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Abstract. We study connections between the satisfiability problem for
logics on data trees and Branching Vector Addition Systems (BVAS). We
consider a natural temporal logic of “repeating values” (LRV) featuring
an operator which tests whether a data value in the current node is
repeated in some descendant node.

On the one hand, we show that the satisfiability of a restricted version of
LRV on ranked data trees can be reduced to the coverability problem for
Branching Vector Addition Systems. This immediately gives elementary
upper bounds for its satisfiability problem, showing that restricted LRV
behaves much better than downward-XPath, which has a non-primitive-
recursive satisfiability problem.

On the other hand, satisfiability for LRV is shown to be reducible to the
coverability for a novel branching model we introduce here, called Merging
VASS (MVASS). MVASS is an extension of Branching Vector Addition
Systems with States (BVASS) allowing richer merging operations of the
vectors. We show that the control-state reachability for MVASS, as well
as its bottom-up coverability, are in 3ExpTime.

This work can be seen as a natural continuation of the work initiated
by Demri, D’Souza and Gascon for the case of data words, this time
considering branching structures and counter systems, although, as we
show, in the case of data trees more powerful models are needed to encode
satisfiability.

1 Introduction

Logics for data trees. Finite data trees are ubiquitous structures that have
attracted much attention lately. A data tree is a finite tree whose every position
carries a label from a finite alphabet and a collection of data values from some
infinite domain.3 This structure has been considered in the realms of semistruc-
tured data as a simple abstraction of XML documents, timed automata, program
verification, and generally in systems manipulating data values. Finding decidable

? We thank STIC AmSud, ANPCyT-PICT-2013-2011, UBACyT 20020150100002BA,
and the Laboratoire International Associé “INFINIS”.

3 Other works have considered different simplifications of these structures, either having
only one data value per node (e.g., [2]) or ignoring the label (e.g., [7]).
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logics or automata models over data trees is a fundamental quest when reasoning
on data-driven systems.

A wealth of specification formalisms on these structures (either for data trees or
its ‘word’ version, data words) have been introduced, stemming from automata [25,
27], first-order logic [2, 19, 16, 4], XPath [20, 18, 15, 14, 13], or temporal logics [9,
24, 22, 11, 7, 21]. In full generality, most formalisms lead to undecidable reasoning
problems and a well-known research trend consists of finding a good trade-off
between expressiveness and decidability.

Interesting and surprising results have been exhibited about relationships
between logics for data trees and counter automata [19, 18, 20]. This is why logics
for data trees are not only interesting for their own sake but also for their deep
relationships with counter systems.

This work. The aim of this work is to study the basic mechanism of “data
repetition”, common to many logics studied on data trees. For this, we study
a basic logic that can navigate the structure of the tree through the use of
CTL-like modalities, and on the other hand can make “data tests”, by asking
whether a data value is repeated in the subtree. More concretely, the data tests
are formulas of the form u ≈ EFv, stating that the data value stored in attribute
(also called variable here) u of the current node is equal to the data value stored
in attribute v of some descendant. This logic of repeating values, or LRV, has
been the center of a line of investigation studied in [6, 7] on data words, evidencing
tight correspondences between reachability problems for Vector Addition Systems
and the satisfiability problem. The current work pursues this question further,
exhibiting connections between the satisfiability problem of LRV over data trees
and the bottom-up coverability problem for branching counter systems. In order
to obtain connections with branching Vector Addition Systems with States, or
branching VASS [28], we also introduce a restriction where tests of the form
u ≈ EFv are only allowed when u = v. We denote this restriction by LRVD.
This symbiotic relation between counter systems and logics leads us to consider
some natural extensions of both the logic and the branching counter systems. In
particular, we introduce a new model of branching counter system of independent
interest, with decidable coverability and control-state reachability problems, that
captures LRV.

The extension of the logic LRV from words to trees is a very natural one.
However, the techniques needed to encode the satisfiability of the logic into a
counter system are not simple extensions from the ones provided on data words.
The reason for this difficulty is manyfold: a) the fact that now the future is
non-linear in addition to the possibility of having a data value repeating at several
descendants in different variables, makes the techniques of [7] for propagating
values of configurations impractical; b) further, this seems to be impossible for the
case of data trees, and we could only show a reduction for the fragment LRVD;
c) in order to reduce the satisfiability problem for the full logic we will need to
augment the power of branching VASS with the possibility to ‘merge’ counters
in a more powerful way, somewhat akin to what has been done for encoding the
satisfiability for FO2 [19].
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Contributions. The main contributions are the following:

– We show that the satisfiability for LRVD on k-ranked data trees is reducible,
in exponential space, to the control-state reachability problem for VASSk (i.e.,
Branching VASS of rank k) in Section 5. Since the control-state reachability
problem is decidable [28] in 2ExpTime [8], this reduction yields a decision
procedure.

– We consider the addition of an operator AG≈v(ϕ) expressing “every de-
scendant with the same v-attribute verifies ϕ”, and we show that the logic
resulting from adding positive instances of this operator is equivalent to the
control-state reachability for Branching VASS, that is, there are reductions
in both directions (Section 6).

