoiding the “sum of powers of N” approach. This
last approach —being noticeably more understandable than previous proofs, and
also leading to a more general result— still needs some rather technical lemmas.
Our proof simply relies on a linearization of controlled bad sequences of tuples
in the product ordering into controlled descending sequences of tuples in the
lexicographic ordering, for which upper bounds can be easily obtained.

For the majoring ordering of sets of tuples, we gave an upper bound of con-
trolled bad sequences over such wqo by linearizing to controlled and descending
sequences of multisets with the natural multiset ordering. For the latter we also
gave a tight upper bound, which is of interest by itself. As applications we showed
complexity upper bounds for the emptiness problem for two types counter au-
tomata: itca and atra.
1 In [9] there is typo in the number of counters in the auxiliary array c′. Where it says

2|Q|
4
, it should read 24|Q|.

Linearizing bad sequences 17

The fact that (P<∞(Nn),≤maj) is a wqo follows from reducing finite sets of
tuples to finite strings over Nn and then applying Higman’s Lemma. Schmitz and
Schnoebelen [13] developed an algebraic framework for handling normed wqo’s
where upper bounds for controlled bad sequences when using Higman’s Lemma
on finite alphabets are derived. Hence, another approach to obtain upper bounds
for the majoring ordering would be to try to extend this framework to deal with
strings over infinite alphabets.

As future research we will study lower bounds for the majoring ordering, and
upper bounds for the bad sequences over the dual of the majoring ordering, the
minoring ordering:

A ≤(≤)
min B

def⇔ (∀y ∈ B)(∃x ∈ A) x ≤ y.

This is not in general a wqo: one needs the underlying ≤ to be an ω2-wqo [8,
Thm. 1]. It would also be interesting to investigate how far one can generalize
this idea of linearization. Are there general ways in which one can relate the
length of a bad sequence over a wqo into the length of a linearization of it?

References

1. S. A. Abriola. Sobre la longitud de las secuencias malas controladas en cuasi-
órdenes buenos. MSc thesis, Universidad de Buenos Aires, Argentina, 2011.

2. P. Clote. On the finite containment problem for Petri nets. Theoretical Computer
Science, 43:99–105, 1986.

3. N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Com-
munications of the ACM, 22(8):465–476, August 1979.

4. D. Figueira. Reasoning on Words and Trees with Data. PhD thesis, Laboratoire
Spécification et Vérification, ENS Cachan, France, December 2010.

5. D. Figueira, S. Figueira, S. Schmitz, and Ph. Schnoebelen. Ackermannian and
primitive-recursive bounds with Dickson’s lemma. In LICS, pages 269–278, 2011.

6. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!
Theoretical Computer Science, 256(1-2):63–92, 2001.

7. W. Harwood, F. Moller, and A. Setzer. Weak bisimulation approximants. In
Zoltán Ésik, editor, Computer Science Logic. 20th International Workshop, CSL
2006, 15th Annual Conference of the EACSL, volume 4207 of Lecture Notes in
Computer Science, pages 365–379, 2006.

8. P. Jancar. A note on well quasi-orderings for powersets. Information processing
letters, 72(5-6):155–160, 1999.

9. M. Jurdziński and R. Lazić. Alternating automata on data trees and XPath sat-
isfiability. ACM Transactions on Computational Logic (TOCL), 12(3):19, 2011.

10. M.H. Löb and S.S. Wainer. Hierarchies of number theoretic functions, I. Archive
for Mathematical Logic, 13:39–51, 1970.

11. K. McAloon. Petri nets and large finite sets. Theoretical Computer Science, 32(1–
2):173–183, 1984.

12. R. Péter. Recursive functions. Academic Press, 1967.
13. S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s

lemma. In Proceedings of the 38th international conference on Automata, languages
and programming - Volume Part II, ICALP’11, pages 441–452. Springer-Verlag,
2011.

	Linearizing bad sequences: upper bounds for the product and majoring well quasi-orders