– We introduce an extension of Branching VASS, called Merging VASS or
MVASS in Section 4.2. This model allows for merging counters in branching
rules in a form which is not necessarily component-wise, allowing for some
weak form of counter transfers. We show that the bottom-up coverability (and
control-state reachability) problem for MVASS is in 3ExpTime (Section 4.4).
This is arguably a model of independent interest.

– We show that the satisfiability for LRV on k-ranked data trees can be reduced
to the control-state reachability for MVASSk in Section 7. As in the case of
LRVD, this yields a decision procedure.

Related work. The most closely related work is the one originated by Demri et
al. in [5, 6] and pursued in [7]. These works study the satisfiability problem for
temporal logics on data words, extended with the ability to test whether a data
value is repeated in the past/future. Indeed, our current work is motivated by the
deep correlations evidenced by these works, between counter systems and simple
temporal logics on data words. The present manuscript expands this analysis to
branching logics and counter systems.

There are several works showing links between reachability-like problems for
counter systems and the satisfiability problem of logics on data trees. The first
prominent example is that satisfiability for Existential MSO with two variables
on data words (EMSO2(+1, <,∼)) corresponds precisely to reachability of VASS
[3], in the sense that there are reductions in both directions. On the other hand,
EMSO2 over (unranked) data trees was shown to have tight connections with
the reachability problem for an extension of BVASS [19], called ‘EBVASS’. This
extension has features which are very close to the model we introduce here,
MVASS, but it does not capture, nor is captured by, MVASS. One can draw a
parallel between the situation of the satisfiablity for EMSO2 and for LRV: while
on data words both are inter-reducible to VASS, the extension to data-trees is
non-trivial, and they no longer correspond to BVASS, but to extensions thereof.

In the course of the last decade, several logics for data trees have been proposed.
Among those that feature navigation in terms of modalities such as temporal
operators, one noticeable logic is that of XPath. Although the satisfiability
problem for XPath is undecidable, several fragments have been shown to be
decidable through reduction to the reachability or coverability problems for
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counter systems [9, 18, 12]. In particular, the satisfiability problem for XPath
with strict descendant (usually written ↓+) on ranked data trees has already a
non-primitive-recursive lower bound in complexity, as can be seen by adapting
techniques shown for data words [17].

Modulo a simple coding, our logic LRV is captured by a fragment of regular-
XPath, here called reg-XPathLRV, on data trees where path expressions are
allowed to use Kleene star on any expression (this what we denote by ‘regular’
XPath), and data tests are of the form 〈ε? ↓∗ [ϕ]〉 or 〈↓n [ϕ]? ↓m [ψ]〉 for some
n,m ∈ N and ? ∈ {=, 6=}. There are, however, three provisos for this statement.
First, in the aforementioned works on XPath the data model consists of data
trees whose every position carries exactly one data value. In the present paper,
we study ‘multi-attributed’ data trees where, essentially, each node carries a
set of pairs ‘attribute:value’. However, by means of a simple coding, such as
putting every ‘attribute:value’ as a leaf of the corresponding node, one can easily
translate LRV formulas to XPath formulas. Second, our LRV formulas are of the
form u ≈ EFv stating that the current data value under attribute u is repeated
in a node x of the subtree under attribute v, but one cannot test that some
property ψ further holds at the repeating node x. However, it was shown in [7]
that one can extend the logic with this power, obtaining formulas of the form
x ≈ EFy[ψ], since this extended logic is PTime-reducible to the logic without
these tests. Third, the LRV formulas cannot test for regular properties on the
labeling of paths, and thus there is no precise characterization in terms of a
natural fragment of regular-XPath, but one could add regular path tests to LRV
to match the expressive power of reg-XPathLRV without changing any of our
results.

In fact, the fragment reg-XPathLRV extends also the fragment DataGL con-
sidered in [1] and [13] containing only data tests of the form 〈ε? ↓∗ [ϕ]〉, which is
known to be PSpace-complete on unranked data trees [13].

It is not hard to see that the satisfiability problem of LRV on unranked data
trees is PSpace-complete following the techniques from [13]. On the other hand,
on ranked data trees we know, by the discussion above, that if we would allow
intermediate tests in a way to be able to encode the expressive power of XPath(↓+)
we would have a non-primitive recursive lower bound. It is therefore natural to
limit the navigation disallowing intermediary tests. This natural fragment was
already studied on data words [7], and we now study it on data trees.

2 Preliminaries

Let N+ = {1, 2, . . . }, N = N+ ∪ {0}, and n = {1, . . . , n} for every n ∈ N. We
use the bar notation x̄ to denote a tuple of elements, where x̄[i], for i > 0, refers
to the i-th element of the tuple. For any pair of vectors x̄, ȳ ∈ Zk we write x̄ ≤ ȳ
if x̄[i] ≤ ȳ[i] for all 1 ≤ i ≤ k. The constant ∅̄ refers to the (unique) vector
of dimension 0, and the constant ēi refers to the vector (whose dimension will
always be clear from the context) so that ēi[i] = 1 and ēi[j] = 0 for all j 6= i. We
write 0̄ for the tuple of all 0’s (the dimension being implicit from the context).
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A linear set of dimension k is a subset of Nk which is either empty or
described as {v̄0 + α1v̄1 + · · · + αnv̄n | α1, . . . , αn ∈ N} for some n ∈ N and
v̄0, . . . , v̄n ∈ Nk. Henceforward we assume that linear sets are represented by
the offset v̄0 and the generators v̄1, . . . , v̄n, where numbers are represented
in binary. For ease of writing we will denote a linear set like the one above by
“v̄0 + {v̄1, . . . , v̄n}∗”.

We fix once and for all an infinite domain of data values D. A data tree
of rank k over a finite set of labels A and a finite set of attributes V, is a finite
tree whose every node x contains a pair (a, µ) ∈ A×DV and has no more than k
children. In general, a will be called the label of x and µ(v) will be called the
data value of attribute v ∈ V at x. The i-ancestor of a node x of a data tree
T is the ancestor at distance i from x (i.e., the 1-ancestor is the parent); while
the i-descendants of x are all the descendants of x at distance i.

3 Logic of repeating values on data trees

We will work with a temporal logic using CTL∗ modalities [26, 10] to navigate
the tree —although this is not really essential to our results, in the sense that
any other MSO definable data-blind operators could also be added to the logic
obtaining similar results. The Logic of Repeating Values LRV contains the
typical modalities from CTL∗, such as EF, AF, EU, etc. as well as the possibility
to test for the label of the current node, and data tests. Data tests are restricted
to being very basic, as in [6], of the form “u ≈ EFv” stating “the data value of
attribute u appears again at the attribute v of some descendant”, or “u 6≈ EFv”
stating “there is a descendant node whose attribute v contains a different data
value from the data value of the attribute u of the current node”. Since LRV is
closed under Boolean connectives, this means we can also express, for instance,
that attribute u of all descendants have the same data value as the current node’s:
¬(u 6≈ EFu).

Formally, formulas of LRV are defined by

ϕ ::= a | ϕ ∧ ϕ | ¬ϕ | EU(ϕ,ψ) | u ≈ EFv | u 6≈ EFv | u ≈ EXiv | u 6≈ EXiv,

where a ranges over a finite set of labels A, u, v range over a finite set of attribute
variables V (also called just ‘variables’), and i ∈ N+. Given a data tree T and
a node x of T , the satisfaction relation |= is defined in the usual way: T, x |= a
if a is the label of x; T, x |= u ≈ EFv [resp. T, x |= u 6≈ EFv] if there is a strict
descendant y of x so that the u-attribute of x has the same [resp. different]
data value as the v-attribute of y; T, x |= u ≈ EXiv [resp. T, x |= u 6≈ EXiv] if
there exists an i-descendant of x whose v-attribute is equal [resp. distinct] to the
u-attribute of x; and T, x |= EU(ϕ,ψ) if there is some strict descendant y of x so
that T, y |= ϕ and every other node z strictly between x and y verifies T, z |= ψ.
Note that the remaining CTL∗ modalities (EX, EG, EF, AX, AG, AF, AU) can
be expressed using EU4.

4 EXϕ = EU(ϕ,⊥), EFϕ = EU(ϕ,>), EGϕ = EU(ϕ ∧ ¬EX>, ϕ), AU(ϕ,ψ) =
¬EU(¬ψ ∧ ¬ϕ,¬ψ) ∧ ¬EG(¬ϕ), etc.
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We call LRVD
n the logic using at most n attribute variables, whose only

admissible data tests are of the form u ≈ EFu, u 6≈ EFu, u ≈ EXiu or u 6≈ EXiu
(same variable in the left and right sides). Intuitively, this corresponds to the
restriction where each attribute variable ranges over a disjoint set of data values
(hence the letter ‘D’).

4 Models of branching counter systems

We present the models of counter systems we are going to work with. The first
one is a well-known model, usually known as Branching Vector Addition System
with States, or “BVASS”, while the second one is a useful extension of the first
one where the split/merge operation of the counters is controlled by the use of
linear sets.

4.1 Branching VASS

A VASS of rank k and dimension n, or nVASSk, is a tuple A = 〈Q,U,B〉, where Q
is a finite set of states, U ⊆ Q×Zn×Q is a set of unary rules, and B ⊆ Q×Q≤k
is a finite set of branching rules. We notate q

v̄−→ q′ for a unary rule (q, v̄, q′) ∈ U ,
and q −→ (q1, . . . , qi) for a branching rule (q, q1, . . . , qi) ∈ B. A configuration is
an element from Confs := Q ×Nn. For a configuration (q, n̄) we often use the
term “counter i” instead of “n[i]” (in the case n = 1 we speak of the counter).

A derivation tree [resp. incrementing derivation tree] is a finite tree D
whose every node x is either

– labeled with a pair (p
v̄−→ p′, (q, n̄)) ∈ U × Confs so that p

v̄−→ p′ is a unary
rule of U , p = q and it has exactly one child, which is labeled (r1, (p1, n̄1))
so that p′ = p1 and

n̄+ v̄ = n̄1 [resp. n̄+ v̄ ≤ n̄1]; (1)

– or labeled with a pair ((p, q̄), (q, n̄)) ∈ B×Confs so that p −→ q̄, with q̄ ∈ Qk′

for some k′ ≤ k, is a branching rule of B, p = q and it has exactly k′ children,
labeled (r1, (p1, n̄1)), . . . , (rk′ , (pk′ , n̄k′)) so that q̄ = (p1, . . . , pk′) and

n̄ =
∑
i≤k′

n̄i [resp. n̄ ≤
∑
i≤k′

n̄i]. (2)

Note that leaf nodes are necessarily labeled with rules of the form q −→ ∅̄ ∈ B.
Without loss of generality we will assume that the system contains rules q −→ ∅̄
for every state q.

4.2 Merging VASS

We present an extension of the model above where the branching rules, now
called merging rules, are more powerful: they allow us to reorganize the counters.
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Whereas in an (incrementing) derivation tree for VASSk the component i of the
configuration of a node depends only on the component i of its children and the
rule applied, MVASSk allows to have transfers between components. However,
these transfers have some restrictions —otherwise the model would have non-
elementary or undecidable coverability/reachability problems [23]. First, transfers
between components are ‘weak’, in the sense that we cannot force a transfer of
the whole value of a coordinate i to a distinct coordinate j of a child, we can
only make sure that part of it will be transferred to component j and part of it
will remain in component i. Second, these weak transfers can only be performed
for any pair of coordinates i, j adhering to a partial order, where transfers occur
from a bigger component to a smaller one.

A Merging-VASS of rank k and dimension n, or nMVASSk, is a tuple
A = 〈Q,U,M,�〉, where � is partial order on n, Q and U are as before, and M
is a set of merging rules of the form (q, S, q̄) where q ∈ Q, q̄ ∈ Qk′

with k′ ≤ k,
and S ⊆ Nn·(k′+1) is a linear set of dimension n · (k′+1) of the form 0̄+(B∪S0)∗,
where

1. all the elements ofB are of the form (ēi, x̄1, . . . , x̄k′), where for each 1 ≤ ` ≤ k′,
x̄` ∈ Nn is either 0̄ or ēj for some j ≺ i; and

2. S0 consists of the following k′ · n vectors

S0 =
⋃

1≤i≤n

{(ēi, ēi, 0̄, 0̄, . . . , 0̄), (ēi, 0̄, ēi, 0̄, . . . , 0̄), . . . , (ēi, 0̄, . . . , 0̄, ēi)}. (3)

The idea is that in point 1 we allow to transfer contents from component
i to components of smaller order. For example, on dimension 3 and rank 2, a
vector v̄ = (1, 0, 0)(0, 1, 0)(0, 0, 1) in B would imply that during the merge one
can transfer a quantity m > 0 from component 1 of the father into component 2
of the first child and component 3 of the second child, assuming 2, 3 ≺ 1). On the
other hand, point 2 tells us that for every i we can always have some quantity
of component i that is not transfered to other components, i.e., that stays in
component i. Continuing our example, the children configurations (m,m′ + s, t)
and (m, s,m′+ t) can be merged into (m+m′, s, t) for every m,m′, s, t ≥ 0, using
the vector v̄ and S0.

A derivation tree [resp. incrementing derivation tree] is defined just as before,
with the sole difference being that condition (2) is replaced with

(n̄, n̄1, . . . , n̄k′) ∈ S
[resp. (n̄, n̄′1, . . . , n̄

′
k′) ∈ S for (n̄′1, . . . , n̄

′
k′) ≤ (n̄1, . . . , n̄k′)]. (4)

Notice that this is a generalization of VASSk. Indeed, VASSk corresponds to the
restriction where all the k′-ary merging rules have S = 0̄ + S∗0 for S0 as defined
in (3). Note that an (incrementing) derivation tree for nVASSk is, in particular,
an (incrementing) derivation tree for nMVASSk. As before, we assume that there
are always rules (q, ∅, ∅̄) for every state q.

Jacquemard et al. [19] study an extension of BVASS, ‘EBVASS’, in relation to
the satisfiability of FO2(<,+1,∼) over unranked data trees. EBVASS has some
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features for merging counters. While MVASS and EBVASS are incomparable
in computational power, it can be seen that without the restriction j ≺ i in
condition 1, MVASS would capture EBVASS. In fact, this condition is necessary
for the (elementary) decidability of the coverability problem for MVASS, while
the status of the coverability problem for EBVASS is unknown.

4.3 Decision problems

Given a counter system A, a set of states Q̂, and a configuration (q, n̄) of A,

we write (q, n̄) A Q̂ [resp. (q, n̄) +
A Q̂] if there exists a derivation tree [resp.

incrementing derivation tree] for A with root configuration (q, n̄), so that all

the leaves have configurations from Q̂× {0̄}. The reachability and incrementing
reachability problems are defined as follows.

Problem: VASSk reachability problem
[resp. VASSk incrementing reachability problem]

Input: an nVASSk A with states Q, a set of states Q̂ ⊆ Q, and
a configuration (q, n̄) of A.

Output: ‘Yes’ iff (q, n̄) A Q̂ [resp. (q, n̄) +
A Q̂].

Observe that when k = 1 this problem is equivalent to the reachability and
coverability problems for Vector Addition Systems with States.

The MVASSk reachability problem and MVASSk incrementing reach-
ability problem are defined just as before but considering A to be an nMVASSk

instead of a nVASSk. We will often refer to these problems as Reach( ) and
Reach+( ). We also remark that the incrementing reachability problem is simply

a restatement of the coverability problem. In particular, if (q, n̄)  +
A Q̂ and

n̄′ ≤ n̄ then (q, n̄′) +
A Q̂. We define the control-state reachability problem

CSReach as the problem of, given A, q, Q̂, whether (q, n̄) A Q̂ for some n̄. It is

easy to see that this problem is equivalent to the problem of whether (q, 0̄) +
A Q̂.

In [8] the coverability problem (or equivalently, the incrementing reachability
problem) for a single-state formulation, called BVAS, is studied. A BVAS consists
of a tuple 〈n,R1, R2〉, where R1 is a set of unary rules, R2 is a set of binary rules
(both rules included in Zn which add up a vector). The size of a given BVAS is
defined as n`, where ` represents the maximum binary size of an entry in R1∪R2.

Proposition 1. [8] Coverability for BVAS is 2ExpTime-complete. If the dimen-
sion n is fixed, the problem is in ExpTime.

4.4 Decidability of Reach+(MVASS)

The arguments used in [8] to prove the previous proposition can be adapted to
show a similar result for MVASS: the Reach+ and CSReach problems are in
3ExpTime.

Theorem 2. Reach+(MVASSk) and CSReach(MVASSk) are in 3ExpTime
for every k ≥ 1. If the dimension n is fixed, the problem is in 2ExpTime.
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Proof (idea). In a somewhat similar way as it was shown in [8, Lemma 6] for
the case of VASSk, one can show that if there is an incrementing derivation D
witnessing (q, n̄) +

A Q̂, where A = (Q,U,M,�) is an nMVASSk counter system,
then there is a ‘contraction’ (i.e., the result of the repeated replacing of the subtree
at a node x with the subtree at some descendant y while maintaining the property
of being a derivation) D′ of D with height bounded doubly-exponentially in the
dimension. One significant difficulty in adapting the proof for VASSk to MVASSk,
is that in a derivation for a VASSk, if the component i of a configuration at a node
x is “very big”, and the same component i at the root is “small” (say, 0), this
means that the distance between x and the root in the derivation tree must be
big. This is a crucial ingredient for bounding the height of a minimal derivation
and obtaining the 2ExpTime upper bound proof for Reach+(VASSk) in [8].
However, this is no longer the case for MVASSk, since the size of component i at
x may come from a transfer of the parent from another component with higher
�-index. Nevertheless, by using the fact that (i) transfers between components
induced by merging rules are �-ordered (point 1 of the definition), and (ii) linear
sets of merging rules are monotone in the sense that they contain S∗0 as defined
in (3), we can recover bounds for the minimal height of derivations. This can be
done by induction on the preorder —note that relative to maximal � coordinates
MVASSk behaves like VASSk.

These results imply that, in order to decide the incrementing reachability
problem, it suffices to search for a derivation of doubly-exponential height, whose
vectors may contain triply-exponential entries in principle. As a consequence of
this, the verification of the existence of such a derivation can be performed in
alternating double exponential space, as it is shown in [8, Theorem 8], and thus
the incrementing reachability for MVASS is in 3ExpTime.

If n is fixed, the height of the witnessing derivation becomes singly exponential
and thus the problem is in 2ExpTime (as explained in [8, Theorem 8]). ut

5 Satisfiability of LRVD on data trees

We call SATk the satisfiability problem on finite k-ranked data-trees. The main
result of this section is the following.

Theorem 3. SATk-LRVD
n is ExpSpace-reducible to CSReach(nVASSk).

In the proof of the theorem, the number of attribute variables of the formula
will become the dimension of the VASSk. Since the CSReach problem for VASSk

is decidable in 2ExpTime, this yields a decidable procedure for SATk-LRVD for
every k. For the case k = 1, i.e., on data words, it has been shown [7] that there is
a reduction from SAT1-LRVn to CSReach(2n-VASS1), where the dimension of
the VASS1 is exponential in the number of variables. However, it is easy to see that
the proof of [7] also yields a reduction from SAT1-LRVD

n to CSReach(nVASS1).
Thus, this theorem has been shown for k = 1, and here we generalize it to k > 1.
However, there are a number of problems that appear if one tries to “extend”
the proof of [7] to the branching setup. In particular, the non-linearity of the
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future in addition to the possibility of having a data value repeating at several
descendants in different variables, calls for a non-standard way of propagating
the values of configurations, which is not contemplated in VASSk. This is why we
are only able to show the reduction for the ‘disjoint’ fragment LRVD, and which
leads us to consider the extended model MVASSk in Section 7. This propagation
problem does not appear when one only considers that the classes of different
values are disjoint, that is, that all formulas of the type v ?EFw with ? ∈ {≈, 6≈}
have v = w, motivating the study of SATk-LRVD

n .

Proof idea. We start by analyzing a restricted case, which serves as building
block: the logic LRVD−

1 whose only formulas are conjuncts of terms of the form
v ? EXiv, v ? EFv, or their negation, where ? ∈ {≈, 6≈}. We show that for any
formula ϕ of LRVD−

1 , there is a 1VASSk Ak
ϕ = 〈Q,U,B〉, a set of initial states

Q0 ⊆ Q, and a set of final states Q̂ ⊆ Q such that SATk(ϕ) iff there is a derivation

tree with a starting node in q0 ∈ Q0 that is a solution to CSReach(Ak
ϕ, q0, Q̂)—it

is easy to see that this problem is equivalent to CSReach as stated in Section 4.3.
We then extend this construction to the automaton Bkϕ, enabling a reduction

from the full logic LRVD
1 , but still restricted to only one variable. Finally, because

of the disjointness of the variables, it is easy to extend these constructions to the
full logic LRVD

n .
Here we only give a brief explanation of the construction of Ak

ϕ = 〈Q,U,B〉
for the logic LRVD−

1 . For the sake of simplicity, we assume our logic has no
labels; their addition to the construction is straightforward. Since LRV can only
deal with data (in)equality and since in this case we consider n = 1, we will
interchangeably speak of an equivalence relation between the nodes of the tree
or of the particular data values.

We define the EX-length of a formula ψ as the maximum i such that ψ
contains a subformula of the form v ?EXiv. Let d be the EX-length of ϕ. The set
Q consists of all valid (d, k)-frames, where a (d, k)-frame is a tree of depth d and
rank k, equipped with an equivalence relation, and with some extra attributes
(node-labeling functions) to include some special marks and semantic information
of future requirements of the form (¬)v ≈ EFv and (¬)v 6≈ EFv. The initial
states Q0 are those frames F satisfying the local part of ϕ (that is, subformulas
of ϕ the form v ? EXiv). Future requirements (that is, subformulas of ϕ of the

form v ? EFv) may not be satisfied locally in F . The set Q̂ is the singleton with
a frame consisting in a single node. The basic idea is that the counter of Ak

ϕ

keeps track of how many future requirements are not yet satisfied. Some nodes
of the frames may have extra information in the form of labels ⊕ or 	. States F
whose root is labeled with ⊕ are points of increment: Ak will have unary rule
in U that increments the (sole) counter in 1. A point of increment denotes that
some subformula v ≈ EFv of ϕ should hold, but it is not satisfied locally, that
is, inside F . Leaves with 	 are those not related to ancestors in the frame with
the same data value, they can thus be “joined” into the same equivalence class
to a future requirement originated at some distant ancestor. States with leaves
	-labeled are points of decrement: Ak will have a unary rule in U to decrement
the counter depending on the number of equivalence classes of leaves labeled
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with 	. The branching rules B of Ak are of the form F → (F1, . . . , Fi), where
Fj overlaps with an adequate part of F .

Example 4. The following figure illustrates a scheme of an incrementing derivation
S of the 1VASS2 A2

ϕ (a) and some steps (b, c and d) in the bottom up construction

of the data tree TS satisfying ϕ, for ϕ = ¬v ≈ EXv ∧ ¬v ≈ EX2v ∧ v ≈ EFv.
Triangles represent (2, 2)-frames. Shades of gray represent the equivalence classes,
which only make sense inside any frame. The counter is notated with c, and
arrows represent the (unary/branching) transitions of the derivation. Notice that
the top branching is ‘incremental’, and that the local requirements of ϕ (namely,
¬v ≈ EXv and ¬v ≈ EX2v) are satisfied in the root of the top frame.

S1 S2

S3

S�

  

TS1
TS2

  

  

c = 1

c = 0

c = 0

c = 0

c = 0

c = 0

c = 1

c = 0

c = 0

+1

�1 �1

c = 1
branch

branch

branch

branch

branch

 

TS3

TS

(a)

(b)

(c)

(d)

The construction of TS is bottom-up, and we show three steps: (a), (b) and (c).
Notice that in (b) each of TS1 and TS2 has its own partition (no intersection).
In (c) we process the root of S3 by tying together TS1

and TS2
with a common

parent, who lives in a single class of the partition. Notice that the partitions of
TS1

and TS2
are properly joined (grey area), according to the information in the

root of S3. Finally in (d) we construct TS . The root of S is a point of increment,
so we match ⊕ with some 	 in TS3 . In this case, we match it with the right-hand
	, and so we join them by putting them in the same partition (grey area). We
have satisfied the future requirement v ≈ EFv of ϕ.

On the one hand, any incrementing derivation S that is a solution to
CSReach(Ak

ϕ, q0, Q̂) for some q0 ∈ Q0, can be translated into a data tree
TS whose root satisfies ϕ. In fact, any semantic information contained in the
labels of nodes in frames of S will be satisfied in the corresponding nodes of TS .
The difficult part is to show that 	-leaves will have the necessary conditions to
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be joined with the equivalence class of an ⊕-ancestor, making true the formula
v ≈ EFv. This will be a consequence of the fact that the incrementing derivation
satisfies CSReach.

On the other hand, if ϕ is satisfiable in some k-ranked data tree T then we can
build an incrementing derivation tree ST that is a solution to CSReach(Ak

ϕ, q0, Q̂)
for some q0 ∈ Q0. Following the ideas of the previous part, we proceed from
the root toward the leaves using the structure and equivalence classes of T to
determine in each step the corresponding states (including the semantic labels
and the labels 	, ⊕) and rules of ST . From the construction, and using the
incrementing nature of the derivation, it will follow that ST is a solution to the
control-state reachability problem.

For the construction of Bkϕ, the information given by the (d, k)-frames will be
supplemented by the addition of sets of formulas containing information about
the EU operator and the Boolean connectives. The way to do this is standard
(see e.g., [6]).

Complexity. Let LRVD
n,d be the fragment of LRVD

n where each formula has EX-
length at most d. By inspecting the above reduction, we can bound the number

of states of the constructed nVASSk by O(p(n)k
d+1 · (kd+1)k

d+1 · 2p(|ϕ|)) for some
polynomial p, and we can bound the maximum value among the entries in unary
rules by kd. Furthermore, we can reduce our branching VASS to an equivalent
(single-state) BVAS with an addition of a constant number of new dimensions.
This transformation increases the binary size of the maximum entry of the unary
rules at most logarithmically over the number of states of our original nVASSk.
Now, using Proposition 1, Theorem 3, and the above complexity analysis, we
obtain:

Proposition 5. SATk-LRVD
n,d is in ExpTime for fixed k, n, d; it is in 2ExpTime

for fixed k, n or fixed d, k; and it is in 3ExpTime for fixed k.

6 Obtaining equivalence with VASSk

In the previous section we have seen a reduction into the control-state reachability
problem for VASSk. A natural question is whether there exists a reduction in the
other direction: can CSReach(VASSk) be reduced into the k-satisfiability for
LRVD? For the case k = 1, this has been shown to be the case [7]: there exists a
polynomial-space reduction from CSReach(VASS1) to SAT1(LRV).

The existence of a reduction would show, intuitively, that one can express in
the logic that there is a tree that verifies all the conditions for being a derivation.
Without the use of data tests, one can easily encode trees that verify all the
conditions except perhaps (1) and (2) regarding the vectors. For this, let us
assume without loss of generality that all unary rules contain a vector ēi or −ēi.
The data values are used to ensure the next two conditions:

– Along any branch, every node containing a rule of the form q
ēi−→ q′ has

a unique data value. In other words, we cannot find two nodes encoding



Logics of repeating values on data trees and branching counter systems 13

an increment of component i with the same data value so that one is the
ancestor of the other.

– For every node with a unary rule q
ēi−→ q′ there exists a descendant with a

rule p
−ēi−−→ p′ and the same data value.

These two conditions imply that after incrementing component i there must be
at least one corresponding decrement of component i. Note that there could be
more decrements than increments, which is not a problem since we work under
the ‘incrementing’ semantics.

Interestingly, these two conditions can be expressed in LRV, but we do not
know how to encode it in LRVD (we conjecture that they are not expressible).

Adding the operator AG≈v(ϕ). We add a new operator AG≈v(ϕ) to LRVD,
where T, x |= AG≈v(ϕ) if every descendant of x with the same v-attribute verifies
ϕ. The fragment of LRVD

n extended with positive occurrences of AG≈v(ϕ) (that
is, where AG≈ occurs always under an even number of negations) is called
LRVD

n (AG+
≈).

Now, in LRVD
n (AG+

≈) one can express: for every node x containing a rule

q
ēi−→ q′, we have that all descendants of x with the same vi attribute contain

a rule of the form p
−ēi−−→ p′. This, added to the property that every increment

for component i must verify vi ≈ EFvi, ensures that the tree indeed encodes a
derivation tree.

Theorem 6. CSReach(nVASSk) is PTime-reducible to SATk-LRVD
1 (AG+

≈).

Proof (idea). We show the idea for n = 1, as this case generalizes to any n
straightforwardly, and without changing the number of variables in the logic. For
every 1VASSk Ck = 〈Q,U,B〉, q0 ∈ Q and Q̂ ⊆ Q we define ϕ ∈ LRVD

1 (AG+
≈),

such that SATk(ϕ) iff CSReach(Ckϕ, q0, Q̂). We want this ϕ to force various
properties in all its models, so that every model corresponds to a derivation tree
of CSReach(Ckϕ, q0, Q̂). In particular, we want:

– Each node is labeled with either a rule of U ∪ B or an extra label ∗ for
dummy nodes that will be ignored (this is to force exact k-branching for all
non-leaves). We can assume without loss of generality that all unary rules in

U of the form q
c−→ q′ have either c = 1 or c = −1. In particular, formulas

ϕinc and ϕdec express that the label is an increment or a decrement rule,
respectively.

– If a node is labeled with an empty rule q → ∅̄, then it is a leaf.
– The root is labeled with a rule of the form (q0, . . . ) ∈ U ∪B.
– Each node labeled with an increment rule has a descendant in the same

equivalence class (i.e. with same value for the only attribute v), and all its
descendants in the same equivalence class are labeled with a decrement rule:
this can be expressed by ϕinc →

(
v ≈ EFv ∧AG≈v(ϕdec)

)
.

All the above properties, except the last one, can be expressed in LRVD
1 ; for the

last one we use (positively) AG≈. The final formula ϕ consists of a conjunction
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of all these properties, among others (so that the occurrence of AG≈ remains
positive). Then one verifies that a solution to the control-state reachability

problem of Ck, q0, Q̂ can be used to construct a model for ϕ; and that a data
tree satisfying ϕ can be used to construct an incrementing derivation tree for
CSReach(Ck, q0, Q̂). ut

The satisfiability for this extension still has a reduction to the control-state
reachability for VASSk:

Theorem 7. SATk-LRVD(AG+
≈) is ExpSpace-reducible to CSReach(VASSk).

7 From LRV to MVASSk

The reduction from LRVD to VASSk from Section 5 cannot be extended to
treat LRV. The main problem is that the branching nature of the counters in
a CSReach(VASSk) will be insufficient to represent some classes of data trees
(which can be needed to model some formulas). When we have tests of the form
u1 ≈ EFu2 with u1 6= u2 distinct variables, we can no longer reason in terms
of “one coordinate i for each variable ui”, where the i-th component in the
configuration of the VASSk codes, intuitively, how many distinct data values
must be seen on variable ui in the subtree as shown in Section 5. In fact, when
working with LRV, a data value may appear in several variables, as a result of
allowing formulas like u1 ≈ EFu2 ∧ u1 ≈ EFu3. This means that we need to
reason in terms of sets of variables, where each component i is associated with a
non-empty subset Ui of the variables appearing in the input formula ϕ; this time,
component i counts how many data values must appear in the subtree under all
the variables of Ui. This, in principle, poses no problem for the non-branching
case: in fact, this kind of coding (indexing one coordinate of the configuration for
each subset of variables) was used in [6] to show a reduction from LRV to VASS
on data words. However, on data trees, this coding breaks with the semantics of
the branching rules of VASSk.

As an example, suppose we work with two variables u, v and we thus have
dimension 3 —the first component is associated with {u}, the second with {v}
and the third with {u, v}. Suppose that there are n ancestor nodes that have to
satisfy both u ≈ EFu and u ≈ EFv, which at the current configuration of the
VASSk is witnessed by the vector (0, 0, n). Intuitively, this means that there are
n data values that must appear in the subtree under a variable u and also under
v (though not necessarily at the same node) in the data tree the automaton is
trying to find. Hence, as part of the “branching” instruction of this configurations
into the configuration of the left and right children, one must contemplate the
possibility of obtaining, for instance, (n, 0, 0) (0, n, 0), saying that the left subtree
contains n distinct data values for u, and the right child contains n data values
for v. But it could be (n− t, 0, t) (0, n− t, 0), or (0, 0, n− t) (0, 0, t), etc. In other
words, components need to be mixed in a more complex way that is not allowed in
VASSk branching rules. In particular, some sort of transfers between coordinates
must be necessary. This is precisely the behavior that we can encode into MVASS.
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Theorem 8. SATk-LRVn is reducible to CSReach(2n-MVASSk).

Proof (idea). The crux of the reduction is in the use of the merging rules. We
have one component associated to every non-empty subset. For every non-empty
subset U of variables appearing in the input formula ϕ there is a component i
associated to U , let us then define ēU as ēi. Also, let ē∅ = 0̄. The idea is that, on
rank k, every merging instruction will contain the linear set consisting of every
vector (ēU ēV1

· · · ēVk′ ) ∈ Nn·(k′+1) with k′ ≤ k, so that U 6= ∅ and U =
⋃

i Vi.
The partial order � will then be the subset ordering on the components: i � j if
the set associated to i is contained in that associated to j.

Using the merging rules as described above, the reduction from LRVD to
VASSk of Section 5 can be modified to obtain a reduction from LRV to MVASSk.
Frames and its notion of validity are extended to treat set of variables. In
particular, now the points of increment and decrement are always relative to a
set of variables. This follows, very roughly, the idea of coding from [7] in the
setup built in Section 5, but now some special care must be considered because
of the non-linearity of a tree. One must decide in advance to which leaf of the
frame the satisfaction of data demands will be delegated. The resulting MVASSk

now has dimension exponential in the number of variables of the input formula.
ut

As a corollary, due to Theorem 2, we have that SATk-LRV is decidable. We
remark that, similarly as done in [7], one can add formulas of the form u?EF[ϕ]v
stating that there is a descendant witnessing u ? EFv and verifying ϕ, while
preserving this reduction.

8 Discussion

We have shown connections between counter systems and data logics on ranked
data trees. In particular, this has yielded decision procedures for data logics and
a new model of branching computation of VASS.

While in the present work the focus has been put on ranked data trees, we
envisage working also on unranked trees in the future. In particular, we remark
that these logics can be naturally extended to the unranked case, but that
there are no well-known models of branching counter systems with unbounded
branching. This may lead to new natural models featuring some sort of unbounded
parallel computations with good computational properties.

We are also interested in considering other modalities in our logics, with
branching tests such as EXiv ?EFu and EFu ≈ EFv, or tests including past such
as u ≈ EF−1v and EF−1u ≈ EFv.

We were unable to show the precise complexity of CSReach(MVASSk), which
lies between 2ExpTime and 3ExpTime. We leave this for future work. We believe
that SATk-LRV(AG+

≈) is equivalent to the control-state reachability problem for
MVASSk, in the sense of existence of computable reductions from and to.
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